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1 Introduction 

Let A be a non-trivial group and let s(t) = 1 be an element in the free product A* < t > 
where t is distinct from A. That is, s(t) = aitkl a2tk2 ...an tk. where ai E A, ki = ±1 and 
ai 0 1 if ki  = 	1 < i < n - 1 (subscript mod n). The integer n is called length of 
the equation. The equation s(t) = 1 is solvable over A if and only if the natural map 
a 1-4  a from A to < A, 45(0 > is injective. It was conjectured by Levin [15] that any 
equation over a torsion free group is solvable. Prishchepov [17] and, with a different 
proof, Ivanov and Klyachko [11] showed that the conjecture is true for equations of 
length at most six. Our aim is to prove the following theorem. 

Theorem 1.1. Any equation of length seven is solvable over any torsion free group. 

There are (up to cyclic permutation and inversion) nine distinct equations of length 
seven: 

1. ai ta2ta3 ta4ta5 ta6 ta7 t = 1 

2. aita2ta3ta4ta5ta6ta7r1  = 1 

3. aita2ta3ta4ta5ta6t-la7t-1  = 1 

4. aita2ta3ta4ta5t-la6ta7t-1  = 1 

5. aita2ta3ta4t-la5ta6ta7t-1  = 1 

6. alta2ta3ta4ta5t-la6t-f art-1  = 1 

7. aita2ta3ta4t-la5ta6t-la7r1  = 1 

8. aita2ta3t-la4ta5ta6t-la7t-1  = 1 
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9. a1ta2ta3t-la4ta5t-la6ta7t-1  = 1 

The exponent sum of t in equations 6, 7, 8, 9 is equal to 1, which is solvable by Klyachko 
[14] while equations 2 and 3 are solvable by Stalling [18] and equation 1 by Levin [15]. 
Equation 4 is solvable by putting n = 2, m = 4 in [3, p. 493]:  This leaves equation 5 
which we rewrite as 

s(t) = atbtctdt-1  et f tgri  = 1. 

2 Method of proof 

The definitions of this section are taken from [1]. 
A relative group presentation is a presentation of the form P =< A, tir > where A is 
a group, t is disjoint from A. Denoting the free group on t by < t >, r is a set of 
cyclically reduced words in the free product A* < t >. The group defined by P is 

A* <  t >  A(P) = N 	
where N is the normal closure of r in A* < t >. 

A picture P is a finite collection of pairwise disjoint discs. {Di , 	, Dr} in the interior of 
a disc D2, together with a finite collection of pairwise disjoint simple arcs {o-i , 	, crs} 
embedded in the closure of D2  - U{Di, , Dr}. The boundary of P is the circle aD2, 

denoted by OP. For j E {1, . , r}, the corners of Di  are closures of the connected 
components of aDi  -u{0-1,...,o-s }, where apj  is the boundary of Di . 
The regions of P are the closures of the connected components of D2  -(U{D1, , Dr  } U 
U{cri, , as}). An inner region of P is a simply connected region of P that does not 
meet OP. 
The picture P is nontrivial if r > 1, is connected if U{Di , 	, Dr} U U{cri , 	, mss } is 
connected, and is spherical if it is non-trivial and U{a', • • • , crs} fl OP = 0. 
Suppose that the picture P is labelled in the following sense. 
Each arc is given a normal orientation indicated by a short arrow meeting the arc 
transversely, and labelled by t or t-1. 
Each corner is oriented anticlockwise (with respect to D2) and labelled by an element 
of A. 
If i is a corner of a disc Di  of P, then W(k) will be the word obtained by reading in 
anticlockwise order the labels on the arcs and corners meeting OD beginning with the 
label on the arc at the terminal point of the anticlockwise oriented corner K. If we cross 
an arc labelled t in the direction of its normal orientation we read t, otherwise t-1. 
We say that P is a picture over the presentation P if the above labelling satisfies the 
following two conditions: 
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1. For each corner of P, W(tc)E r*, where r* is the set of all cyclic permutations 
of r U r-1  which begin with t or t-1. 

2. If al , a2..., an  is the sequence of corner labels encountered in a clockwise traversal 
of the boundary of an inner region of P , then al a2...an =1 in A. 

A dipole in a picture P over P consists of a pair of corners IC, n' of P together with an arc 
joining the head of one corner to the tail of the other such that the corners IC, le lie in 

the same region and such that W (n)=W(ki), where the operator - is defined as follow. 
Let R = Sa E r, where a E A and S begins and ends with t or t-1. Then R = S— la-1. 
The picture P is reduced if it does not contain a dipole. A relative presentation P is 
aspherical if every connected spherical picture over P contains a dipole (that is, fails 
to be reduced). 
If the relative presentation P is orientable (that is no element of r is a cyclic permuta- 
tion >  of its inverse) and aspherical then the natural homomorphism A 	A* < t 	 is 
injective. In our case r consists of a single element s(t) = atbtctdt —letftgri. Clearly 
P =< A, tls(t) > is orientable. If we show that P is aspherical then s(t) = 1 is solvable 
over A. We will use two approaches to asphericity: weight test [1] and curvature dis-
tribution method [5]. Moreover,we work with relative diagrams [9] which are the dual 
of pictures. 
The star graph [1.] F for the relative presentation P =< A,tratbtctdt—let ftgt-1  = 1> 
is the directed graph shown in Figure 2.1. 
A non-empty cyclically reduced cycle (closed path) in the star graph F is called admis-
sible if it has a label which is trivial in A. Each vertex label of a relative diagram gives 
an admissible cycle in F. 
A weight function 9 on the star graph F is a real valued function on the edges of F. 
If e is an edge of F, then 9(e) = 0(e-1 ). The weight of a closed cycle is the sum of the 
weights of the constituent edges. 
A weight function 9 on F is called aspherical if it satisfies the following conditions: 
(W1) Let R E r be cyclically reduced word, say R = til ai  to an , where Ei 7-7 ±1 
and ai  E A. Then 

(1 — (0 (t7tai 	an tei l al 	t7L-11  az _ 1)) > 2. 
i=i 

(W2) Each admissible cycle in F has weight at least 2. 
(W3) Each edge of F has a non-negative weight. 
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If r admits an aspherical weight function then the relative presentation P is as-
pherical [1]. 
Let K be a reduced spherical diagram over P. Given an angle function a on the corners 
of K we define the curvature function c on a vertex v of a diagram K by 

c(v) = 27r - E a(rc), where ic is a corner of the vertex v 
Key 

and on regions A of K by : 

c(A) = 27r - E (7r - a(n)). 
nEA 

For a vertex v with degree d, allocate an angled to each corner K of v. The curvature 
of each vertex v will be then 27r- d  d = 0, while the curvature of the region A of degree 
n will be 

27r 
27r - [(7r -) 	(7r - 727n )] 

n  2 
742 n +x--,  

i=1 n  

where di  is the degree of vi 

The curvature of K , c(K), is the sum of curvatures of all vertices and regions of K. It is 
well known that c(K) = 47r. Here, the curvature of each vertex is 0, so c(K) is the sum 
of curvature of all regions of K. Suppose that c(A) > 0. The curvature distribution 
method is based on distributing the positive curvature c(A) to neighbouring regions 
of A, say Ai, with negative curvature. Let c*(Ai) be the total curvature obtained 
after adding to c(Ai) all curvature that it can possibly receive from positively curved 
neighbouring regions. Then c(K) < Ee(A). Thus if we can show that c*(Ai) < 0 for 
each Ai  this will contradict the fact that c(K) = 47r and it can be deduced that P is 
aspherical. 

3 Preliminary results 

Recall that P =< A, 49(0 > where A is torsion-free, s(t) = atbtctdt -1  et f tgt -1  and it 
can be assumed without any loss that b = 1. 

Lemma 3.1. The equation s(t) = 1 is solvable over A if one of the following sets of 
conditions holds: (i) a = e and d = g (ii) a = e and f = b (iii) d = g and f = c (iv) 
a= f -1  = e and b = c. 
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Proof. If (i) holds then adding the generator x = tdt-1  at yields P =< A, xir(x) > 
where r(x) = xfx2 cxfxa— lx-1  f —l x—l c—l d— lc; if (ii) holds then x = riat2  and 

r(x) = xdxgxcdxgxca—l c—l x—l g—l x—l d-1 ; if (iii) holds then x = tctdt-1  and 

r(x) = xexac—l xexaxa—l x—l e—l x—l d-1; and if (iv) holds then x = t—l ata—l t and 

r(x) = xgx3  dxgx-1  g-1  x-1  d-1  ad. In each case the equation is solvable [181. 

Lemma 3.2. The presentation P =< A, tls(t) > is aspherical if one of the following 
sets of conditions holds: (i) a = e-1, g = Cr1 00 a = e-1, g = d; (iii) a = e-1  and 
b = c = f. 

Proof. (i) 

P = < A,tlat2 ctdt—l a—l tftd—l t-1  > 

= < A,t,xixtctdx—itd—i f = 1 = x—itd—it iat  > 

The star graph F for the new presentation is given by Figure 3.1(i), where (from the 

first relator) x 	1,7 	c, 	d, 	1, a 	d-1  f; and (from the second 

relator) T « 1, ,c 	d, e « a, [3 « 1. Assign the following weights to edges of 

r: 0(a) = 0(n) = °(x) = 0(e) = 0 and 0((3) = 0( -y) = 0(5) = 0(0 = 0(r) = 1. Then 

0 satisfies conditions W1 and W3 for asphericity given in Section 2. Moreover each 

cycle of weight less than 2 in r has label am or dm where m E Z {0}. Since A is 

torsion-free it follows that W2 is satisfied and 0 is an aspherical weight function. 

(ii)  

P = < A, tlat2  ctdt-1  a—l t f tdt-1  > 

= < A,t,xixtctdx-1tdf = 1 = x—l tdt—l at > . 

The star graph r for the new presentation is given by Figure 3.1(ii), where x 

c, S 	d,e 	1, a 	df; and 7 F 	1, IS 	d,c 	a, 	1. 
Assign the following weights to edges of r: 0(a) = 0(E) = 0(k) = 0(x) = 0 and 
0(0) = 0(-y) = 0(5) = 0(e) = 0(r) = 1. Then 0 is an aspherical weight function. 

(iii)  

P = < A, tlat3dt-la-lt2gt-1 

= < A, t, xIxtdtx-1  tg = 1 = x-1  — t i at2  > . 

The star graph r for the new presentation is given by Figure 3.1(iii), where x 

1, 	d, ,3 	 1,7 	g; and a 	1, E 	a, K 	1, 	1. 
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Assign the following weights to edges of F: 9(a) = 0(-y) = 9(e) = 0(x) = 0 and 
0(13) = 0(n) = 0(8) = 0(e) = 9(r) = 1. Then B is an aspherical weight function. 

0 

Lemma 3.3. The presentation 1' =< A,tls(t) > is aspherical if one of the following 
conditions holds: (i) a±1  = e2, g = c = d and b = f; 	a2 e±1, d = g = c and 
f = b; (iii) a = e-1  = f =c; (iv) a = 6-1  and g-1  = f =c; (v) a = 	g= f -1  and 
b = c; (vi) a±i e2,  a2 e±i, a e±i ,  g = c = d and b = f . 

Proof. (i) 

7' = < A,tlat2 ctct-l et2ct-1  > 

= < A, t, xlax2  ex = 1 = x-1  t2  ct-1  > . 

The star graph F for the new presentation P is given by Figure 3.2(i), where a 4—* 
a, /3 	1,7 4—* e; and e 4-4  1, e 4-4  1, r 	c, 8 H 1. Assign the following 
weights to edges of F: 9(a) = 0(0) = 0(e) = 0(r) = 0 and 0(-y) = 0(8) = 9(e) = 1. 
Then, since all = e2, 0 is an aspherical weight function. 
(ii) As in (i), the presentation P =< A, t, xiax2  ex = 1 = x-1  t2  ct-1  >. Also the star 
graph F for P is shown in Figure 3.2(i). Assign the following weight function 0 to the 
edges of F: 0(-y) = O(Q) = 0(0 = 	= 0 and 0(a) = 0(8) = 9(e) = 1. Then, since 
a2  = e±1, 60 is an aspherical weight function. 
(iii)  

P = < A,tiet2ctdt-l c-1tctgt-1  > 

= < A, t, xixt2 xdx-l txg = 1 = x-1  t-1  ct > . 

The star graph F for the new presentation is given by Figure 3.2(ii), where x 
1, n 4—* 1, a 4—+ 1, 4-----* d, 	1,0 	1, n 	g; and 7 	1,6 4—* c„ 
1. Assign the following weights to edges of F: 0(6) = 0(e) = 9(r) = 0(e) = 0 and 
0(a) = 0(13) = 0(-y)= 0(x) = 0(n) = 0(n). 1. Then 0 is an aspherical weight function. 
(iv)  

P = < A,tiat 2ctdt-l a-l tctc-l t-1  > 

= < A, t, xlx-l tctdxt = 1 = x-1  t-1  a-1  tct > . 

The star graph F for the new presentation is given by Figure 3.2(iii), where 
1,8 	c, -y 	d,x 4-4 103 4—* 1; and a ÷---* 1, € 	a, n 	c,T 	1. 

Assign the following weights to edges of F: 0(a) = 0(7) = 0(e) = 0(x) = 0 and 



0(0) = 0(K) = 9(8) = 0(fl = 0(T) = 1. Then 8 is an aspherical weight function. 
(v)  

P = < A, tlat3dt-la-it f t 3'4-1  > 

< A,t,x It 2  dxtx- = 1  = 	a-i t ft  > =  

The star graph r for the new presentation is given by Figure 3.2(iv), where n 
1, a H d, x H  1,  /3  4---> 1, 4--> 1; and -y 	1, e 1—+ a, 6 H f, T H 1. 
Assign the following weights to edges of F: 9(a) = 0(7) = 9(e) = 0(x) = 0 and 
19(13) = 0(k) = 0(8) = 0(0 = 0(r) = 1. Then 9 is an aspherical weight function. 
(vi) As in (i), the presentation P =< A, t, xlax 2  ex = 1 = x -1  t 2  ct -1  >. Also the star 
graph F for P is shown in Figure 3.2(i). Assign the following weight function 9 to the 
edges of F: 0(0) = 0(0 = 0(r) = 0, 0(a) = 0(7) = 2 and 0(8) = 0(6) = 1. Then 9 is an 
aspherical weight function. 

4 Proof of Theorem 1.1 

Using the star graph F and the fact that A is a torsion free group, the possible labels 
of vertices of degree 2 for s(t) are (up to inversion and cyclic permutation) 

S = fae,ae",dg,dg",fc", 

We will classify the cases according to the number N of members of S that are ad-
missible. These possibilities can be reduced as follows: we can work modulo equiva-
lence, that is, modulo inversion, cyclic permutation, t H t" and (a, b, c, d, e, f, g) 
(d -1 ,c -1 ,b-1 , a-1 , g-1, f-1,  e-1  (for example ae,gd" is equivalent to ae",gd). Since 
c(A) < c(3, 3, 3,3, 3,3,3) = - 3 it can be assumed that N > 0; it follows from Lemma 
3.1(i) and Lemma 3.2(i)-(ii) and A torsion-free that at most one of ae, ae', dg, dg -1  is 
admissible; if any two of fb", fc", cb" are admissible then so is the third; it follows 
from Lemmas 3.1 and 3.2 that N < 3. A routine check now shows that there are the 
following 10 cases to be considered: Case 1: a = e; Case 2: a = e"; Case 3: b = f; 
Case 4: b= c; Case 5: a = e-1 , f = c; Case 6: a = e-1 , f = b; Case 7: a = e 	c = b; 
Case 8: d = g, f b; Case 9: a = e, c = b; Case 10 : f = c, f = b, b = c 

Remark 4.1. Since c(2, 3, 3, 3, 3, 3, 3) = 0, a positively curved region A must include 
at least two vertices of degree 2. 
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Recall that we'suppose by way of contradiction that K is a reduced spherical diagram 

over P. The diagram K will have a distinguished vertex vo (corresponding to the 
annular region of the spherical picture dual to K) and, in general, /(vo) yields a cycle 
in the star graph F which is not necessarily admissible, that is, /(vo) need not equal 1 in 
A. Assume until otherwise stated (near the end of Section 4) that l(vo) = 1 in A. Then 
the product of the corner labels read anti-clockwise around any vertex of K yields an 
admissible cycle in F. We will consider each of the ten cases in turn. It will be shown 
that if Al  receives positive curvature then either c*(A i) < 0 or c*(Ai) is distributed 
to another region :6■2 such that c*(A2) < 0. The comments made at the end of Section 
2 show that this suffices to prove the theorem. Throughout what follows we assume 
c(A) > 0. 

4.1 Case 1: a = e 

By Remark 4.1, we must have d(va) = d(ve) = 2 in A as shown in Figure 4.1(i). Suppose 
that d(vb) = d(vc ) = d(vd) = d(vf) = d(v g ) = 3. Then l(v g ) E 	 But gd -2  
forces d(vf) > 3, so let l(v g ) = g2d-1  which forces /(v f) = b— lf a and l(vd) = dg -2. 

E 	 b{ a—i ,e—i} Now l(vb) 	 The label f —lbfa, el implies a2  = 1 and f -1  
forces d(vc ) > 3. Therefore there are the following five cases to consider: (i) d(vb) > 3 
only; (ii) d(vc ) > 3 only; (iii) d(vd) > 3 only; (iv) d(vf) > 3 only; and (v) d(v g ) > 3 
only. 
In (i)-(iii) l(v g ) = g2d -1  and 1(v1) = b-1  fa as in Figure 4.1(fi). Add c(A) < sto c(A) 
as shown. If d(ve ) > 2 in A then c(A) < 	and if d(ve) = 2 as shown then this forces 
d(vf) > 3 and c(A) < 
In cases (iv) and (v) d(vb) = 3 implies l(vb) = f ib{a±i ,  e±1} . Suppose firstly that 
l(vb) = f —lba. Then /00 = gc{b-1 , f -1}. But gcb-1  forces d(vd) > 3 so /(vc) = 
gcf' which forces l(vd) = dg -2. Add c(A) < ir to c(A) as shown in Figure 4.1(iii). 
Observe that d(vb) > 3 in A and c(A) < 	Now suppose that l(vb) = f —l ba-1. 
Then /(ve) E b—lc{a±1,e±1}. But b— c{a±i e—} forces d(vd) > 3 so /(vc) = r ice. 
Add c(A) < s to c(A) as shown in Figure 4.1(iv). Observe that d(vg ) > 3 in A and 
so c(A) < — 161. Suppose that /(vb) = f —lbe. Then /(ve) = dc{f -1 , b-1}. But dcb-1  
forces d(vd) > 3 so /(vc) = clef". Add c(A) < frr to c(A) as shown in Figure 4.1(v). 
Observe that d(vf) > 3 in A and so c(A) < 	Finally suppose that /(vb) = f —l be-1. 
Then /(ve) = 	,a±1}. But f —lc{e-1,a±1} forces d(vd) > 3 so /(vc) = f'ce. 
Add c(A) < s to c(A) as shown in Figure 4.1(vi). Observe that d(vd) > 3 in A and 
so c(A) < — 1-j. This completes the distribution of curvature. Checking shows that 
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A cannot receive positive curvature across more than one edge and it follows that 

c*(A) < O. 

4.2 Case 2: a = 6-1  

In this case d(va ) = d(ve ) = 2 in A as shown in Figure 4.2(i). Observe that if d(v g ) = 3 
then /(v g ) = gf{b-1,c-1}. The label gfb-1  implies 1(v1),  gfa-lw and gfc -1  implies 
1(v1) = gfb-l iv therefore d(vf) and d(v g ) cannot both be 3. This gives the following 
two cases: (i) d(v g ) > 3 only; (ii) d(vf) > 3 only 
Consider case (i). Here /(vd) = dbff -1,c-11 and l(vb) = dbff -1 , c-11. If l(vd) = dbf -1  
and l(vb) = dbf -1  or dbc-1  then d(vc ) > 3. If l(vd) = dbc-1  and l(vb) = dbf -1  then 
/00 = cb-l g-1  which implies d = g, a contradiction. This leaves l(vd) = l(vb) = dbc-1  
which forces /(vc ) = cb-l d-1. Now /(vf) = gf{b-1,c-1}. Suppose that 1(v1) = 

Add c(A) < s to c(A) as shown in Figure 4.2(ii). Observe that d(va-i) and d(v g-i) 

cannot both be 3 in A so c(A) < -1. Now suppose that /(v f) = gfc -1. Then add 
c(A) < le to c(A) as shown in Figure 4.2(iii). If d(va-i) > 2 in A then c(A) < -761; or if 
d(va-i) = 2 as shown then d(vf -i) and d(vg-i) cannot both be 3 so again c(A) < 

Now consider case (ii), that is, d(vf) > 3. It follows from case (i) that l(vb) = l(vd) = 
bc-l d and /(ve) = cb-l d-1. Now 1(v g ) = gf{b-1,c-1}. If l(v g ) = gfb-1  then add 
c(A) < sto c(A) as shown in Figure 4.2(iv). Note that here cA) < --161. If 1(v g ) = 

gfc -1  then add c(A) < sto c(A) as shown in Figure 4.2(v). If d(ve-i) > 2 in A then 
c(A) < -76E; or if d(ve-i) = 2 as shown then this forces d(vd-1) > 3. Now d(vf-i) 
and d(vg-i) cannot both be 3 so again c(A) < -1. This completes the distribution of 
curvature. 
If A receives positive curvature across at most one edge then c*(A) < 0 so it remains to 
check when A receives positive curvature across more than one edge. From the above 
we see that either c*(A) < 0 or A receives positive curvature across the (b-1, c-1) and 
(c-1 ,d-1 ) edges as shown in Figure 4.2(vi). Now d(vf -i) and d(vg-1) cannot both be 
3. If d(vf -i) = 3 then /(vf-i) = f- lg-lc. Add c*(A) < c(A) + 3 < s to c(01) 
as shown in Figure 4.2(vii). If d(va ) > 2 then c(01) < -11 ; if d(va ) = 2 as shown 
then d(vb) > 3 and again c(3,1) < -1. If d(v g-i) = 3 in A, then /(vg-i) = 
Add c*(A) < c(A) + 3< sto c(Ai), where A1  is shown in Figure 4.2(viii). Similarly 
c* (01) < 	If Al receive positive curvature across exactly one edge then c* (01) < 0. 
Otherwise Al receives positive curvature across the (b, c) and (c, d) edges as shown in 
Figure 4.2(ix). Repeat the above argument for 01/02. Since positive curvature is 
distributed across the same pairs of edges each time and since the region that receives 
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positive curvature is negatively curved it follows that this procedure must terminate at 
a region 0k  where c*(Ak) < 0. 

4.3 Case 3: b = f 

In this case d(vb) = d(vf) = 2 in A as shown in Figure 4.3(i). There are four cases to 
consider: (i) d(ve) = d(vd) = d(ve ) = 3; (ii) d(ve) > 3 only; (iii) d(vd) > 3 only; and 

(iv) d(ve) > 3 only. 
In (i) l(ve ) E {ea-2 , eta-1}. Let l(ve) = ea-2. Now l(vd) = d2g--1 implies d(ve) > 3 and 

so l(vd) = dg-2  forcing l(ve) = g-l cf -1. Add c(A) < 3 to c(A) as shown in Figure 
4.3(ii). Observe that d(vf-i) > 3 in A and so c(A) < 
If on the other hand l(ve) = e2a-1  then l(vd) = df {b-1 , c-1}. But dfb-1  implies d = 1 

so l(vd) = dfc-1  which implies /00 = cb'g-1. Add c(A) < to to c(A) as shown in 
Figure 4.3(iii). Note that d(vd) and d(v9 ) are both greater than 3 in A so c(A) < 
In cases (ii)-(iv) d(va) = d(v g ) = 3. It follows that A is given by Figure 4.3(iv). Add 
c(A) < s to c(A) as shown. If d(vf) > 2 in A then c(A) < 	and if d(vf) = 2 
then this forces d(v g ) > 3 and c(A) < 	This completes the initial distribution of 
curvature. If A receive positive curvature across exactly one edge then c. (A) < 0 and 
if A receive positive curvature across more than one edge then it is A of Figure 4.3(ii) 
and c*(A) < 

4.4 Case 4: b = c 

Since d(vb) and d(ve ) cannot both be 3 it follows that c(A) < 0 in this case. 

4.5 Case 5: a = e-1  and f = c 

If l(va) = ae and d(v g ) = 3 then l(v g ) = g f {b-1 ,c-1} which implies g = 1 or g = 

and the presentation P is aspherical by Lemma 3.3(iv); if l(ve) = cf -1  and d(vb) = 3 
then l(vb) = be-1{c-1, f -1} and P is aspherical by Lemma 3.3(iii); if l(ve) = ea and 
d(vf) = 3 then 1(v1) = g f 	c-1} and again either g = 1 or P is aspherical by Lemma 
3.3(iv); if l(vf) = fc -1  and d(ve) = 3 then l(ve) = eb-1  {c, f} and P is aspherical 
by Lemma 3.3(iii); and if both /(vc) = cf -1  and l(ve) = ea then l(vd) = g-1  dbw 

forcing d(vd) > 4.. It follows that the only case that remains to be considered is 
d(va) = d(vc ) = d(vf) = 2. Since this forces each of d(vb), d(ve ), d(v g ) to be greater 
than 3, it follows that d(vd) = 3 and l(vd) E {d2g-1, dg-2}. Suppose that l(vd) = d2g-1  
as shown in Figure 4.4(i). Then d(v g ) = d(vb) = 4 or d(v g ) = d(ve ) = 4 cannot occur. 
Add c(A) < is to c(A) as shown. Observe that d(ve ) > 3 and d(ve) > 3 in A. If at least 
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one of va  or of in A has degree greater than 2 then c(A) < 	If d(va ) = d(vf) = 2 
in A as shown then this forces d(v g ) > 3 and so c(A) < 
Now suppose that l(vd) = dg-2 . Then again d(v g ) = d(vb) = 4 or d(v g ) = d(ve ) = 4 
cannot occur. Add c(A) < 1-'5  to c(A) as shown in Figure 4.4(ii). Observe that 
d(ve-i) > 3 and d(va-i) > 3 in A otherwise d(ve ) > 4 in A and c(A) < 0. If d(va- i)> 2 
in A then c(A) < — 1i. If d(ve-i) = 2 then this forces d(vb-1) > 3 otherwise d(va ) and 
d(vb) would be greater than 4 in A and c(A) < 0. So c(A) < 
This completes the distribution of curvature. Since A receive positive curvature across 
exactly one edge c* (A) < O. 

4.6 Case 6: a = e -1  and f =b 

There are the following four cases to consider: (i) d(va ) = d(ve) = 2; (ii) d(vb) = 
d(vf) = 2; (iii) d(va ) = d(vf) = 2; and (iv) d(vb) = d(ve ) = 2. 
(i) It follows from Case 2 that d(vf) and d(v g ) cannot both be 3. Now l(vb) = 
dbff -1,c-11 = l(vd). But dbf -1  implies d = 1. Therefore l(vb) = dbc-1  = l(vd) 

which implies /(va) = crld --1  as shown in Figure 4.5(i). But then 1(v1) or l(v g ) is 
g f {b-1 , c-1} which implies g = 1 or g = d. Therefore c(A) < 0. 
(ii) Observe that d(va ) and d(ve ) are greater than 3 in A as shown in Figure 4.5(ii) and 
so c(A) < 0 in this case. 
(iii) Observe that d(ve ) > 3 in A as shown in Figure 4.5(iii). Now l(vb) = dbc-1  since 
dbf -1  implies d = 1. But then 1(v g ) = g f c-1  implies d = g. Therefore c(A) < 0. 
(iv) Observe that d(va ) > 3 in A as shown in Figure 4.5(iv). Now 1(v1) = g f c-1  since 
g fb-1  implies g = 1 and this forces 1(v g ) E {gd-2 , g2  d-1} . Now l(vd) = db{c-1 , f -1} 
which implies d = 1 or d = c and A is cyclic. Therefore c(A) < 0. 

4.7 Case 7: a e -I  and c = b 

There are five cases to consider: (i) d(va ) = d(va ) = 2; (ii) d(va ) = d(ve) = 2; (iii) 
d(vb) = d(ve ) = 2; (iv) d(z)c) = d(ve ) = 2; and (v) d(va ) = d(1)c ) = d(ve ) = 2. 
(i) If d(vf) or d(v g ) is 3 in A as shown in Figure 4.6(i) then l(vf) or /(vg ) = g f {b-1 , c-1} 

which implies g = f -1  and the presentation P is aspherical by Lemma 3.3(v). 
(ii) Observe that d(vb) > 3 in A as shown in Figure 4.6(fi). Now l(vd) = c-l df which 
forces d(ve ) > 3 and so c(A) < 0. 
(iii) It follows from (i) that d(vf) > 3 in A. If d(vc ) = 3 then 41,0 = d-l cf -1  as 
shown in Figure 4.6(iii) since d-l cb-1  implies d = 1. But this forces d(vd) > 3 and so 
c(A) < 0. 
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(iv) Observe that d(vd) and d(vf) are greater than 3 in A as shown in Figure 4.6(iv) 

and so c(A) < 0. 
(v) Observe that d(vb) > 3 and d(vd) > 3 in A as shown in Figure 4.6(v). It follows 
from (i) that d(vf) and d(vg) are greater than 3 and so c(A) < 0. 

4.8 Case 8: d = g and f = b 

There are 7 cases to consider: (i) d(vd) = d(vg ) = 2; (ii) d(vb) = d(vf) = 2; 

(iii) d(vb) = d(vg ) = 2; (iv) d(vb) = d(vd) = 2; (v) d(vd) = d(vf) = 2; (vi) 

d(vb) = d(vd) = d(vg ) = 2; and (vii) d(vb) = d(vd) = d(vf) =- 2. 

(i) If d(ve) = 3 then l(ve ) E {a-162,a-2e}. The label a-2e forces d(vf) > 3 and a-le2  

and d(vf) = 3 forces /(vf) = dfc-1  which implies d = c = g and the presentation 
P is aspherical by Lemma 3.3(i). So d(ve) and d(vf) cannot both be 3 as shown in 
Figure 4.7(i). If d(va) = 3 then /(va) E lae-2,e-1a2i. But ae-2  forces d(vb) > 3 so 

/(va) = e-1a2  which implies l(vb) = gb{c-1 , f -1} which implies g = 1 or g = c and the 
presentation P is aspherical by Lemma 3.3(ii). 
(ii) If d(ve) = d(ve ) = 3 then /(vc) = g'cfb-1 , f -11 which implies g = c = d and 

l(ve) E {eta-1, ea-2} which implies a = e2  or e = a2  and the presentation P is aspher-
ical by Lemma 3.3(i) or (ii). If d(va) = 3 then /(va) E {ae-2, a26-1}. But /(va) = ae-2  

forces d(vg ) > 3, so /(va) = a2e-1  which forces 1(vg ) = gbc-1  as shown in Figure 4.7(ii) 
which implies g = c and again the presentation P is aspherical by Lemma 3.3(E). 
(iii) If d(va) = d(vc ) = 3 then l(va) = ae-2  and l(ve) = g-1c{b-1 , f -1} which im-
plies g = c = d and the presentation P is aspherical by Lemma 3.3(i). First con- 
sider d(va) > 3 in A as shown in Figure 4.7(iii). Then l(vc) = 	I -11. But 

l(ve) = g-1cf -1  forces d(vd) > 3, so l(ve) = g-1cb-1  which implies l(vd) = 	 fl. 
But then l(ve) E {a2e, ae2} or l(ve) = e2a±1  and the presentation P is aspherical. 
Now consider d(vc ) > 3 in A as shown in Figure 4.7(iv). Then /(va) = ae-2  and 
/(vf) = fc -10-1 ,g-11 since fc-l{d,g} implies d = c = g and the presentation is 
aspherical by Lemma 3.3(i). But then /(v,) = ec-l{b, f} or l(ve) = ef -l{b, c} which 
implies e = 1 or A cyclic and so c(A) < 0. 
(iv) If d(vc ) = d(ve) = 3 in A in Figure 4.7(v) then /(ve ) = g-1cf -1  which implies 
g = c = d and l(ve) E 	 which implies a = e2  or e = a2  and the presenta- 
tion P is aspherical by Lemma 3.3(i) or 3.3(ii). If d(va ) = 3 then /(va) E {ae-2, a2e-1}. 

But ae-2  forces d(vg ) > 3, so /(va) = a2e-1  which forces l(vg) = gb{c-1 , f -1} which 

implies g = 1 or g = c and again the presentation P is aspherical by Lemma 3.3(ii). 
(v) If d(ve ) = d(v g ) = 3 then l(ve) = ea-2  and 1(vg ) = 	f} which implies g = c 
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and the presentation P is aspherical by Lemma 3.3(ii). First consider d(ve ) > 3 in 
A as shown in Figure 4.7(vi). Then l(vg ) = c-1g{b, f} which forces /(va ) = a2e±1 

or /(va ) E {a2e,ae2} and the presentation P is aspherical by Lemma 3.3(i) or 3.3(ii). 
Now consider d(v g ) > 3 in A as shown in Figure 4.7(vii). Then l(ve ) = ea-2  and 
/(vc) = cf -1  gl since cf -1  fd-  g -11 implies c = d = g and the presentation P is 
aspherical by Lemma 3.3(ii). But this forces l(vb) = 	f-1} which implies e = 1 
or e = c and A is cyclic or l(vb) = ba{c-1 , f -1} which implies a = 1 or a = c and A is 

cyclic. So c(A) < 0. 
(vi) If d(vc ) = 3 then l(vc ) = g-l cf -1  which implies g = c and the presentation P is 
aspherical by Lemma 3.3(vi). It can be assumed that d(vc ) > 3. If d(ve ) = d(vf) = 3 
then l(ve ) E 	e2 a- 11. But ea-2  forces d(vf) > 3, so l(ve ) = e2a-1  which forces 
1(v f) = df c-1  which implies d = c and again the presentation P is aspherical by Lemma 

3.3(i). 
Let d(va ) = d(vf) = 3 in A. Then /(va ) = ae-2  and as before /(v f) = 	g-11. 

First let 1(v1) = f c- ld-1. Then d(ve ) and d(ve ) are greater than 4. If d(ve ) = 5 
then l(ve ) = a- 1  ec-1{d±lb, d±1c, (111  f, 	g±lc, g±1  f ,ba-1, fa-1 , bell , fell} and A 
cyclic. Therefore d(ve ) > 5. Add c(A) < c(2, 2,2, 3, 3, 5, 6) = i5 to C(3.) as shown in 
Figure 4.7(viii). If one of vd-1 or vb-i has degree greater than 2 then c(A) < 
If d(vb-i) = d(vd-i) = 2 then this forces d(vc-1) > 3 and c(A) < —17-'0. Now let 
/(vf) = f c-1  g-1. Then again d(vc ) and d(ve ) are greater than 4. If d(ve ) = 5 then 
the only valid labeling for ve  is a-le f -lbe. But then we can increase the number of 
vertices of degree 2 as shown in Figure 4.7(ix) and so d(ve ) > 5. Add c(A) < A to 
c(A) as shown in Figure 4.7(x). Observe that d(va-i) > 3 in O If one of d(vb-i) and 
d(vd-i) is greater than 2 then c(A) < 	If d(vb-i) = d(vd-1) = 2 as shown then this 
forces d(vc-i) > 3 and so c(A) < 
Let d(va ) = d(ve ) = 3 in A. Then l(va ) = ae-2  which implies l(ve ) = a-  1e2. Add 
c(A) < 3 to c(A) as shown in Figure 4.7(xi). Now d(vd-i) > 3 in A‘ . If d(vb-i) > 2 
then c(A) < 	If d(vb-i) = 2 as shown then this forces d(ve-i) > 3. If d(va-i) > 3 
in 0 then c(A) < 	So assume that d(va-i) = 3 which implies /(va-i) = a-1e2. But 
this forces d(vc) > 4 in A otherwise /(ve) = dg-1  cf -1  which implies c = 1. In this case 

add c(A) < c(2,2,2,3,3,4,5) = 'F'or to c(A) < c(2,2,3,3,4,4,5) = 
If d(ve ) = 3 only then /(ve ) E {ea-2, e2a-1}. Suppose that l(ve ) = ea-2. Then d(va) 
and d(vf) are greater than 4 and c(A) < 0. Now suppose that l(ve ) = e2a-1. Then 

d(va ) > 5 and so c(A) < 0 in this case. 
If d(vf) = 3 only then as before 1(v1) = f c- 

 
10-1,g-11. If 1(v1) = f (1-1  as shown 
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in Figure 4.7(xii) then d(ve ) > 4. Now /(ve ) = a-l ec-1{b, f}. Add c(A) < -1-5-7  to c(3,). 

Observe that d(vb-1) > 2 in A and so c(L) < —17--6. Now let /(v1) = fc- l g-1  as shown in 

Figure 4.7(xiii). Then again d(vc ) > 4 and /(ve ) = a-1ef -1  to cl. If /(v,) = 

then a = e, contrary to our assumptions, so /(ve ) = a-l ef -l c. Add c(A) < 1 
to COO. 

Observe that d(vb-1) > 2 in A and so c(A) < c(2,2, 3, 3, 3, 4,5) = 

If d(va ) = 3 only then /(va ) = ae-2. Add c(%) < s to c(0) as shown in Figure 

4.7(xiv). If d(vd-1) = 3 in 0 then l(vd-1) = f'd - i 1
0
1 ,  l c which implies d = 1 or 

d = c and the presentation P is aspherical by Lemma 3.3(i). If d(vb-1) > 2 then 

c(0) < 	so assume d(vb-1) = 2 in ZS, as shown which forces d(vc-i) > 3. It follows 

that c(0) < c(2, 2, 3, 3, 4, 4, 4) = 

(vii) If /(ve) = g- l cf" or 1(v9 ) = c-i g{b, f} then g = c and the presentation P 

is aspherical by Lemma 3.2(vi) so assume d(ac) > 3 and d(v g ) > 3. First consider 

d(va ) = d(ve ) = 3. Then 4ve ) = ea-2  and /(va ) = a2e-1  as shown in Figure 4.7(xv). 

Now d(vc ) and d(v g ) cannot both be 4. Add c(A) < -7i to c(A) as shown. If d(vb-i) = 3 

in A then l(vb-1) = b-19,-1{c, f} which implies g = 1 or g = c and the presentation 

P is aspherical by Lemma 3.2. So d(vb-1) > 3. If d(vd-1) > 2 then c(A) < 	so 

let d(vd-1) = 2 as shown. If both of vc-i and ve-1 have degree greater than 3 then 

c(0) < 	If d(ve-i) = 3 and d(vc-i) > 3 then /(ve-i) = e-1a2  forces d(vf-i) > 4. 

So c(0) < 	If d(vc-i) = 3 and d(ve-i) > 3 then /(ve-3.) = fc-i{d-i,g-i} 

forces d(vb-i) and d(vf -i) to be greater than 4 in A and d(v g ) > 4 in A. So add 

c(A) < c(2, 2, 2, 3, 3, 5, 5) = 1-75-r to c(0) < 
Now consider d(va ) = 3 only then /(va ) E {ae-2,a2e-1}. If /(va ) = ae-2  then d(ve ) > 4 

otherwise /(ve ) = a-lea-1{e±1, a-1} which implies lel < 6. Now l(v g ) = 	 f} 

which implies c = 1, and so c(A) < 0. If /(va) = a2e-1  then again d(ve ) > 4. 

Now /(ve ) = 	{g-1 ,d±1} . But /(ve) = g- l cf - l d implies c = 1 so /(vc ) = 
g-icf-if g-i, d-i, . and 1(v g ) = c-lgb{a±1, ell} which implies g = all  or g = efl  

and A is cyclic. Therefore c(A) < 0 in this case. Finally consider d(ve ) = 3 only 

then /(ve ) = ea-2. Add c(A) < 161: to c(A) as shown in Figure 4.7(xvi). Observe that 

d(vb-I) > 3 in 0. If d(vd-1) > 2 then c(0 ) < —5. If d(vd-1) = 2 and at least one 

of vc-1 and ve-i has degree greater than 3 then c( A) < 	If d(vc-i) = d(ve-i) = 3 

then /(ve-i) = e-lag  which forces 4/0 = g- l cf - l bw and d(vc ) > 4 in A. So add 

c(A) < c(2, 2,2, 3,4, 4, 5) = A to c(0) < c(2, 2, 3, 3, 3, 4, 5) = 	This complete 

the distribution of curvature. Observe that A‘ cannot receive positive curvature across 

more than one edge and so c* (A) < 0 
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4.9 Case 9: a = e and b = c 

There are five cases to consider: (i) d(va) = d(ve) = 2; (ii) d(va) = d(vc) = 2; (iii) 
d(vc ) = d(ve ) = 2; (iv) d(vb) = d(ve) = 2; and (v) d(va) = d(vc ) = d(ve ) = 2. 
(i) If d(vg ) = 3 in A as shown in Figure 4.8(i) then /(vg) E  {g2d-1 ,g  —2, . a l If /(v g ) = gd-2  

then /(vf) = b-1  fc- l w and d(vf) > 3. If /(v g ) = g2d-1  then d(vf) = 3 implies 
1(v1) = b-1  fa which implies a = f -1  and the equation s(t) is solvable by Lemma 
3.1(iv). If d(vb) = d(vc) = d(vd) = 3 then l(vb) = f -lb{a±1,e±1}. But f-lbfa-1,e-11 
implies f = a-1  and the result follows by Lemma 3.1(iv) so l(vb) = f -lbfa, el. If 
l(vb) = f - l ba then /(vc) = gc{b-1 , f -1} . If 4/0 = gcb-1  then g =1 so /(ve) = gcf -1. 

But then /(vd) = dg-2  and A is cyclic. If /(vb) = f -lbe then /(vc ) = dcf -1  since dcb-1  

implies d = 1. But then /(vd) = dg-2  which implies A is cyclic. So c(A) < 0. 
(ii) Observe that d(vb) > 3 in A as shown in Figure 4.8(fi). Now l(vd) = c- ldf as 
shown since c-l db implies d = 1. But this forces d(ve) > 3 and so c(A) < 0. 
(iii) In this case d(vd) > 3 in A as shown in Figure 4.8(iii). Now l(vb) = ba-1{c-1, f -1} 
which implies a = 1 or a = f -1  and the equation is solvable by Lemma 3.1(iv). 
(iv) If d(va) = 3 then /(va) = ab-1{c, fl which implies a = 1 or a = f -1  and the 
equation is solvable by Lemma 3.1(iv). Therefore d(va) > 3 as shown in Figure 4.8(iv). 
Now /(vc) = d-1cf -1  since d-1cb-1  implies d = 1 which forces l(vd) = dg-2  as shown. 
But then 1(v1) = b-1  f {a±1,e±1} which implies f = a±1  and A is cyclic so c(A) < 0. 
(v) Observe that d(vd) > 3 as shown in Figure 4.8(v). If d(vb) = 3 then l(vb) = f -lba-1  

which implies a = f -1  and the equation is solvable by Lemma 3.1(iv). Therefore 
d(vb) > 3. As in subcase (i) d(v9 ) and d(vf) cannot be both be 3. First consider 
d(v9) = 3 as shown in Figure 4.8(vi). Then 1(v9 ) E {gd-2 , g2 d-1}. If 1(v9 ) = gd-2  then 
d(vf) > 4 otherwise 1(v1) = 1)-1  fc-1  f which implies f 2  = 1. But then d(vb) = d(vd) = 4 
cannot occur. Therefore c(A) < 0 in this case. If 1(v9 ) = g 2d-1  then d(vd) = 4 implies 
l(vd) = c-1dg-1  f . But then d(vb) and d(vf) are greater than 4 and c(A) < 0. For 

r otherwise l(vb) = f - l ba-1  i a-i,e±n  3- or 1(v1) = b' fa{a,e±1} which implies f = 1 or 
f = a-2  and A is cyclic. Therefore d(vd) > 5 and so add c(A) < ii to c(A) as shown 
and observe that c(A) < c(2, 2, 3, 3, 3, 4, 5) = — 6. 
Now consider d(vf) = 3 as shown in Figure 4.8(vii). Then /(vf) = b-if{a±1,e±1} . But 
b-1  f {a, e} implies f = a-1  or f = e-1  and the equation is solvable by Lemma 3.1(iv). 
So 1(v1) = b-1  f {a-1 , e-1} forcing d(vb) > 4. Add c(A) < A to c(A) as shown and 
observe that c(A) < --1-4. 
This completes the initial distribution of curvature. If 0 receive positive curvature 
across exactly one edge then c* (A) < 0. Moreover ii cannot receives positive curvature 
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across more than one edge since positive curvature is received across (a-1, b-1, c-1) 
each time. 

4.10 Case 10 : f = c, f = b and b = c 

In this case s(t) = t3driet2gr1a which is solvable by Theorem 1 in [131. 

Now assume that /(vo) 0 1 in A and let d(vo) = ko. A region of K is interior if 
it does not involve vo; otherwise it is said to be a boundary region. For each interior 
region A such that c(A.) > 0 distribute c(A) to the region A exactly as before as shown 
in Figures 4.1-4.8 except possibly Figure 4.2 of Case 2. As described above there may 
be a sequence of distributions that termin ated at a region Ak for which c* (Ak) < 0. 
The difference here is if there is a Z where 1 < j < k which is a boundary region then 
the distribution terminates at the first such region encou ntered and the 2.6 remains 
with Ai. We have shown that if A is always interior then c*(A) < 0 and so it follows 
that c(K) < Ee(A) where the sum is taken over all th e boundary regions of K. 

Let A be a boundary region of K. Checking Figures Cases 1,5,8 and 9 shows that A 
remains uniquely associated with A and so the maximum curvature A can receive is i; 
for Case 3 the maximum A can received is 3  + ir (see Figure 4.3(ii)); and for Case 2 the 
maximum A can receive is 2.6 (see Figure 4.2). Suppose that A has at most one interior 
(0 vo) vertex of degree 2. Then c*(A) < c(ko, 2, 3, 3, 3, 3, 3) + 	+ 	= Fro' — 	(Note 
that this clearly holds if k0 > 3; and if k0 = 2 then at most one vertex of A can coincide 
with v0.) Now let A have exactly two interior vertices of degree 2. Then A cannot 
be the region A of Figure 4.3(ii)-(iv) and so c*(A) < c(ko, 2, 2, 3, 3, 3, 3) + 3 = tr. 
Finally suppose that A has the maximum of three interior vertices of degree 2. Then 
either c*(A) = c(A) < c(ko, 2, 2, 2, 3, 3, 3,) = koor A is given by Figure 4.7(viii), in 
which case c*(A) < c(ko, 2, 2, 2, 3, 5, 6) + -11—r5  =o— -3f . In conclusion it follows that 
c* (0) < t for any given boundary region A and so c(K) < /co. () < 47r, our final 
contradiction. 
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