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Abstract
Using relatively elementary terminology, we will discuss a natural question on the number of rational
points on an elliptic curve. This will lead us to questions that are linked to the conjecture of Birch
and Swinnerton-Dyer.

Let A and B be two integers such that ∆ = −16 ·
(4A3 +27B2) ̸= 0. Then the equation

y2 = x3 +Ax+B (1)

is called an elliptic curve. More precisely,

E : Y 2Z = X3 +AXZ2 +BZ3

is a smooth projective cubic curve defined over Q in
the projective plane P2.

Together with its unique point O = (0 : 1 : 0) at
infinity, it is an elliptic curve. The arithmetic of elliptic
curve has attracted lots of interest, partly due to the fa-
mous conjecture by Birch and Swinnerton-Dyer. The
aim of this text is to present some conjectures and ques-
tions formulated with as little technical terminology as
possible. This is a comparable to Zagier’s article [9],
but we develop things in a different direction.

1. Points of bounded height

The set E(Q) of points on the elliptic curve with ra-
tional coordinates (X : Y : Z) consists of the one point
O and of those of the form (x : y : 1) with (x,y) ∈Q2

satisfying the equation (1). Since projective coordi-
nates can be scaled, we can write any P ∈ E(Q) as
(X : Y : Z) with integer X , Y , Z such that no m > 1 di-
vides all three. Up to sign this representation is unique.
Therefore the quantity

H(P) = max
{
|X |, |Y |, |Z|

}
is a well-defined integer for each P ∈ E(Q), called the
height of P.

Let T be a large integer. We define

N (T ) = #
{

P ∈ E(Q)
∣∣∣ H(P)< T

}
, (2)

which is a finite number.

2. Points modulo integers

Let Q > 1 be any integer. We will denote by M (Q)
the number of solutions (X : Y : Z) to

Y 2Z ≡ X3 +AXZ2 +BZ3 (mod Q). (3)

We count points in the projective plane over Z/QZ,
which means the triples (X ,Y,Z) where there is no
divisor m > 1 of Q dividing all three and scalar multi-
plication by an integer coprime to Q does not alter the
point. We could instead count the number of solutions
(x,y) ∈ Z/QZ to the equation

y2 ≡ x3 +Ax+B (mod Q) (4)

but we would miss not only one point, but Q/∏p|Q p
points. By the Chinese remainder theorem, M is a
multiplicative function: if Q and Q′ are coprime then
M (Q ·Q′) = M (Q) ·M (Q′).

3. An initial conjecture
We formulate a first conjecture:

Conjecture 1. For each T > 1 set Q = T !. The se-
quence

Q ·N (T )2

M (Q)
(5)

converges to a positive real number as T → ∞.

This seemingly harmless conjecture is actually a
very strong statement and, to be honest, maybe even
too much to hope for. We can already note that it
would not be true if ∆ = 0.

Lemma 1. Let T > 1. The fraction

Q
M (Q)

is independent of Q as long as ∆2 | Q and the prime
divisors of Q are exactly all primes below T .

Idea of the proof. Let p be a prime smaller than T .
Because M is multiplicative, it is enough to show that
M (pk)/pk is independent of k as long as k is large
enough for all p | ∆. First if p ∤ ∆, then using the multi-
dimensional version of Hensel’s lemma, one can show
that M (pk) = M (p) · pk−1 for all k ⩾ 1. For p | ∆,
one can show that M (pk) = c · pk−1 for some integer
c when k is large enough.
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Figure 1. The sequence (5) for a few curves

Certainly the convergence of sequence (5) is very
slow for some curves E, but it does not look implau-
sible either. Some examples for a few curves are il-
lustrated in Figure 1. The jump in the graph for the
curve y2 = x3+x+1 is not an error. This is due to two
points (x,y) =

(43992
82369 ,±

30699397
23639903

)
of height 30699397,

which increases N (T ) from 9 to 11 at this T .
We learn from this that the function N (T ) grows

slowly and its jumps cause the convergence in Conjec-
ture 1 to be too slow.

4. Counting points of bounded height

In Figure 2, there are the plots of the function N (T )
for some curves. We observe that N (T ) grows like
C · logr/2(T ) for some C and some integer r. We will
describe a concrete incarnation of this integer r.

At the heart of the reason why elliptic curves stand
out among algebraic curves (and why they are so useful
in applications like cryptography) is the fact that the
set of points E(Q) forms an abelian group with identity
element O. The group law is constructed geometrically
using what is called the chord and tangent principle.
About 100 years ago, Louis J. Mordell proved that for
any elliptic curve defined over the rational numbers, a
finite set of points suffices to obtain all points in E(Q)
using this group operation. The rank r = rankE(Q)
is the minimal number of points needed to create a
subgroup of finite index or, equivalently, that E(Q) is
a direct product of a finite abelian group, called the
torsion subgroup E(Q)tors, and a group isomorphic
to Zr.

Our observation based on the graphs of N (T ) in
Figure 2 are confirmed by the following proposition.
It is also the first Proposition in [9].

Proposition 2. There is an explicit constant C such
that

#
{

P ∈ E(Q)
∣∣ H(P)< T

}
∼C · log(T )r/2

as T → ∞, where r = rankE(Q).

The symbol ∼ here means as usual that the fraction
of the two sides tends to 1 as T → ∞. More precisely,
the difference of the two sides can be shown to be
O
(
log(T )(r−1)/2

)
. The constant C is also given in [9],

though it missed an extra factor 2
3 :

C =
#E(Q)tors√

R
·
(2π

3

)r/2
· 1
(r/2)!

where R = Reg(E) ∈ R is the so-called regulator of E.
If r is odd, we should interpret (r/2)! as Γ(r/2+1). In
Figure 2, we plotted N (T ) for some curves of rank 0,
1, 2, 3, and 4 against the prediction in this proposition.
The names like “11a1” refer to their Cremona labels
as in [3].

The proposition also implies that Conjecture 1 is
equivalent to

Q ·C2 · log(T )r

M (Q)
(6)

converging to a positive limit as T → ∞ with Q as
before. If we take Q = T ! or Q = ∏p<T p, then Q is
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Figure 2. N (T ) for some curves

exponential in T , while we compare it to N (T ) which
is logarithmic. This double exponential gap between
the two illustrates again how fragile the behaviour of
this quotient is. We plot in Figure 3 the graphs for the
quotient (6) with the same curves as in Figure 1. In
this figure, we also plot the conjectured limit that we
are getting to in a moment.

5. The link to the Birch and
Swinnerton-Dyer conjecture

Those who are aware of the history of the conjecture
made by Bryan Birch and Peter Swinnerton-Dyer will
now have recognised the connection between our Con-
jecture 1 and the rank part of their famous conjecture.
As explained in [1], their initial investigations con-
cerned the behaviour of the product

∏
p<T

M (p)
p

as T increases. They made an initial guess that it grows
like log(T )r. Up to a factor linked to primes with p | ∆,
this product is equal to M (Q)/Q. They made a better
and, in many respects more interesting, conjecture
involving the L-function L(E,s) attached to E, which
we will avoid in this exposition. Their conjecture says
that L(E,s) has a zero of order r = rankE(Q) at s = 1
and they gave a precise formula for the leading term
of its expansion at s = 1. See [8].

Goldfeld [4] established the connection between
the two versions and, as a consequence, we find the
following.

Theorem 3. If Conjecture 1 holds then the rank part
of the Birch and Swinnerton-Dyer conjecture holds.

However, it also turns out that much more is true.
In [2], it is well explained that Conjecture 1 not only
implies the Birch and Swinnerton-Dyer conjecture, it
would also imply that the function L(E,s) satisfies the
analogue of the Riemann hypothesis in a very strong
form. Maybe too strong to believe, but there is also no
reason to disbelieve it currently.

6. The period

Number theorists like to split problems into global and
local problems. Issues concerned with divisibility by
one (or a few) primes, like the term M (Q), are local,
while rational points and their heights, like N (T ), are
global. This terminology comes from the construction
of the completions of Q. For each prime p, there is a
field Qp, called the field of p-adic numbers. It is the
completion of Q with respect to the topology given by
the distance

d(x,y) = |x− y|p = p−k for x,y ∈ Z,

where pk is the largest power of p dividing x− y, ex-
tended to Q by |a/b|p = |a|p/|b|p. Together with the
more commonly known completion R with respect to
the usual absolute value | · |, they form all possible
completions of Q.

Let T > 1 and take Q as before. Let ε = p−k where
pk < Q ⩽ pk+1. To say that (4) holds for (x,y) with
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Figure 3. Convergence of the limit of (6) for some curves

integer x, y can now be formulated by asking that∣∣−y2 + x3 +Ax+B
∣∣

p < ε

for all p < T . The quantity M (p) is then linked to the
area in Qp ×Qp satisfying this inequality.

It is therefore natural to look at the equivalent in-
equality over the real numbers R. Consider (x,y) ∈R2

such that ∣∣−y2 + x3 +Ax+B
∣∣< ε

for some small ε > 0. Assume that ∆ < 0, which
means that the graph of E(R) is connected containing
only (x,y) with x bigger than the unique solution e1
of x3 +Ax+B = 0 in R. The area of this part of the
plane R2 is given by

2
∫

∞

e1

(√
x3 +Ax+B+ ε −

√
x3 +Ax+B− ε

)
dx

= 2
∫

∞

e1

2ε√
x3 +Ax+B+ ε +

√
x3 +Ax+B− ε

dx

= 2ε ·
∫

E(R)

dx
2|y|

+O
(

ε
2
)

The same result holds when E(R) is formed of two con-
nected components. The quantity Ω =

∫
E(R) dx/(2|y|)

is known as a period of E. One can consider Ω ·M (Q)
to be linked to the area of the subset of R2 ×∏p<T Q2

p
cut out by the inequalities above.

7. Limit
Because Conjecture 1 is linked to the rank part of the
Birch and Swinnerton-Dyer conjecture, the limit of

the quotient (5) should have something to do with the
leading term of the function L(E,s) at s = 1.

Theorem 4. Suppose Conjecture 1 holds. Then the
Birch and Swinnerton-Dyer formula holds if and only
if

lim
T→∞

Q ·N (T )2

M (Q)
=

1√
2 · ((r/2)!)2

·
(3eγ

2π

)r
·Ω ·S.

where S is a square integer, which is conjecturally the
order of the mysterious Tate-Shafarevich group X(E).

Oh, e and γ are both constants due to Euler. In
Figure 3 we have plotted the expression (6) against
this limit for the curves in question.

It remains to explain what the Tate-Shafarevich
group X(E) is. It is a torsion abelian group, which
is conjectured to be finite. The group X(E) can also
be viewed as measuring a discrepancy between a local
and a global questions. Its elements can be viewed as
curves C defined over Q which become isomorphic
to E when considered over any p-adic field as well
as over C. This group appears as an obstruction to
effectively calculating E(Q) by the method of infinite
descent.

Refined counting of points modulo
primes

One of the vague arguments given initially for the
conjecture is the following: If we have lots of points
with integer (X :Y : Z), then they produce lots of points
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modulo integers, and primes in particular. In other
words the larger r, the more often M (p) should be
above average. This is however too simplistic.

But, what is this average? Hasse proved that p+
1−2

√
p <M (p)< p+1+2

√
p, which suggests p+

1 as the average. We define

ap = p+1−M (p),

where negative values of ap indicate an excess of
points modulo p.

Originally conjectured by Sato and Tate, the values
ap/(2

√
p) ∈ [−1,1] are known to satisfy a precise dis-

tribution, which is independent of r. See [6] for a good
overview. In particular positive and negative values
should appear with the same frequency. Except for
the special elliptic curves with extra endomorphisms
(complex multiplication), the distribution of ap/(2

√
p)

looks like this:
The red histogram on
top is for the curve A =
B = 1 for which E(Q)
is infinite and the bot-
tom in blue is for A = 1,
B = 2 which has a finite
E(Q). For both we used
all primes p ⩽ 107.

Murmurations
Finally, we present a recently discovered phenomenon
related to counting points on elliptic curves.
The reduction of an elliptic
curve curve at a prime p can
be bad in that the reduced
curve has a singularity. There
are two possibilities: On the
left, we have the case of nodal
reduction and, on the right,
that of cuspidal reduction.

The conductor N(E) of an elliptic curve E defined
over Q is an integer divisible only by the primes of
bad reduction. In other words, the conductor may be
written as a product

N(E) = ∏
p: bad

pep .

More precisely, for a bad prime p /∈ {2,3}, we have
ep = 1 (resp. ep = 2) if E has a nodal reduction (resp.
cuspidal reduction) modulo p. For p = 2 and 3, the
recipe is known but more complicated.

The so-called murmuration phenomenon refers to
the oscillating behaviour of the average value of ap(E),

as a function of p, where E varies over a suitable finite
set of elliptic curves [5]. More precisely, we set:

ME ,r(p) =
1

#E (r) ∑
E∈E (r)

ap(E),

where r ∈ Z⩾0, E is a finite set of elliptic curves over
Q, and E (r) is the subset of E containing its curves
of rank r. In Figure 4 below we plot ME ,r(p) against
p for even r (blue) and odd r (red), where we take E
to be the set all elliptic curves defined over Q with
conductor in the interval 217 < N(E)< 218. Most of
these curves have either rank 0 or 1 and so the blue
dots correspond to curves with a finite E(Q) and the
red for infinite E(Q).

In forthcoming work of He, Lee, Oliver, Pozd-
nyakov, and Sutherland, this oscillating behaviour is
shown to hold for elliptic curves with much larger con-
ductor, and also for related arithmetic objects such as
modular forms and genus 2 curves. There is some ini-
tial progress to the understanding as to why this pattern
appears due to Zubrilina, but there is no comprehensive
explanation for this phenomenon so far. Since most
curves in the interval are of rank either 0 or 1, and
because the total average should be 0 by the Sato-Tate
distribution, we expect the two waves of murmuration
to be complementary. The naive heuristic that curves
of rank 1 have more points modulo prime, and hence
ap is more frequently negative, may be the reason that
the red wave dips initially for small primes p.
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