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Essential information

Lecturer : Chris Wuthrich,
christian.wuthrich@nottingham.ac.uk,
phone 14920.

Lectures : • Tuesdays 10 am – noon, Physics C29
• Thursdays noon – 1pm, Pharmacy A6
• Fridays 11 am – noon, Maths A17

Office Hours : On Thursday mornings in my office C58 in the Maths build-
ing. If you wish to meet me at any other time, just try knocking
at the door or – if you want to make certain that I am in – please
contact me by email or by phone.

Module webpage : The module webpage is on moodle:

http://moodle.nottingham.ac.uk/course/view.php?id=68482.

Lecture notes : On the moodle page you will find all these lecture notes
including all the pictures. The printed version omits pictures that
you are asked to draw during lectures.

Booklist : There are plenty of books and online lecture material on elliptic
curves. This module recommends [6], [1] and [7] (in the list on
page 4) as the best books to consult. Please ask if you are interested
in a particular topic.

Problem classes : We will have problem classes, in average one per week.
During this hour you will work (with my help) on exercises relating
to the lectures. There are also unassessed coursework sheets which
you are asked to hand in your solutions for marking.

Assessment : There is a 3-hour exam in January. There will be FIVE ques-
tions in the exam paper. Credit will be given for the best FOUR
answers. Consult the moodle page for the exam paper of last year.
More information will be given later.

Computer software : Not needed at all, but if you wish to experiment with
elliptic curves you may want to try out the free SageMath. You
may use it freely on CoCalc. All graphics and computations in
these notes are done with SageMath.
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1 Chords and tangents

We start this module on elliptic curves with some examples. The motto here
is “Geometry helps solving equations”.

Figure 1: A geometric picture of our
equation (1.1)

Say, we want to solve the equation

C : x2 + y2 − 2x = 0; (1.1)

however if possible without using
square roots or non-algebraic func-
tions like sin and log. We start by
making a drawing as in Figure 1. Since
the equation can be reformulated as
(x− 1)2 + y2 = 1 we see a circle of ra-
dius 1 centred at (1, 0). For instance
P = (0, 0) is an obvious solution. Pass
a line through P . It can be given by
the equation

L : y = mx

where m is some constant. The points in the intersection L ∩ C satisfy

x2 + (mx)2 − 2x = 0 ⇒ (1 +m2)x2 − 2x = 0

⇒ x ·
(
(1 +m2)x− 2

)
= 0

If x = 0, then y = m · 0 = 0 and we get back the point P . Of course this is no
surprise as P was on C and L. Otherwise, if x 6= 0, we have

Q = (x, y) =
( 2

1 +m2
,

2m

1 +m2

)
. (1.2)

Is Q really on C? Well, . . .( 2

1 +m2

)2
+
( 2m

1 +m2

)2
− 2

2

1 +m2
=

2 + 4m2 − 2(1 +m2)

(1 +m2)2
= 0 (1.3)

so yes, Q is in C ∩L. Therefore we found plenty of solutions to C, but did we
find all of them? Well, if (x0, y0) is a solution to C with x0 6= 0, then there is an
m = y0/x0 such that the line y = mx passes through P and (x0, y0). Therefore
we will recover any solution to C other than P from the parametrisation (1.2).
We can write

C(R) =

{( 2

1 +m2
,

2m

1 +m2

) ∣∣∣∣ m ∈ R
}
∪
{

(0, 0)
}

5
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where we have denoted by C(R) the solution set for C with coordinates x and
y in R.
The real numbers? Yes, when we relied on our picture we really made a

picture for the real solutions. But what if we would like to find all solutions
to (1.1) with coordinates in k = Q or k = C. Does the above still work?
First of all the computation (1.3) works for any field k and m ∈ k as long as
m2 6= −1. So no matter what k is, we find a parametrisation. For any solution
(x0, y0) with 0 6= x0 ∈ k and y0 ∈ k we can set m = y0/x0 and thus we recover
all solutions except when m2 = −1. For instance we get that

C(Q) =

{( 2

1 +m2
,

2m

1 +m2

) ∣∣∣∣ m ∈ Q
}
∪
{

(0, 0)
}
.

It even works for k = F3 = Z/3Z, the field of three elements:

C(F3) =

{( 2

1 +m2
,

2m

1 +m2

) ∣∣∣∣ m ∈ F3

}
∪
{

(0, 0)
}

=
{

(2, 0), (1, 1), (1, 2), (0, 0)
}
.

Figure 2: The “circle” (1.1) over F3 and over F17

However this time the picture is quite far from a circle. See Figure 2. How-
ever the geometric method helped us to find all solutions quicker than if we
checked all possible x and y in F3.
We pass to a more complicated example. In the above the equation was of

degree 2 and we will later see that the method used there generalises. Our
next example is of degree 3, it will turn out to be an example of an elliptic
curve. The equation is

C : x3 + y3 = 1729 (1.4)

6
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and we are looking for solutions with coordinates in Q. One may be able to
spot∗ some solutions, including P = (1, 12) and Q = (9, 10). See Figure 3. Let

Figure 3: Chords on the taxicab curve

us pick a general line through P

L : y − 12 = m(x− 1)

for some m ∈ Q. The points in the intersection C ∩ L satisfy

0 = x3 + (mx−m+ 12)3 − 1729

= (1 +m3)x3 + 3m2(12−m)x2 + 3m(m2 − 24m+ 144)x

−m3 + 36m2 − 432m− 1

= (x− 1)
(
(1 +m2)x2 − (2m3 − 36m2 − 1)x+m3 − 36m2 + 432m+ 1

)
where, in the last line, we found a factorisation because we knew that x = 1
must be a solution, given that P ∈ C ∩ L. Now we are stuck as we are left
with a quadratic polynomial that does not seem to factor.
All is not lost. Let L be the line through P and Q. This is a particular line

for which we know a second solution. The line corresponds to m = −1
4 above.

We find

0 = x3 +
(
−x−1

4 + 12
)3 − 1729 = 21

64(x− 1)(x− 9)(3x+ 37).

∗1729 is a famous taxicab number. Hardy visited Ramanujan in 1919. He wrote: “I
remember once going to see him [Ramanujan] when he was lying ill at Putney. I had ridden
in taxi-cab No. 1729, and remarked that the number seemed to be rather a dull one, and that
I hoped it was not an unfavourable omen. ‘No’, he replied, ‘it is a very interesting number; it
is the smallest number expressible as the sum of two [positive] cubes in two different ways.’ ”
Source: Wikipedia

7
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This time, we find a third solution x = −37
3 and from the equation of the line

we get y = 46
3 . This is indeed a point R = (37

3 ,
46
3 ) in C ∩ L with rational

coordinates. This method is called a “chord”, it is a line from one point on the
curve to another point on the curve. See Figure 3 for an illustration.
There is a second method to get a new solution, the “tangent” method. We

can take the tangent T at P to the curve C; see Figure 4 for an illustration.
We present here what would happen with this computation; though they are

Figure 4: Using tangents to find new points

a bit tedious to do without the help of a computer. One can parametrise the
tangent by

`(t) =

(
1
12

)
+ t

(
144
−1

)
and the points in the intersection correspond to t such that

0 = (1 + 144t)3 + (12− t)3 − 1729 = 2985983 · t2 ·
(
t+ 36

1727

)
.

It is good that we find a factor t2 here: The tangent at P has a sort of a double
intersection with C. At this stage “double intersection” is a vague idea that we
will turn into a rigorous notion later. We find the new point

(
−3457

1727 ,
20760
1727

)
on

C with coordinates in Q. Now we can apply the same constructions on and on
again. In general, if (x, y) ∈ C(Q), then the tangent procedure shows that the
point (x(x3 + 2y3)

x3 − y3
,
y(2x3 + y3)

y3 − x3

)
8
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is also in C(Q). This allows us in a few steps to produce new solutions like(806215414116852964719191681

67178873377805739312761409
,

55262959491423092471377480

67178873377805739312761409

)
.

Visibly there seem to be infinitely many solutions now to our equation. How-
ever this is not obvious because it could happen that, after a while, both
methods of chords and tangents start to reproduce only points that we found
already. Through numerical experiment it seems however that the size of the
numerator and denominator of our solutions grow very quickly so it seems
impossible that there are finitely many solutions.
The main aim of this module is to investigate this chord and tangent idea

on cubic curves. We will at some point specialise to certain equations of the
form

y2 = x3 +Ax+B

where A and B are two integers. They will be called elliptic curves in Wei-
erstrass form and they carry a very rich structure. In fact, we will use the
above chord and tangent method to define an abelian group law on the set of
solutions.
Let us end this initial section by explaining that cubic equations take a

special place. If we had a general equation of degree four or higher then
we cannot find any more a procedure using chords or tangents to produce
new solutions from old ones. There are some exceptions to this, but the vast
majority of higher degree curves are beyond the scope of what we can do here.
A very surprising and extremely difficult result was shown by Gerd Faltings in
the 1980ies: The solution set C(Q) for such curves of higher degree† is always
finite.

† Technically it is not the degree but the so-called genus that has to be large, larger than
1 in fact. Some higher degree curves have a small genus, but most have very large genus.
The most general definition of elliptic curves requires the curve to have genus 1.

9
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2 Groups and fields

Visibly there will be a question of fields involved. Later we will have a group
law on a curve. We start with recalling the basic definition of these from
G12ALN=MATH2015.

2.1 Abelian groups

Definition. An abelian group 〈A,+〉 is a non-empty set A together with an
operation + : A×A→ A satisfying the following axioms:

(G1 Closure): For all a, b ∈ A, we have a+ b ∈ A.

(G2 Associativity): (a+ b) + c = a+ (b+ c) for all a, b, c ∈ A.

(G3 Identity): There is an element 0 = 0A such that a + 0 = 0 + a = a for
all a ∈ A.

(G4 Inverses): For each a ∈ A there is a unique element −a ∈ A such that
a+ (−a) = (−a) + a = 0.

(G5 Abelian): For all a, b in A, we have a+ b = b+ a.

This is copied from Section 1.1 in G12ALN=MATH2015 (with the exception
that groups were allowed to be non-abelian there, we will only have abelian
ones here). The main examples used in this modules are 〈Z,+〉 and the cyclic
group 〈Z/mZ,+〉 of order m.
What do we need to know about abelian groups?

Theorem 2.1. Let A be a finite abelian group. Then there are integers n1 > 0,
n1 > 0, . . . , nt > 0 and prime numbers (not necessarily distinct) p1, p2, . . . ,
pt, such that

A ∼= Z/pn1
1 Z ×

Z/pn2
2 Z × · · · ×

Z/pnt
t Z

Up to reordering the terms the factorisation into cyclic groups is unique.
One can use the Chinese remainder theorem to regroup them if necessary: If
n and m are coprime integers then Z/nmZ ∼= Z/nZ × Z/mZ.
Given an abelian group of finite order, one can often detect the above fac-

torisation if one knows who many elements of a particular order there are in
the group. For instance, let p be a prime number. In Z/p2Z there is one element
of order 1, then p− 1 elements of order p and p2− p elements of order p2. The
last are precisely the generators for this cyclic group. Instead in the only other
group of order p2, namely Z/pZ × Z/pZ, all but 0 have order p.

10
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An abelian group A is called finitely generated if there is a finite set
{a1, a2, . . . , as} such that every a ∈ A can be written as a linear combination
of these ai; more precisely, there exists (maybe not unique) integers m1, m2,
. . . , ms such that a = m1 a1 +m2 a2 + · · ·+ms as.

Theorem 2.2. For any finitely generated abelian group A there exists an in-
teger r > 0, called the rank such that A ∼= Ators × Zr where Ators is the finite
subgroup of A consisting of all elements of finite order, called the torsion
subgroup of A.

Of course Ators can then be written as a product of cyclic groups as in the
previous theorem.
The proofs of these are part of G13GTH= MATH3001.

2.2 Fields

Also from G12ALN=MATH2015, but Section 2.1, we recall the definition of a
field:

Definition. A field k is a non-empty set endowed with two binary operations
+ : k × k → k, called addition, and · : k × k → k, called multiplication,
satisfying:

(F1) 〈k,+〉 is an abelian group. 0 ∈ k denotes the additive identity and −a
the additive inverse of a ∈ k.

(F2) 〈k \ {0}, ·〉 is an abelian group denoted k×. The multiplicative identity
is denoted by 1 ∈ k, the inverse of 0 6= a ∈ k by a−1 or 1/a.

(F3) Distributivity: a(b+ c) = ab+ ac for all a, b and c ∈ k.

Note we already used the common shorthand ab for the multiplication a · b.
Common fields are Q, R and C. The ring Z/mZ of residue classes of integers

modulo some integers m > 1 was studied a lot in G12ALN=MATH2015. We
will simplify the notation and write the elements as 0, 1, . . . , m− 1 when they
should be denoted by [0] = mZ, [1] = 1 +mZ, . . . , [m− 1] = m− 1 +mZ.
Recall from G12ALN=MATH2015 as for instance in Proposition 3.0.10 the

following.

Proposition 2.3. The ring Z/nZ is a field if and only if n is a prime number.

For a prime number p, we denote the field Z/pZ by Fp.

Example. We write out the addition and multiplication tables for F5.

11
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+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

�

There are other finite fields, like fields F4, F8, F9, . . . with 4, 8, 9 elements,
but they are not equal to Z/4Z, . . . .
Further examples of new fields can be obtained as “extensions” of old fields.

G13NGA=MATH3021 has plenty of those. For instance the Gaussian numbers
Q(i) which consists of all complex numbers a + bi with a and b in Q form a
field. Similarly the field Q

(√
7
)
of all real numbers of the form a+ b

√
7 with a

and b in Q is a field. We can illustrate F9 as elements of the form a+ b i with
a and b in F3 with the usual rule i2 = −1.
For a field k, we denote by k[x] the ring of polynomials with coefficients in

k. Similarly k[x, y] is the ring of polynomials in two variables.

Definition. A field k is called algebraically closed if for every polynomial
f ∈ k[x] with coefficients in k, there exists a root of f in k, i.e., f(α) = 0 for
some α ∈ k.

It follows, by induction, that the only irreducible polynomials with coeffi-
cients in an algebraically closed field are of degree 1. The fundamental theorem
of algebra states that C is algebraically closed; the usual proof uses complex
function theory. See Chapter 4 in [2]. All other examples above are not algeb-
raically closed. It is true, but not obvious that for any field k, there exists an
algebraically closed field k containing k.

12
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3 The projective line and plane

3.1 A motivation

We start by motivating the definition of the projective plane by the follow-
ing diophantine consideration. Suppose we would like to study the rational
solutions to the equation

x3 + y3 = 1. (3.1)

We may write a solution (x, y) as fractions of integers. Let us make common
denominators: x = X

Z and y = Y
Z . Now X and Y and Z are integers such that

X3 + Y 3 = Z3. (3.2)

This is a homogeneous equation. If we find a solution (X,Y, Z) to (3.2), like
(1, 0, 1), then we find plenty more by multiplying it with any integer λ as
(λ ·X,λ · Y, λ ·Z) is also a solution to (3.2). However they represent the same
solution

(
X
Z ,

Y
Z

)
of the original equation (3.1). We should look for solutions of

the homogeneous equation up to multiplication by a scalar as only the ratios
between the coordinates matter for the original question.
Another issue is that the second equation has new solutions that were not

present in the first. For instance (1,−1, 0) and (0, 0, 0) are solutions to (3.2)
which do not give solutions of (3.1) since the denominator Z is not allowed
to be zero. We can discard (0, 0, 0) as a trivial solution. At first the other
additional solution looks like a problem, but later we will see that the addition
of these extra points “at infinity” is a blessing.

3.2 Algebraic definition

Let k be a field. Consider the following relation between vectors of length 3
with coordinates in k.

(X,Y, Z) ∼ (X ′, Y ′, Z ′) only if
there is a λ ∈ k× such that X ′ = λ ·X and Y ′ = λ · Y and Z ′ = λZ.

It was shown in the exercises that this is an equivalence relation.

Definition. The projective plane P2 consists of all equivalent classes of
non-zero vectors in k3. Or in a formula

P2(k) =
k3 \

{
(0, 0, 0)

}
∼

.

13
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The elements in P2(k) corresponding to the equivalence class of (X,Y, Z)
is written as (X : Y : Z). These elements are called the points of P2 with
coordinates in k. Of course, it is not yet clear in what sense these are “points”
in a “plane”.
There is an obvious generalisation to all dimensions:

Definition. The n-dimensional projective space Pn consists of all equivalent
classes of non-zero vectors in kn+1. Or in a formula

Pn(k) =
kn+1 \

{
(0, 0, . . . , 0)

}
∼

where (X0, X1, . . . , Xn) ∼ (λX0, λX1, . . . , λXn) for some λ ∈ k×. The equi-
valence class of (X0, X1, . . . , Xn) is written as (X0 : X1 : . . . : Xn).

For instance, we have

(1 : 2 : 3) = (2 : 4 : 6) = (−1 : −2 : −3) = (1
7 : 2

7 : 3
7)

for k = Q. The “:” should remind us that we only care about the ratio between
the coordinates. For a field like k = F5 this looks less familiar:

(1 : 2) = (2 : 4) = (3 : 1) = (4 : 3),

but it works just the same.
Note that Pn(k) is no longer a vector space. There is not even a good

addition defined on it any more. Also there is no meaning of distance in Pn(R)
any more. At this stage, it is really just a set.

3.3 The projective line P1

Let us look at the case n = 1 a bit closer. The points in P1(k) are of the form
(X : Y ) with X and Y in k and at least one is non-zero. If Y is not zero,
then (X : Y ) = (XY : 1). We see that P1(k) contains a copy of k by sending
x to (x : 1). The only points we are missing are those with Y = 0. Now if
(X : 0) ∈ P1(k) then X is non-zero and we can divide both coordinates by X
to get (X : 0) = (XX : 0

X ) = (1 : 0). In other words, there is only one extra
point and we have that P1(k) is k with one more point or as a formula

P1(k) =
{

(x : 1)
∣∣∣ x ∈ k} t {(1 : 0)

}
= “kt one point”.

In particular P1(Fp) has p+ 1 points.
Now we will explain why we call the extra point a point “at infinity” in the

case k = R. The following sequence of points approaches (in some sense) the
point (1 : 0):

14



Elliptic curves G13ELL=MATH3031 cw ’18

L

(1:0)

L

(a:1)

a
Figure 5: Adding the “point
at infinity” (1 : 0) to a line
L in R creates a circle.

(1 : 1) = (1 : 1)

(1 : 1
2) = (2 : 1)

(1 : 1
3) = (3 : 1)

...
...

(1 : 1
k ) = (k : 1)

When viewed as points in R corresponding to
(x : 1) they tend to infinity. The missing point
can be thought of as ∞ = 1

0 . However it is
better to avoid this and just to write it as (1 : 0).
For instance it is also the point at −∞ as the
sequence (1 : − 1

k ) = (−k : 1) converges also to
(1 : 0). Figure 5 illustrates this idea. One can
consider P1(R) a sort of a circle with (1 : 0) at
the top. The rest of the projective line is then
identified with a usual line R.
To distinguish, we will call the usual line k now the affine line and write it

as A1(k). From the point of view of the projective line, it was a bit random
that we chose to view the points (a : 1) as an affine line inside the projective
line missing one point (1 : 0). We could also view P1(k) as the affine line
(1 : b) plus the missing point (0 : 1). In any case, where ever we are in P1(k)
it looks close-by very much like A1(k) and it makes sense to think of P1(k) as
a 1-dimensional object.

3.4 The projective plane P2

Now we are better prepared to have another look at P2(k). Again if Z 6= 0,
then (X : Y : Z) = (XZ : Y

Z : 1). Hence the subset of all (X : Y : Z) with
Z 6= 0 can be identified with the usual plane, now called the affine plane
A2(k) = k2, via (x, y) 7→ (x : y : 1). This image misses some points at infinity,
namely all points of the form (X : Y : 0). Since at least one of X or Y is
non-zero, we see that the set of points at infinity forms exactly a projective
line through the identification (X : Y ) 7→ (X : Y : 0).

P1(k) =
{

(x : y : 1)
∣∣∣ (x, y) ∈ k2

}
t
{

(X : Y : 0)
∣∣∣ (X : Y ) ∈ P1(k)

}
= “affine plane t projective line”.

15



Elliptic curves G13ELL=MATH3031 cw ’18

Now to lines within the projective plane. In the affine plane, lines, well affine
lines, are described by equations of the form y = mx+ n where n and m are
constants in k; though that already excludes lines of the form x = n. Now
replacing x = X

Z and y = Y
Z , we find an equation of the form Y = mX + nZ,

that is a linear equation in our three projective variables.

Definition. A (projective) line in P2 defined over k is an equation of the
form

L : aX + b Y + cZ = 0 (3.3)

with constants a, b and c in k such that at least one of them is non-zero.

Lemma 3.1. Let L be a line defined over k as in equation (3.3). Then the set
of solutions L(k) is a well-defined subset of the projective plane P2(k).

Proof. Let X, Y , Z be elements in k such that (X : Y : Z) ∈ P2(k) and
aX + b Y + cZ = 0. Let λ ∈ k×. Then λ ·X, λ · Y and λ · Z also satisfy the
equation as a (λX) + b (λY ) + c (λZ) = 0. So all elements in the equivalence
class at once satisfies the equation and so

L(k) =
{

(X : Y : Z) ∈ P2(k)
∣∣ aX + b Y + cZ = 0

}
is a well-defined subset of P2(k).

If L is a line in P2 with b 6= 0, then we recover the previous affine line by
setting m = −a/b and n = −c/b. The affine points in L are those (x : y : 1) in
L(k) and this misses out the points at infinity. It is not hard to work out that
there is only one point, namely (b : −a : 0) on L(k) at infinity.
If L is a line with b = 0, but a 6= 0, we recover the affine line x = −c/a

together with the point (0 : 1 : 0) at infinity. That only leaves the line Z = 0;
this is simply the line at infinity itself.
Two equations

L : aX + b Y + cZ = 0

L′ : a′X + b′ Y + c′ Z = 0

with constants in k represent the same line if and only if there is a λ ∈ k×

such that a′ = λ · a and b′ = λ · b and c′ = λ · c.

Proposition 3.2. Any two distinct lines L and L′ defined over k intersect in
exactly one point in P2(k).

16
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Proof. Consider the matrix

M =

(
a b c
a′ b′ c′

)
Then we are looking for (X : Y : Z) such that M ·

(
X
Y
Z

)
=
(

0
0

)
. Clearly

we have some non-zero solution as the number of equations is less than the
number of variables. The assumption that L and L′ are distinct now implies
that the two rows are linearly independent. Therefore the solution space of the
system of linear equation is 1-dimensional. In other words, there is a unique
equivalent class (X : Y : Z) ∈ P2(k) of non-zero solutions.

Example. The lines X + 2Y + 3Z = 0 and 4X + 5Y + 6Z = 0 intersect in
the point (1 : −2 : 1) only. �

This proposition is a first instance of a statement that is easier in the pro-
jective plane than in the affine plane. In the affine plane, two distinct lines are
either parallel or they intersect in a single point. So what happens to parallel
affine lines? The affine lines ax + by + c = 0 and a′x + b′y + c′ = 0 are par-
allel exactly when (a, b) is collinear to (a′, b′). If so then the intersection is at
(b : −a : 0) = (b′ : −a′ : 0), which is a point at infinity. Conversely, each point
(a : b : 0) on the line at infinity is the intersection of a set of parallel affine
lines. This is another way to motivate the introduction of the projective plane.

Proposition 3.3. Through any two distinct points in P2(k) passes exactly one
projective line.

Proof. Let (X : Y : Z) and (X ′ : Y ′ : Z ′) be two distinct points in P2(k). We
are looking for a, b and c in k such thatM ·

(
a
b
c

)
=
(

0
0

)
whereM is the matrix

M =

(
X Y Z
X ′ Y ′ Z ′

)
.

To say that the two points are distinct is equivalent to the two rows ofM being
linear independent. Therefore there exists a non-zero solution (a, b, c), unique
up to scalar multiplication. In other words, there is a unique projective line
aX + bY + cZ = 0.

There is a striking resemblance between the proofs of the two propositions
above. Behind this is the principle of duality in projective geometry. In fact
there is a bijection between the set of all lines in P2 and P2 itself by sending
the line L in equation (3.3) to (a : b : c) ∈ P2(k).

17
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Example. The line through (1 : 2 : 3) and (4 : 5 : 6) is L : X − 2Y +Z = 0. �

Corollary 3.4. Let P ∈ P2(k) and let L0 be a line in P2 defined over k such
that P /∈ L0. Then there is a bijection between all lines L defined over k passing
through P and L0(k) given by sending L to the intersection of L0 and L.

Figure 6: A pencil of lines

The situation is illustrated in Figure 6.
The set of all lines through a point is an
example of what algebraic geometers call
a “pencil”.

Proof. First we use Proposition 3.2: If L
is a line through P which is defined over
k, then it is distinct from L0 and hence
it intersects in L0 in exactly one point
Q ∈ P2(k). Conversely, if Q is a point in
L0(k), then there is a unique line L defined
over k passing through P and Q by Pro-
position 3.3.

3.5 Parametrising lines

With affine lines, we are used to switch between the form where we write them
as an equation, like y = mx + n, and the parametric form. We would like
to have the same at our disposal in the projective plane. For an affine line,
we write it as t · ~v + ~w for two constant vectors ~v and ~w in k2, while t varies
through k.
Given two distinct points P0 = (X0 : Y0 : Z0) and P1 = (X1 : Y1 : Z1) in

P2(k), we can consider the points of the form

(sX0 + tX1 : s Y0 + t Y1 : sZ0 + t Z1)

as (s : t) varies in P1(k). When (s : t) = (1 : 0), we find P0 = (X0 : Y0 : Z0)
and when (s : t) = (0 : 1), then it is P1 that we recover. Replacing (s : t) by
(λs : λt) for some λ ∈ k× will only multiply the above by λ. Therefore the
map

` : (s : t) 7→ (sX0 + tX1 : s Y0 + t Y1 : sZ0 + t Z1)

is a well-defined map from P1(k) to a subset of P2(k). The image in fact is the
unique projective line that passes through P0 and P1. We will often just write

`(s : t) = s P0 + t P1.

18
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Example. The line L in the previous example is parametrised by `(s : t) =
(s + 4t : 2s + 5t : 3s + 6t). We get points like `(1 : 0) = (1 : 2 : 3), `(0 : 1) =
(4 : 5 : 6) or `(1 : 1) = (5 : 7 : 9) and so forth. �

To recover the equation of the line, we can eliminate the variables s and t in
the system

X = sX0 + tX1

Y = s Y0 + t Y1

Z = sZ0 + t Z1

It should not be a big surprise to find a formula reminding us of the cross
product:

L : (Y0Z1 − Y1Z0) ·X + (Z0X1 − Z1X0) · Y + (X0Y1 −X1Y0) · Z = 0.

From now on we will often pass from one description to the other. Either as an
equation L : aX + bY + cZ = 0 with a, b, c ∈ k or as a map ` : P1(k) → L(k)
as given above with points P0 and P1 in L(k). The parametrisation is not
unique, but this is the unique parametrisation such that `(1 : 0) = P0 and
`(0 : 1) = P1.

Example. For instance in yet the same example as before, we could have used
the points (1 : 2 : 3) and (5 : 7 : 9) as P0 and P1 to find another parametrisation
`′(s : t) = (s+ 5t : 2s+ 7t : 3s+ 9t). This time `′(−1 : 1) = (4 : 5 : 6). We can
plug in the above formula to get the equation back.

L : (2 · 9− 7 · 3)X + (3 · 5− 9 · 1)Y + (1 · 7− 5 · 2)Z = −3(X − 2Y + Z) = 0

�
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4 Projective curves

We start to study curves other than lines in P2. We still fix a field k. We
begin with the easiest case, the quadratic equations. In general our “curves”
are always given by polynomial equations. Equations of the form y = sin(x)
involving non-polynomial functions are not considered here.

Homogenisation

Definition. A non-zero polynomial F ∈ k[X,Y, Z] is homogeneous if all
monomials appearing have the same constant degree, called the degree of F .

For instance X + Y 2 is not homogeneous, but X3 +X2Y − 17XY Z −Z3 is
homogeneous.

Lemma 4.1. The solution set to F = 0 for a homogeneous polynomial F ∈
k[X,Y, Z] is a well-defined subset of P2(k).

Proof. Let λ ∈ k×. If i+ j + k = d, then (λX)i(λY )j(λZ)k = λdXiY jZk. We
deduce that, for any is homogeneous F of degree d, the formula

F (λX, λY, λZ) = λd · F (X,Y, Z)

holds because this is true for any monomial of degree d. It follows that if
(X,Y, Z) is a solution to F = 0 then so is (λX, λY, λZ).

We illustrate by an example how we get from an affine equation to a pro-
jective one. If the equation is

x4 − 5x2y2 + 4y4 + 5x2 + 9y + 10 = 0. (4.1)

Then we write x as X
Z and y as Y

Z . We get

X4

Z4
− 5

X2Y 2

Z4
+ 4

Y 4

Z4
+ 5

X2

Z2
+ 9

Y

Z
+ 10 = 0.

Now we multiply through by Z4 to obtain

X4 − 5X2Y 2 + 4Y 4 + 5X2Z2 + 9Y Z3 + 10Z4 = 0.

This is a homogeneous polynomial of degree 4. Of course, we get the same
result by replacing x by X and y by Y and then multiply each monomial by
the appropriate power of Z to have a homogeneous polynomial.
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Figure 7: A picture of C(R) for the example (4.1)

Definition. In general if f ∈ k[x, y] we define the homogenisation of f in
the same way: First, we replace all x by X/Z and all y by Y/Z, then we
multiply through by the smallest power of Z needed to clear the Z appearing
in denominators.

Explicitly, let

f =
u∑
i=0

v∑
j=0

ci,j x
iyj

with ci,j ∈ k. The degree d of f is the largest i+ j such that ci,j 6= 0. Then

F =
u∑
i=0

v∑
j=0

ci,j X
iY jZd−i−j ∈ k[X,Y, Z]

is the homogenisation of f .

Definition. If f is a non-constant polynomial in k[x, y], we call C : f = 0
an affine curve (defined over k). If F ∈ k[X,Y, Z] is the homogenisation of
f then we call C : F = 0 the projective closure of C. It is a projective
curve defined over k.

As before, we will write in this case C(k) for the solution set to f = 0, which
is a subset of k2. Similarly C(k) will denote the solution set to F = 0 as a
subset of P2(k); this makes sense by the above lemma. We have a disjoint
union C(k) = C(k) t

(
C ∩ L∞

)
(k) where L∞ : Z = 0 is the line at infinity.

In the above example (4.1), say with k = R,

C : x4 − 5x2y2 + 4y4 + 5x2 + 9y + 10 = 0

C : X4 − 5X2Y 2 + 4Y 4 + 5X2Z2 + 9Y Z3 + 10Z4 = 0
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The intersection with L∞ is given by (X : Y : 0) with

X4 − 5X2Y 2 + 4Y 4 = (X + 2Y )(X + Y )(X − Y )(X − 2Y ) = 0

so exactly by the four points
{

(−2 : 1 : 0), (−1 : 1 : 0), (1 : 1 : 0), (2 : 1 : 0)
}
.

One can think of these four points as the four asymptotes of C given by x =
±2y and x = ±y. See Figure 7 for a real picture of this curve.
We make a short excursion to talk about homogeneous polynomials in two

variable. Let G(S, T ) ∈ k[S, T ] be a homogeneous polynomial of degree d, say

G(S, T ) = a0S
d + a1S

d−1T + · · ·+ ad−1ST
d−1 + adT

d.

Write g(x) = G(x, 1) ∈ k[x] for the associated polynomial in one variable.
This can now be factored into irreducible factors as studies in Section 2 of
G12ALN=MATH2015. Some of these factors are linear corresponding to solu-
tions of g(x) in k. Putting all the other factors into one polynomial h(x), we
can write

g(x) = (x− x1)m1 · (x− x2)m2 · · · (x− xe)me · h(x).

The homogenisation brings us to

G(S, T ) = g
(S
T

)
T d = (S − x1 T )m1 · (S − x2 T )m2 · · · (S − xe T )me · H̃(S, T ).

For a homogeneous polynomial H̃ ∈ k[S, T ]. If a0 = 0 then T will divide
H̃(S, T ), but other than that H cannot have any linear factors any more. We
can factor out this power of T from H̃ to get a homogeneous polynomial H
with no linear factors any more. Thinking of (si : ti) = (xi : 1) as points on
the projective line P1 the extra linear factors T will correspond to the point
(1 : 0) at infinity.

Lemma 4.2. Any homogeneous polynomial G ∈ k[S, T ] of degree d > 0 can be
written as

G(S, T ) = (t1 S − s1T )m1 · (t2 S − s2 T )m2 · · · (te S − se T )me ·H(S, T )

for a homogeneous polynomial H ∈ k[S, T ] of degree d−m1−m2 · · · −me and
where (s1 : t1), (s2 : t2), . . . , (se : te) are precisely all points (s : t) in P1(k)
such that G(s : t) = 0.

It is also to note that H = 1 if k is algebraically closed as g(x) must then
factor completely into linear factors.

Example. Consider G(S, T ) = S2T 2− 6ST 3 + 13T 4. If k = Q, this factors as
G(S, T ) = T 2 · (S2 − 6ST + 13T 2). Instead for k = C the last factor splits up
further as G(S, T ) = T 2 · (S − (3 + 2i)T ) · (S − (3− 2i)T ). �
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4.1 Conics

A conic is an equation defined by a homogeneous polynomial of degree 2; more
explicitly:

Definition. A conic in P2 defined over k is an equation of the form

C : a0X
2 + a1XY + a2XZ + a3 Y

2 + a4 Y Z + a5 Z
2 = 0 (4.2)

where a0, . . . , a5 are constants in k, which are not all equal to zero.

Example. The projective closure of the (affine) circle x2 + y2 = r is the conic
X2 + Y 2 − rZ2 = 0. The hyperbola xy = c yields the conic XY − cZ2 = 0.
The parabola y = x2 gives the conic −X2 +Y Z = 0. The conic XY = 0 really
looks like the union of the two axis. �

Definition. A conic F = 0 is degenerate if the quadratic polynomial F is the
product of two linear polynomials over some field K containing k. Otherwise
the conic is non-degenerate.

The solution set C(K) of a degenerate conic is the union of two (not neces-
sarily distinct) lines, called the components of the degenerate conic.
Note that K may be different than k. For instance the conic C : X2 +

2XY + Y 2 + Z2 = 0 for k = Q does not factor into two linear polynomials
with coefficients in Q, but over C one has

0 = X2 + 2XY + Y 2 + Z2 = (X + Y + iZ)(X + Y − iZ).

Example. Let C be a non-degenerate conic defined by equation (4.2) over
k = R. Let us consider the intersection of C with the line Z = 0 at infinity.
The intersection are points (X : Y : 0) with a0X

2 + a1XY + a3Y
2 = 0.

If all three coefficients were zero, the conic would be degenerate. Consider
∆ = a2

1 − 4a0a3. The quadratic polynomial a0X
2 + a1XY + a3Y

2 factors into
two linear terms exactly when ∆ > 0. There are now three cases, illustrated
in Figure 8.

• If ∆ > 0, then there are two distinct solutions in R and hence two distinct
points (X : Y : 0) in C(R). The case a0 = 0 and a1 6= 0 is included here.
The affine part of the conic is a hyperbola and the two points at infinity
correspond to the two asymptotes.

• If ∆ = 0, there is exactly one solution in R and hence one point in
C(R) at infinity. This also includes the case a0 = a1 = 0. The affine
part is a parabola with the unique point at infinity indicating the axis of
symmetry. One should think of the line at infinity as the tangent to C
at this point.
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• If ∆ < 0, there is no solution in R and hence C ∩ {Z = 0} = ∅. In this
case the affine piece of C is an ellipse. This includes the case of an empty
ellipse, like X2 + Y 2 + Z2 = 0.

It now turns out that theory of projective conics explains the three types of
real “conic sections” in a coherent and aesthetically pleasing manner. �

(a) ∆ > 0 (b) ∆ = 0 (c) ∆ < 0

Figure 8: The three types of affine pieces of a real conic (top row) and the
positioning of the conic and the line at infinity (bottom row)

Lemma 4.3. Let C be a conic and let L be a line, both defined over k. Then
the intersection contains at most 2 points unless the conic is degenerate and L
is one of its components.

Example. We illustrate the lemma with an example over different fields k.
The conic C : X2 +Y 2−8Z2 = 0 has an affine picture of a circle. Intersecting
with the line L : X − Y − 2Z = 0 can be done using a parametrisation
`(s : t) = (2s : 2t : s− t). Plugging in the equation of C we obtain

(2s)2 + (2t)2 − 8(s− t)2 = 0

which simplifies to s2 − 4st + t2 = 0. If the field is k = Q then there are no
solution to this equation (as the discriminant is 12) and so C(Q)∩L(Q) = ∅.
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Instead for k = R, the polynomial factors as (s − (2 +
√

3)t)(s − (2 −
√

3).
Then we can find two solutions `(2 ±

√
3 : 1) = (4 ± 2

√
3 : 2 : 1 ±

√
3) =

(1±
√

3 : −1±
√

3 : 1). Similar for k = F11, we find the two points (6 : 4 : 1)
and (7 : 5 : 1).
The case k = F3 is special. Since the equation factors as (s+ t)2 = 0, there

is only one point `(1 : −1) = (1 : 2 : 1). We will later see that we should count
this point twice in some sense as L turns out to be the tangent to C. �

Proof. We know that we can parametrise the line by a map

`(s : t) = (αs+ α′t : βs+ β′t : γs+ γ′t)

for two points P = (α : β : γ) and Q = (α′ : β′ : γ′) in P2(k). Substitute this
into the equation (4.2) of the conic:

0 = a0(αs+ α′t)2 + a1(αs+ α′t)(βs+ β′t) + · · ·+ a5(γs+ γ′t)2.

Rearranging this equation one obtains an equation of the form

0 = c0 s
2 + c1 st+ c2 t

2 (4.3)

with constants c0, c1, c2 ∈ k depending on P and Q. It could happen that all
three constants are zero.
In the case that at least one coefficient is non-zero then we are in the situation

of Lemma 4.2. Hence there are at most two points in the intersection of C and
L.
We are left with the case when c0 = c1 = c2 = 0. This means that every

point on L also belongs to C. Without loss of generality, we may assume that
c in the equation L : aX+ bY + cZ = 0 is non-zero. Write Z ′ = aX+ bY + cZ.
Solve this on Z and substitute this back into the equation (4.2). We find an
equation of the form

a′0X
2 + a′1XY + a′2XZ

′ + a′3Y
2 + a′4Y Z

′ + a′5Z
′2 = 0

for some constants a′0, . . . , a′5 ∈ k. Now, all the points with Z ′ = 0 are solution
to this new quadratic equation. This implies that a′0X2 +a′1XY +a′3Y

2 is zero
for all values of X and Y . Taking X = 0 and Y = 1, we deduce that a′3 = 0.
The other way around gives a′0 = 0. Finally X = Y = 1 concludes a′1 = 0. We
have obtained that

a0X
2 + a1XY + a2XZ + a3Y

2 + a4Y Z + a5Z
2 = Z ′ · (a′2X + a′4Y + a′5Z)

and therefore C is degenerate and the line L : Z ′ = aX + bY + cZ = 0 is a
component.
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Theorem 4.4. Let C be a non-degenerate conic defined over k. Either C(k)
is empty or there is a bijection between C(k) and P1(k).

Examples for empty C(k) are easy to find: For instance X2 + Y 2 + Z2 = 0
and k = R. Here are a two additional statements that we will prove in the
exercises: The set C(k) is never empty when k is algebraically closed, like for
k = C. The same is true when k is a finite field, like k = Fp. In particular, for
any prime p and any non-degenerate conic C defined over Fp there are exactly
p+ 1 solutions in C(Fp).
Start of proof. We suppose that C(k) is not empty and we wish to construct

a bijection using one starting point P ∈ C(k). Let X be the set of all lines in
P2 defined over k that pass through P . By Corollary 3.4, we have a bijection
between P1(k) and X. We are left to show that there is a bijection between
lines L in X and points in C(k).
In the first direction: If Q is a point different from P in C(k), then there is a

unique line L defined over k through P and Q. This is due to Proposition 3.3.
This gives a map φ : C(k) \ {P} → X.

Figure 9: Parametrising a conic with a point

In the other direction:
Let L ∈ X. Since C
is non-degenerate, L can-
not be a component of C.
By the previous lemma,
the line L intersects C
in at most two points in
P2(k). Let us have a
closer look at the proof
of Lemma 4.3. We may
suppose that `(1 : 0) =
P , which means P =
(α : β : γ). Now, we
know that P belongs to
the intersection of L and
C. Therefore the equa-
tion (4.3) has already one
solution in k when (s :
t) = (1 : 0), therefore it
must factor as

0 = c0 s
2 + c1 st+ c2 t

2 = t (c1 s+ c2 t).

We conclude that there is exactly one more point corresponding to (s : t) =
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(−c2 : c1) in (C ∩L)(k) except in the case when c1 = 0. Therefore φ sets up a
bijection between C(k) \ {P} and the set of lines L with c1 6= 0.

Example. We interrupt the proof to illustrate what we found so far in an
example. Let C : XY − Z2 = 0 be the conic defined over Q. We can pick the
point P = (1 : 1 : 1) on C(Q). To find the pencil of all lines through P , we
can vary a point R = (a : 0 : b) on the x-axis where (a : b) ∈ P1(Q). The line
L through P and R is parametrised by `(s : t) = (s+ at : s : s+ bt). We plug
this into the equation for C and find

0 = (s+ at)s− (s+ bt)2 = s2 + ast− s2 − 2bst− b2t2 = t
(
(a− 2b)s− b2t2

)
.

The solution (s : t) = (1 : 0) corresponds to P which belongs to the intersection
of C and L. The second point of intersection is

Q = `(b2 : a− 2b) =
(
b2 + a(a− 2b2) : b2 : b2 + b(a− 2b)

)
=
(
a2 − 2ab+ b2 : b2 : ab− b2

)
.

As (a : b) varies through P1(Q) the point Q travels through the points in C(Q).
Wait, what was the problem with c1 = 0? In our case this is when a−2b = 0,

that is to say for a unique point (a : b) = (2 : 1). In that situation the line
L intersects C only at the point Q. Luckily when you put that point into the
formula for Q anyway, it just returns P = (1 : 1 : 1). So in our case this map
(a : b) 7→ (a2 − 2ab+ b2 : b2 : ab− b2) really sets up a bijection between P1(Q)
and C(Q). �

We return to the proof. Recall that so far we have found that φ gives a
bijection between C(k) \ {P} and the set of lines L with c1 6= 0. It remains to
show that there is exactly one line T with c1 = 0 as then we may extend φ to
a bijection from C(k) to X by sending P to T . From the picture in Figure 9,
we already guess that this line is the unique tangent T at P to the curve C.
Expanding out and regrouping (yes that is a bit of work, but you should do

it once) we find that c1 = 0 is the same as asking that Q = (α′ : β′ : γ′) is a
point satisfying the equation

(2a0α+a1β+a2γ)X+(a1α+2a3β+a4γ)Y +(a2α+a4β+2a5γ)Z = 0. (4.4)

This is indeed the equation of a line passing through P unless all the coefficients
above are zero. If they were all zero then any point Q and hence any line L
would have c1 = 0.
In other words, we are left with excluding the possibility that c1 = 0 for

all lines L ∈ X. We will later in Section 4.3 see a proof that this situation
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implies that C is degenerate. Therefore under our assumption this case does
not arise. �
Note that the earlier example X2 + 2XY + Y 2 + Z2 = 0 is a degenerate

example with C(R) = {(1 : −1 : 0)} containing a single point. Here c1 = 0 for
all lines.

4.2 Multiplicities and singularities

Figure 10: As a chord becomes a tan-
gent, two points merge

We return to the study of general
projective curves. The last section
highlighted that we should be inter-
ested in the concept of a tangent and
we should understand better the in-
tersection of lines and curves. The
idea of the counting certain intersec-
tions of lines and curves with multi-
plicity is well illustrated by Figure 10.
As the chord approaches the tangent,
two intersection points merge into
one point.

Definition. Let C be a projective
curve given by an equation F = 0 for
a non-zero homogeneous polynomial F ∈ k[X,Y, Z] of degree d. Let P ∈ C(k)
and let L be a line defined over k passing through P . If `(s : t) parametrises
the line such that `(1 : 0) = P , then we define the intersection multiplicity
of C and L at P to be the integer m such that

F
(
`(s : t)

)
= tm ·

(
am s

d−m + am+1 s
d−m−1t+ · · ·+ ad t

d−m)
with am 6= 0. We write IP (C,L) = m.

The hypothesis P ∈ C(k)∩L(k) implies that F (`(1 : 0)) = 0. In other words
IP (C,L) = m > 0. If P is not a point of intersection of L and C one defines
IP (C,L) = 0.
Note that the homogeneous variable s is not really needed; here is the affine

version. Let C be the affine curve given by f = 0 for a non-zero polynomial
f ∈ k[x, y]. Suppose P = (0, 0) is a point in C(k). We could always change
the affine coordinates to move the point to the origin. Let L : a y = b x be a
line through P , which we may parametrise by t 7→ (a t, b t). Then

f(at, bt) = am t
m + am+1 t

m+1 + · · · ∈ k[t]

28



Elliptic curves G13ELL=MATH3031 cw ’18

with am 6= 0 and m = IP (C̄, L̄) is the intersection multiplicity.

Example. Consider the conic C : X2 + Y 2 − Y Z = 0. See Figure 11 for a
picture. First we intersect it with the “y-axis”, that is with the line L1 : X = 0.
There are two points of intersection P1 = (0 : 1 : 1) and P2 = (0 : 0 : 1). For
the first point P1, we use the parametrisation `(s : t) = (0 : s : s + t). Then
`(1 : 0) = P1. We obtain

F
(
`(s : t)

)
= 02 + s2 − s(s+ t) = −st

Therefore IP1(C,L1) = 1. For the second point P2, we use the parametrisation
`(s : t) = (0 : t : s); this gives F

(
`(s : t)

)
= 02 + t2 − ts. Once again,

IP2(C,L1) = 1.

Figure 11: Intersection multiplicities

If we consider the line L : Y = 0 instead. There is only one point of
intersection namely P2 = (0 : 0 : 1). We can use the parametrisation `(s : t) =
(t : 0 : s). This time, we find F

(
`(s : t)

)
= t2 and hence IP2(C,L2) = 2.

Note that in the above we had a choice for `. For instance in the last example,
we could take `(s : t) = (7t : 0 : s + t). The result should be the same as we
show in the next lemma. �

Lemma 4.5. The definition of IP (C,L) does not depend on the choice of the
parametrisation ` of L.

Proof. If `(s : t) = sP + tQ is our first parametrisation, then any other para-
metrisation `′ with `′(1 : 0) = P of the same line is of the form `′(s : t) =
sP + tQ′. Since Q′ = aP + bQ for some a and b 6= 0 in k, we can write
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Figure 12: Multiplicity at a singular point

`′(s : t) = (s + at)P + btQ = `(s + at : bt). Now the terms with the lowest
power of t look like

F
(
`′(s : t)

)
= F

(
`(s+at : bt)

)
= am(s+at)d−m(bt)m+· · · = amb

msd−mtm+· · ·

and hence b 6= 0 shows that the multiplicity is the same.

Example. Consider the cubic curve C : X3 + X2Z − Y 2Z = 0 at the point
P = (0 : 0 : 1). See Figure 12. Pick two elements a, b in k not both zero and
consider the line L : bX − aY = 0 going through P ; any line through P can
be written like this for some (a : b) ∈ P1(k). This line can be parametrised by
`(s : t) = (at : bt : s). We find

F (`(s : t)) = (at)3 + (at)2s− (bt)2s = (a2 − b2)st2 + a3t3.

If a2 − b2 6= 0, then IP (C,L) = 2. Otherwise when a = b, that is the line
L1 : Y = X, or when a = −b, that is the line L2 : Y = −X, then IP (C,L1) =
IP (C,L2) = 3. �

This last example should motivated the following definition.

Definition. If a point P on a projective curve C defined over k satisfies the
following condition:
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For every line L defined over k passing through P , we have IP (C,L) > 1

then we say that P is a singular point on C. Otherwise, the point is called
a non-singular point.

In order to obtain a useful criterion for a point to be singular, we need
“derivatives”. If k = R or k = C, we could just use the usual definition
involving limits, but for fields like k = Fp this is not possible. But we may
define it formally on polynomials

Definition. If F =
∑

i,j ci,j X
iY jZd−i−j is a homogeneous polynomial of de-

gree d with coefficients in k, then we define the partial derivatives by the
formula

∂F

∂X
=
∑
i,j

i · ci,j Xi−1Y jZd−i−j

The partial derivatives ∂F/∂Y and ∂F/∂Z are defined similarly. Of course,
this extends also to polynomials in more or less variables.

The partial derivative ∂F/∂X is a homogeneous polynomial with coefficients
in k of degree d − 1 or less. Yes, it could be less. For instance in k = F7 and
F = X7, we have ∂F/∂X = 0. We won’t do it, but one can check that all
the usual rules of derivations still hold. ∂(F + G)/∂X = ∂F/∂X + ∂G/∂X,
Leibniz’ rule ∂(F ·G)/∂X = F · ∂G/∂X +G · ∂F/∂X and the chain rule are
all ok.

Theorem 4.6. Let C : F = 0 be a projective curve defined over k given by a
homogeneous polynomial F ∈ k[X,Y, Z] of degree d and let P ∈ C(k). Then
the following three statements are equivalent:

(a). P is a singular point, i.e., for all lines L defined over k passing through
P , we have IP (C,L) > 1.

(b). There are two distinct lines L1 and L2 defined over k passing through P
such that IP (C,L1) > 1 and IP (C,L2) > 1.

(c). ∂F
∂X (P ) = ∂F

∂Y (P ) = ∂F
∂Z (P ) = 0.

Example. Let us illustrate the theorem in the previous example pictured in
Figure 12. The point is P = (0 : 0 : 1) on C : X3 + X2Z − Y 2Z = 0. We
have seen that all lines L passing through P have intersection multiplicity 2
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or 3 at P . Thus the two first points in the theorem are satisfied. The partial
derivatives

∂F

∂X
= 3X2 + 2XZ

∂F

∂Y
= −2Y Z

∂F

∂Z
= X2 − Y 2

all vanish at P = (0 : 0 : 1). �

Proof. First we note the following: If `(s : t) parametrises L and F
(
`(1 : t)

)
=

a1 t + a2 t
2 + · · · + ad t

d then a1 is the value of ∂F
(
`(1 : t)

)
/∂t at t = 0.

Therefore IP (C,L) > 1 is equivalent to

∂F
(
`(1 : t)

)
∂t

∣∣∣∣
t=0

= 0.

We start by showing that (c)⇒(a). Let L be any line passing through P .
Pick a point Q = (X1 : Y1 : Z1) on L different from P in order to have a
parametrisation `(s : t) = s P + tQ of L. We compute

∂F
(
`(1 : t)

)
∂t

∣∣∣∣
t=0

=
∂F (P + tQ)

∂t

∣∣∣∣
t=0

=
∂F

∂X
(P ) ·X1 +

∂F

∂Y
(P ) · Y1 +

∂F

∂Z
(P ) · Z1.

Now by the assumption in (c), the last expression is zero and this implies that
IP (C,L) > 1 by the remark at the start of the proof.
As the implication (a)⇒(b) is clear, we pass to the proof that (b)⇒(c). Pick

two points Q1 = (X1 : Y1 : Z1) and Q2 = (X2 : Y2 : Z2), the first on L1 and
the second on L2 but both different from P = (X0 : Y0 : Z0). By hypothesis
we know that ∂F (P+tQi)

∂t

∣∣
t=0

= 0 and by the computation above this gives the
two linear equations

∂F

∂X
(P ) ·X1 +

∂F

∂Y
(P ) · Y1 +

∂F

∂Z
(P ) · Z1 = 0;

∂F

∂X
(P ) ·X2 +

∂F

∂Y
(P ) · Y2 +

∂F

∂Z
(P ) · Z2 = 0.

Here is how we obtain a third linear equation. For any t, we have F (tX0 : tY0 :
tZ0) = 0 as P ∈ C(k). Taking the derivative of this with respect to t at t = 0
yields

0 =
∂F (tP )

∂t

∣∣∣∣
t=0

=
∂F

∂X
(P ) ·X0 +

∂F

∂Y
(P ) · Y0 +

∂F

∂Z
(P ) · Z0. (4.5)
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We gather that the vector ~v = (∂F/∂X(P ), ∂F/∂Y (P ), ∂F/∂Z(P )) is a solu-
tion to the equation M~v = ~0 with

M =

X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

 .

This matrix is non-singular as P and Q1 and Q3 do not lie on one line. Hence
~v = ~0 and the condition in (c) follows.

From the negation of condition (b) we deduce the following: If P is a non-
singular point on a projective curve C, then there is at most one line L defined
over k with IP (C,L) > 1. In fact the proof of the theorem shows us that the
equation of this one line is necessarily

TP (C) :
∂F

∂X
(P ) ·X +

∂F

∂Y
(P ) · Y +

∂F

∂Z
(P ) · Z = 0 (4.6)

Figure 13: Two tangents

Let C : X3 − 9XZ2 + 9Z3 − Y 2Z = 0
for k = Q, illustrated in Figure 13. The
derivatives are

∂F

∂X
= 3X2 − 9Z2

∂F

∂Y
= −2Y Z

∂F

∂Z
= −18XZ + 27Z2 − Y 2

First for the point P = (−3 : 3 : 1) ∈ C(k).
We find that all three above functions are
non-zero at P , therefore P is a non-singular
point and the tangent is given by

TP (C) : 18X − 6Y + 72Z = 0

We can check that this equation really
passes through P confirming (4.5). One
can parametrise TP (C) by `(s : t) = (−3s :
3s + 12t : s + t). A tedious computation
will reveal F

(
`(s : t)

)
= −162st2 − 135t3

and hence IP
(
C, TP (C)

)
= 2.
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Instead, we can also consider the point Q = (3 : 3 : 1). Again it is a
non-singular point and the tangent line is given by

TQ(C) : 18X − 6Y − 36Z = 0

which may be parametrised by `(s : t) = (3s : 3s − 6t : s + t). Then F
(
`(s :

t)
)

= −27 t3 shows that IQ
(
C, TQ(C)

)
= 3.

This line is called the tangent line to C at P , denoted by TP (C). Sometimes
one can also defined one or several tangent lines at a singular point, like in
Figure 12; the tangents are then the lines which have higher intersection than
all the other lines.

Definition. A non-singular point P on a projective curve C is called an in-
flection point if IP

(
C, TP (C)

)
> 2.

So the point Q above is an inflection point and the picture in Figure 13
shows that the tangent at Q passes “through” the curve C.

Example. We return to the example above C : X3−9XZ2 +9Z3−Y 2Z = 0
for k = Q. This time we look at the point R = (0 : 1 : 0) which can be checked
to be the only point on C lying on the line at infinity Z = 0. This time the
tangent is Z = 0 which we can parametrise by `(t : s : 0) and F

(
`(s : t)

)
= t3

shows that this point is also an inflection point on C.
Finally to conclude this example, we wish to determine if there are any

singular points in C(C)? Suppose P = (X : Y : Z) is a singular point then
the three partial derivatives must vanish. In particular we have −2Y Z = 0.
Now if Z = 0, then we fall back onto the point at infinity that we have just
discussed. Therefore we may assume that Y = 0. The equation ∂F/∂X(P ) = 0
gives X3 = 3Z3. Therefore the only two singular points could possibly be(√

3 : 0 : 1
)
and

(
−
√

3 : 0 : 1
)
. However these do not satisfy the equation for

C. Therefore C has no singular points defined over C.
The situation is the same for any field K of characteristic 0. However it is a

different thing for k = F3 and F2. For the first the point (0 : 0 : 1) and for the
second the point (1 : 1 : 1) are singular. If the characteristic is different from
2 and 3 then there are no singular points on C. �

Definition. Let C be a projective curve defined over k. We say C is a smooth
curve if there are no singular points in C(K) for any field K containing k.

Without proof we mention that for k = Q or k = R it is sufficient to check
that C(C) has no singular points. Luckily, for the curves we will be interested
in even C(k) will be enough.
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4.3 Bézout’s theorem

Theorem 4.7. Let C be a projective curve of degree d defined over k and let L
be a line defined over k. Suppose there is a point in L(k) that does not belong
to C(k). Then ∑

P∈C∩L
IP (C,L) 6 d

If k is algebraically closed the above sum is equal to d.

Example. Let C : F = X3 +X2Z +XZ2 + Z3 − Y 2Z = 0 be a cubic curve
defined over Q and let L be given by the parametrisation `(s : t) = (2s + 2t :
s + 3t := s + t). If we plug it into the equation of C, we obtain, after some
simplifications

0 = F
(
`(s : t)

)
= 6s3 + 26s2t+ 26st2 + 6t3 = 2(3s+ t)(s+ t)(s+ 3t).

Hence there are three points of intersection `(1 : −3) = (1 : 2 : 1), `(1 : −1) =
(0 : 1 : 1) and `(−3 : 1) = (1 : 0 : 1). Each has intersection multiplicity 1;
hence we have equality in the statement of the theorem.
If we take any other line L, we always end up with a cubic homogeneous

equation in (s : t). Of course this may factor into three linear terms then
the sum of the intersection multiplicities will be 3. Or it course split as an
irreducible quadratic times a linear factor in which case we have only one point
of multiplicity 1. Or it could be an irreducible cubic polynomial in which case
our sum is 0. In extreme cases, we the cubic polynomial may split into linear
terms but two or even all three terms are equal. Then we would have only
two or one point of intersection but when counted with multiplicity as in the
theorem, we still end up with an equality in the theorem. �

Proof. Pick a parametrisation `(s : t) for the line L. Let F ∈ k[X,Y, Z] be the
degree d homogeneous polynomial defining C. Now consider

G(s, t) = F
(
`(s : t)

)
∈ k[s, t]

as a polynomial in two variables s and t. As each monomial in F is of total
degree d and the coordinates of `(s : t) are linear homogeneous polynomials of
degree 1, the polynomial G(s, t) is homogeneous of degree d, say

G(s, t) = a0 s
d + a1 s

d−1t+ · · ·+ ad−1 st
d−1 + ad t

d.

Note that the hypothesis L(k) 6⊂ C(k) assures that there is a choice of (s : t) ∈
P1(k) for which G(s : t) 6= 0, implying that G is a non-zero polynomial. Now
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we use Lemma 4.2. Let
{

(s0 : t0), (s1 : t1), . . . , (se, te)
}
be the points (s : t) in

P1(k) such that G(s, t) = 0. Then

G(s, t) = (t1s− s1t)
m1 · (t2s− s2t)

m2 · · · (tes− set)me ·H(s, t)

for some integers m1, . . . , me and some homogeneous polynomial H(s, t)
without zeros in P1(k). It is clear that m1 + m2 + · · · + me 6 d just by
looking at the degree on each side. If k is algebraically closed, then H(s, t) = 1
and so m1 +m2 + · · ·+me = d.
Write Pi = `(si : ti). We now show that mi = IPi(C,L). If si = 0, this is

true directly from the definition otherwise we have to change parametrisation.
For this let ˜̀(s : t) = `(si s : ti s+ t). If si 6= 0, this is again a parametrisation
of L, but now ˜̀(1 : 0) = `(si : ti) = Pi. To find IPi(C,L) we want to look at

G̃(s, t) = F
(
˜̀(s : t)

)
= F

(
`(si s : ti s+ t)

)
= G(si s : ti s+ t).

Write G(s, t) = (tis− sit)mi ·Hi(s, t) with Hi(si, ti) 6= 0. We get

G̃(s, t) = (tisis− si(tis+ t))miHi(si s : ti s+ t) = tmi · smi
i Hi(si s : ti s+ t)

which shows that IPi(C,L) = mi because t can not be a factor of Hi(si s :
ti s+ t).

Theorem 4.8. Let C be a conic defined over k. Then C is smooth if and only
if it is non-degenerate.

Proof. We will proof that C, given by the general equation (4.2), having a
singular point P ∈ C(K) is equivalent to C being degenerate with the two
lines meeting at P .
First if C is degenerate and it consists of two lines, then the point where

they meet is a singular point. Conversely, let P be a singular point on C. We
wish to pick Q to be a point on C different from P . Here is where we may
need a field larger than k: Assume first a0 6= 0. Pick any Y1 different from
the Y -coordinate of P . Then for some field K the equation F (X,Y1, 1) = 0,
which is a quadratic equation in X, will have a solution; for instance in an
algebraically closed field K containing k this is true. If a0 = 0, we can do this
fixing X or Z instead.
Take L to be the line through P and Q. By hypothesis IQ(C,L) > 1

and IP (C,L) > 2 as P is singular. However this contradicts that the sum∑
R∈C∩L IR(C,L) 6 2. Therefore L ⊂ C. Using Lemma 4.3, we conclude that

L is a component of C and hence C is degenerate.
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End of proof of Theorem 4.4. In the proof of Theorem 4.4, we had reached the
point where we could assume that all three coefficients in the equation (4.4) are
zero. Ah, but now, we recognise equation (4.4) as the equation of the tangent
at the point P to the curve C. By assuming that all coefficients are zero, we
get that P is a singular point by Theorem 4.6. Hence by the previous theorem,
C is degenerate, but that we excluded in the hypothesis of Theorem 4.4.

Figure 14: A curve of degree 4
intersects a curve of degree 2 in 8
points

The generalisation of the above The-
orem 4.7 is called Bézout’s Theorem. It
states that two curves C1 and C2 of degree
d1 and d2 intersect in at most d1 ·d2 points.
More precisely if the field k is algebraically
closed and the intersection is counted with
multiplicity, then there are exactly d1·d2 in-
tersection points. An example is illustrated
in Figure 14. The general formula looks like∑

P∈C1∩C2

IP (C1, C2) 6 d1 · d2

for an appropriate definition of the inter-
section multiplicity IP (C1, C2). Note that
this is wrong if we had not taken projective
curves (because we would miss out the intersection points at infinity) and it also
needs that the two curve do not have a common component (for instance both
containing a line as a factor of the defining homogeneous polynomial would
not work). The proof of the general statement uses quite a bit of commutative
algebra.
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5 Elliptic Curves

Recall that a cubic curve is a projective curve of degree 3. A general cubic
curve can be given by a homogeneous polynomial

b0X
3 + b1X

2Y + b2X
2Z + b3XY

2 + b4XY Z+

+ b5XZ
2 + b6 Y

3 + b7 Y
2Z + b8 Y Z

2 + b9 Z
3 = 0 (5.1)

with constants b0, . . . , b9 in k. Again we assume that at least one coefficient
is non-zero.

Definition. An elliptic curve E defined over k is a non-singular cubic curve
E together with a fixed point O ∈ E(k).

We see already in this definition that an elliptic curve is really a pair (E,O),
but we will very often only write E.

Figure 15: Weierstrass equa-
tions can have one or two
“pieces” over R

Let us start with a very, very important ex-
ample: Take the equation

E : Y 2Z = X3 +AXZ2 +BZ3 (5.2)

with constants A and B in k. It is more com-
mon to see this equation written as an affine
curve

y2 = x3 +Ax+B. (5.3)

Such an equation is called a Weierstrass
equation. In this case we have a convenient
choice of the point O, namely (0 : 1 : 0), which
happens to be the unique point at infinity on
E. Two pictures of such curves are given in
Figure 15.
What is the condition that E is non-

singular? Well, the conditions for a point (X : Y : Z) to be singular is given
in Theorem 4.6 using the partial derivatives:

0 = 3X2 +AZ2

2Y Z = 0

Y 2 = 2AXZ + 3BZ2

Assume that the characteristic of k is not 2, then the second equation says
Y = 0 or Z = 0.
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First, if Z = 0, then we have the unique point O = (0 : 1 : 0). But this will
not satisfy the third equation above.
So we can take Y = 0. Multiply the Weierstrass equation (5.2) by A and

use the first equation above in the form AZ2 = −3X2. This yields

0 = AX3 +AX(−3X2) +BZ(−3X2) = −(2AX + 3BZ)X2.

If we had X = 0, then Z = 0, too, but (0 : 0 : 0) is not a projective point.
Therefore 2AX + 3BZ = 0. Thus

4A3X2 = A(2AX)2 = A(−3BZ)2 = 9B2AZ2 = 9B2(−3X2) = −27B2X2

and using X 6= 0 again, we find 4A3 = −27B2.

Definition. The discriminant of the Weierstrass equation (5.2) is given by
∆ = −16 · (4A3 + 27B2).

Lemma 5.1. Let E be given by the Weierstrass equation (5.2) with A and B
in k. Suppose that ∆ 6= 0. Then

(
E, (0 : 1 : 0)

)
is an elliptic curve defined

over k.

Proof. If ∆ 6= 0 then the characteristic of k is not 2 and therefore ∆ 6= 0
is equivalent to 4A2 6= −27B2. We have shown above that in this case E is
smooth.

Example. The curve C : X3 + Y 3 + Z3 = 0 with the point O = (1 : −1 : 0)
is an elliptic curve. More generally C : X3 + Y 3 + AZ2 = 0 with the point
(1 : −1 : 0) is an elliptic curve for all choices of A 6= 0 in k. �

Example. Consider the cubic curve C : X3 + 7Y 3 + 49Z3 = 0 over k = Q. It
is smooth. However there is no rational point in C(Q): To prove that assume
(X : Z : Y ) ∈ C(Q). Then by multiplying with a common denominator
and dividing by any common divisors, we may assume X, Y , Z are three
integers and that gcd(X,Y, Z) = 1. Considering the equation modulo 7, we
find that X is a multiple of 7, say X = 7X ′. After dividing by 7, we find
49X ′3 + Y 3 + 7Z3 = 0. This implies that Y is divisible by 7, say Y = 7Y ′.
As before, we reach the equation 7X ′3 + 49Y ′3 +Z3 = 0, which shows that Z
is also divisible by 7. However, we divided by the common divisor, hence this
is a contradiction. Therefore, we cannot make this curve into an elliptic curve
over Q.
Of course

(
C, ( 3
√

7 : −1 : 0)
)
is an elliptic curve over R. Also

(
C, (1 : 1 : 2)

)
is an elliptic curve over F5. �
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The last example shows that it is not always possible to turn a smooth
cubic into an elliptic curve because we could have C(k) = ∅. It is in fact a
very difficult problem to determine, for a give smooth cubic C defined over Q,
whether C(Q) = ∅ or not. We will return to this at the very end in Section 7.3.
We conclude this section with a formal lemma about the chord and tangent

method from Section 1:

Lemma 5.2. Let C be a smooth cubic defined over k and let P and Q be two
distinct points in C(k). Let L be the line through P and Q. Unless L is tangent
to C at P or Q, the line L will intersect C in a third point R also defined over k.
Furthermore, unless P is an inflection point, the tangent TP (C) will intersect
L in a second point R′ also defined over k.

The proof is already explained in the example right after Bézout’s the-
orem 4.7.

Proof. Parametrise L by `(s : t) and say C is given by F = 0 for a homo-
geneous polynomial F ∈ k[X,Y, Z] of degree 3. Then G(s, t) = F

(
`(s : t)

)
is

a homogeneous polynomial of degree 3 unless it is the zero polynomial. The
latter only happens when L ⊂ C, which is impossible for a smooth cubic as
we saw in an exercise. By assumption we already have two distinct solutions
of G(s, t) corresponding to P and Q and they can be of multiplicity strictly
higher than 1 as L is not tangent at P or Q. Therefore G(s, t) must factor as

G(s, t) = (tP s− sP t) · (tQ s− sQ t) ·H(s, t)

where `(sP : tP ) = P and `(sQ : tQ) = Q. As the degree is 3, the polynomial
H(s, t) ∈ k[s, t] is linear and it will correspond to a point R ∈ L(k).
The same reasoning works for TP (C). This time G(s, t) = F

(
˜̀(s : t)

)
for a

parametrisation ˜̀of TP (C) will factor as G(s, t) = (tP s−sP t)2H(s, t). Again
we get a point R′ 6= P in L(k).

5.1 The group law

Let (E,O) be an elliptic curve defined over k. We will define an operation

+ : E(k)× E(k)→ E(k)

which will turn out to be a group law.
Let P and Q be two points in E(k). In a first case, we assume that P , Q

and O are three distinct points and suppose they do not lie on one line.

• Draw the line L through P and Q.
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• By Lemma 5.2, L meets C in a third point R ∈ E(k).

• Draw the line L′ through R and O.

• Again there is a third point on L′ ∩C, which we will denote by P +Q ∈
E(k).

By hypothesis R 6= O and by Lemma 5.2, P +Q has indeed coordinates in k.
This is illustrated in Figure 16.

Figure 16: Addition Figure 17: Doubling

We adapt the above to the cases, we excluded. First if P , Q and O lie on
one line. Then we take L′ to be the tangent TO(C) and set P + Q to be the
second intersection of L′ with C guaranteed by Lemma 5.2, unless if O is an
inflection point, in which case we take P +Q to be O.
Finally if P and Q are equal but assume they are not inflection points,

then we replace in the above L with the tangent TP (C). This is illustrated in
Figure 17. The second point guaranteed by Lemma 5.2 in TP (C)∩C will be R
and then L′ is as before; including in the special cases when R = O discussed
above.
Finally when P is an inflection point, then we set R = P and let L′ be as

before.
All these special cases become very natural when considered as limit cases of

the main first case treated. One has just to count multiplicities of intersections
between lines and cubics. It is clear that the above does not work when P is
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a singular point on a non-smooth cubic and Q is non-singular as the line L
would not meet in a third point. Also it is clear that O needs to be in E(k)
if we want P +Q to be defined over k. This explains why the assumptions on
elliptic curves are important.

Theorem 5.3. The above operation defines an abelian group law on E(k).

I know at least of three ways to prove this theorem. Firstly one can write
down everything in coordinates and check it by hand; this is very, very tedious
and hardly illuminating. An excellent proof is using the so-called “Picard
group of divisor classes”; it is neat, explains things very well, but uses a lot
of algebraic geometry that I would not want to introduce. The third proof
is based on classical geometry and that is what we are going to look at here.
However the proof will not be given completely as it would take us quite afar
from our actual aim.

Incomplete proof. Looking back at Section 2, we see what axioms we have to
check. First (G1 Closure): In fact, we discussed this already above when we
referred to Lemma 5.2 to assure that in all cases we get exactly one point
defined over k. Next (G2 Associativity): Funny enough, this is the really hard
part of this theorem and we are postponing this discussion until the end. Let
us jump ahead and see that (G5 Abelian) is clear as P and Q play a symmetric
role in all cases.

Figure 18: O is the identity element Figure 19: Inverse of P
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(G3 Identity): Given the name O, it should be no surprise that O ∈ E(k)
plays the role of the identity element in E(k). See Figure 18. First assume
P 6= O. Then L is the line through P and O, but so is the line L′ and the
third point P + O is just P again, even in the special case when L is tangent
to C at either P or O. We conclude P +O = O + P = P . If P = O then L is
going to be the tangent at O. Once again L′ = L and we conclude as before
that O +O = O.
(G4 Inverses): See Figure 19. Start by intersecting the tangent TO(C) with

C. Other than the double intersection at O there is one more point, which we
call Ô. If O is an inflection point then Ô = O. Let P be a point in E(k). Let
L be the line through P and Ô and call the third point of intersection −P .
It may be one of P or Ô in special cases. To compute P + (−P ) we take the
line L passing through them and get R = Ô. Then the line L′ is TO(C) and
the point P + (−P ) identifies with O as we hoped for. This also works in the
special cases when P = O or P = Ô.
Finally we come back to (G2 Associativity). We would like to show that

(P + Q) + R = P + (Q + R) for all triples P , Q, R of points in E(k). The
proof uses following result from classical geometry:

Proposition 5.4 (Chasles’ theorem). Let C, C ′ and C ′′ be three distinct pro-
jective cubic curves defined over k. Suppose they all pass through a set of eight
distinct points {P1, P2, . . . , P8} such that no five of them lie on a line and such
that they do not lie all on one conic. Then all three cubics meet in a ninth
point P9.

Figure 20: Three cubic meeting in 9 points
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This proposition is often called the Cayley-Banarach theorem, see [3] for a
detailed history of the theorem and its generalisations. For a complete proof
please look at Washington’s book [7].
See Figure 20 for an illustration. Here we just sketch the idea of the proof:
A cubic is given by an equation (5.1) involving ten constants b0, . . . , b9.

Multiplying with a constant λ ∈ k× does not change the cubic so we can
think of the set of all cubics as P9 a nine-dimensional projective space. To
say that C passes through a point P = (X0 : Y0 : Z0) is the same as to say
F (X0, Y0, Z0) = 0. This imposes a linear condition on the ten coefficients.
Therefore saying that C passes through the eight points P1, . . . , P8 imposes
eight linear equations on these ten coefficients. The tricky thing is to show that
these equations are linearly independent under our assumptions. But granted
they are, we find that the set of cubics passing through the eight points has
two degrees of freedom, but up to multiplication by a scalar. In other words
they form a projective line in P9. Say F = 0 describes C and F ′ = 0 describes
C ′. Then the equation F ′′ = 0 for C ′′ can be written as F ′′ = sF + tF ′

for some (s : t) ∈ P1(k). Call P9 the ninth intersection of C and C ′, which
is unique if we believe in the general version of Bézout’s theorem. But then
F ′′(P9) = sF (P9) + tF (P9) = s · 0 + t · 0 = 0 shows that P9 also lies on C ′′.
Now back to the proof of Theorem 5.3. Let P , Q and R be three points in

E(k). We suppose that we are in the least special situation; for instance these
points are distinct and not on one line. Also all the lines below are assume
not to be tangents to C anywhere, etc. The special cases could all be treated
one-by-one with similar arguments. Let L1 be the line through P and Q and
let S1 be the third point in C ∩ L1. Let L′1 be the line through O and S1

meeting C in the third point P + Q. Then L′′1 is the line through P + Q and
R, hitting C in a third point U1.
Let L2 be the line through Q and R meeting the curve C in the third point

S2. Then L′2 is the line through O and S2 which contains a third point on C
equal to Q + R. Finally the line L′′2 goes through Q + R and P and meets
C in a further point U2. Picture? See Figure 21. Note that (P + Q) + R is
the point where the line through U1 and O meets the curve a third time and
P + (Q+R) is the point where the line through U2 and O intersects C. Hence
it is enough to show that U1 = U2.
To apply Chasles’ theorem in Proposition 5.4, we need three cubic and eight

points. The eight points are O, P , Q, R, P +Q, Q+R, S1 and S2. The first
cubic is C. The second cubic is C ′ = L1∪L′2∪L′′1, which are precisely the fully
drawn lines in Figure 21, and the third is C ′′ = L2 ∪L′1 ∪L′′2, consisting of the
dashed lines in Figure 21. Then the ninth point of intersection of C and C ′ is
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Figure 21: The law is associative

U1 while U2 is the ninth point of intersection of C and C ′′. By the proposition
U1 = U2, proving associativity. Well, at least it concludes our rough overview
of what a proof may look like; there are quite a few bits missing.

5.2 Formula on Weierstrass equations

In this section (for most of the rest of the module) we will assume that our
elliptic curve (E,O) is given in a Weierstrass equation

y2 = x3 +Ax+B

with A and B in the field k. We know that this is an elliptic curve with origin
O = (0 : 1 : 0) the only point at infinity if and only if ∆ 6= 0. Let P and Q
be two distinct points in E(k) that are not equal to O. We wish to find the
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formula for adding P and Q and for P+P in terms of A, B and the coordinates
of P and Q.

Figure 22: Inverses on a
Weierstrass equation

We have seen that the line at infinity intersects
E only in O. It is therefore the tangent to E at
O and O is an inflection point. This will simplify
things a bit. Also note that all lines through O
are of the form aX + cZ = 0, which in affine
coordinates are simply the vertical lines x = c for
a constant c ∈ k.
First, if O 6= P ∈ E(k), then −P is very easy

to describe: Since O is an inflection point, the
point Ô is equal to O. Therefore −P and P and
O lie on one line, meaning that −P is just the
reflection of P on the x-axis. In a simple formula,
if P = (xP : yP : 1), then −P = (xP : −yP : 1).
See Figure 22.
Write P = (xP : yP : 1) and Q = (xQ : yQ : 1) with xP , xQ, yP , yQ all in k.

The line through P and Q is

(yP − yQ)X + (xQ − xP )Y + (xP yQ − yPxQ)Z = 0.

In affine coordinates we can write this as y = λx+ ν with

λ =
yP − yQ
xP − xQ

and ν =
xP yQ − yPxQ
xP − xQ

.

Inserting into the affine Weierstrass equation yields

(λx+ ν)2 = x3 +Ax+B

0 = x3 − λ2 x2 + (A− 2λν)x+B − ν2.

We know that xP and xQ are two distinct solutions to this while xR is the
third one. From

x3 − λ2 x2 + (A− 2λν)x+B − ν2 = (x− xP )(x− xQ)(x− xR)

we get an interesting relation by looking at the degree 2 term: −λ2 = −xP −
xQ − xR, which means that

xR = λ2 − xP − xQ with λ =
yP − yQ
xP − xQ

. (5.4)

To get the point R, it is best to use the line equation yR = λxR+ν. To obtain
P +Q, we need to look at the line through R and O, but this is simply x = xR.
Therefore P +Q = (xR : −yR : 1). See Figure 23 for a sketch.
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Figure 23: Adding on Weierstrass equations

Example. An example consider the curve E : y2 = x3 − 2x + 5 over Q
and the points P = (−2 : 1 : 1) and Q = (1 : 2 : 1). First we compute
λ = (1− 2)/((−2)− 1) = 1

3 . To find ν, it is quickest to use

ν = yP − λxP = 1− 1

3
(−2) =

5

3
.

The first coordinate of R is xR = (1/3)2 − (−2) − 1 = 10
9 . It follows that

yR = 1
3 ·

10
9 + 5

3 = 55
27 . Therefore P +Q =

(
10
9 ,−

55
27

)
.

Let us make a second example to compute P +(−Q), which we will of course
write now as P−Q. Since −Q = (1 : −2 : 1), the computations look as follows:

λ =
1− (−2)

−2− 1
= −1 ν = 1− (−1) · (−2) = −1

xR = (−1)2 − (−2)− 1 = 2 yR = (−1) · 2 + (−1) = −3

Hence P −Q = (2 : 3 : 1). �

Oops, we have been careless in deriving the formula (5.4). We divided by
xP − xQ without checking if it might be zero. All other operations were fine.
If xP = xQ then either P = Q, which we excluded, or Q = −P . In the latter
case we expect P + Q = P + (−P ) = O so it is indeed good if that does not
result in a point on the affine plane.
That was adding, now to doubling. As before P = (xP : yP : 1). The

tangent at P is

(3x2
P +A)X + (−2yP )Y + (−y2

P + 2AxP + 3B)Z = 0
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or in affine form y = λx+ ν it has

λ =
3x2

P +A

2 yP
.

Again, we intersect this line with E. As above the quadratic term gives −λ2 =
−xP − xP − xR. Therefore xR = λ2 − 2xP . The rest is done as before. The
Figure 24 illustrates this.

Figure 24: Duplication on Weierstrass equations

Example. We return to the example above and we wish to evaluate P + P ,
which should be denoted by 2P . First, we find the slope of the tangent to be

λ =
3 · (−2)2 + (−2)

2 · 1
= 5

and use P to find the constant term of the tangent as

ν = yp − λxP = 1− 5 · (−2) = 11.

Then we find the coordinates of R:

xR = 52 − 2 · (−2) = 29 and yR = 5 · 29 + 11 = 156.

Therefore 2P = (29 : −156 : 1) �

Again, we lacked to be careful with the division by 2yP . Having assumed
that ∆ 6= 0, it is ok to divide by 2, but what about yP ? If yP = 0, then the
tangent is x = xP which meets the curve a third time at O. It follows that for
these point lying on the axis of symmetry, one has P + P = O.
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The above gives a practical way to compute on an elliptic curve in Weierstrass
form, but it could be useful for later if we had an actual general formula. After
a bit of simplifying, one finds

x2P =
x4
P − 2Ax2

P − 8BxP +A2

4y2
P

. (5.5)

Replacing y2
P with x3

P + AxP + B we actually find a formula only involving
xP , A and B.

Example. We end this section with a complete determination of E(k). We
take the curve

E : y2 = x3 − x (5.6)

over k = F5. The discriminant is ∆ = 4 so this is a smooth cubic. Look at all
possible x value to find all point in E(F5):

x ∞ 0 1 2 3 4
points O (0, 0) (1, 0) (2, 1), (2, 4) (3, 2), (3, 3) (4, 0)

We count 8 points. Since there are three distinct abelian groups of order 8 we
have to do some computations in order to determine the full group structure.
First, the points with the same x-coordinates are inverses to each other. So
−(2, 1) = (2, 4), −(3, 2) = (3, 3) and −(0, 0) = (0, 0) and so forth. We find
2 (0, 0) = (0, 0) + (0, 0) = O and 2 (1, 0) = O and 2 (4, 0) = O; these are all
points of order 2.
We compute 2 (2, 1) using the formula. First λ = (3 · 22 + (−1))/(2 · 1) =

11/2 = 11 · 3 = 3 using the fact that the inverse of 2 modulo 5 is 3. Next, the
x-coordinate of 2 (2, 1) is xR = 32 − 2 · 2 = 5 = 0. Now there is already no
choice any more: we must have 2 (2, 1) = (0, 0). We conclude that (2, 1) is an
element of order 4.
We suspect now that P = (2, 1) and Q = (1, 0) are generators of the group.

In fact an abstract argument proves this, but let us do it once explicitly. We
already know O, Q, P , 2P = (0, 0) and 3P = −P = (2, 4). We add P and
Q: For λ we have (1 − 0)/(2 − 1) = 1. Then xR = 12 − 2 − 1 = 3. Next
ν = 1− 1 · 2 = 4 and yR = 1 · 3 + 4 = 2. Therefore P +Q = (3, 3).
It follows that 3P +Q = −P −Q = −(P +Q) = (3, 2). The only point left

is (4, 0) which must be 2P +Q: Indeed the line through 2P = (0, 0) and (1, 0)
is the x-axis which meets E a third time at (4, 0).
We conclude that all points in E(F5) can uniquely be written as i P + j Q

with 0 6 i < 4 and 0 6 j < 2. Or as a formula E(F5) = Z/4Z P × Z/2ZQ. �
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5.3 Reduction modulo p

We concentrate on the case k = Q. We fix a prime number p. The discussion
would be valid for many prime ideals in ring without zero-divisors.
If P = (X : Y : Z) with rational numbers X, Y and Z. Let d be the common

denominator. Then P = (dX : dY : dZ) has now integer coordinates. Let e
be the greatest common divisor of dX, dY and dZ. Now P = (d/eX : d/eY :
d/eZ) is written with integer coordinates which have no common divisor. We
call this a normalised representation of P .

Example. The normalised representation of (3
2 : 9 : −3) is (1 : 6 : −2), which

we obtained by scaling with 2
3 . Similarly the point (−100 : −200 : −300) has

normalised representation (−1 : −2 : −3); though also (1 : 2 : 3) obtained by
scaling with − 1

10 is also a normalised representation. �

We describe the reduction map P2(Q)→ P2(Fp). Let P = (X : Y : Z) be a
point in P2(Q) given in normalised presentation. We define P̃ = (X̃ : Ỹ : Z̃)
with X̃ = X + pZ ∈ Fp, Ỹ = Y + pZ and Z̃ = Z + pZ the residue classes of
the coordinates.

Lemma 5.5. For any P ∈ P2(Q), defines a well-defined point P̃ in P2(Fp).

Proof. First we rule out that X̃ = Ỹ = Z̃ = 0. If it were so p would divide
X, Y , Z, which is impossible as we divided by any common divisor. Therefore
P̃ ∈ P2(Fp).
The normalised representation is almost unique: If (X : Y : Z) is normalised

then (−X : −Y : −Z) is also normalised and it is the only other normalised
representation of the same point. However both points have give the same
point

P̃ = (X̃ : Ỹ : Z̃) = (−X̃ : −Ỹ : −Z̃) =
(
−̃X : −̃Y : −̃Z

)
.

The map P 7→ P̃ is called the reduction map P2(Q) → P2(Fp). Of course
there are reduction maps in all dimensions Pn(Q)→ Pn(Fp).
Let E be an elliptic curve defined over Q given by a Weierstrass equation

E : y2 = x3+Ax+B. We may suppose thatA andB are integers. We will write
Ẽ for the reduced Weierstrass equation over Fp, that is Ẽ : y2 = x3 + Ã x+ B̃.

Proposition 5.6. If p does not divide ∆ ∈ Z then the reduced curve (Ẽ, Õ) is
an elliptic curve. Furthermore in this case the reduction map induces a map
˜: E(Q)→ Ẽ(Fp) which is a group homomorphism.
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Proof. It is clear that the discriminant of Ẽ is the reduction of the discriminant
∆ of E. Hence ∆̃ = 0 if and only if p divides ∆. Showing that Ẽ is a smooth
cubic over Fp by Lemma 5.1.
Assume p - ∆. Clearly Õ = (0 : 1 : 0) ∈ Ẽ(Fp) is a rational point which

makes Ẽ into an elliptic curve. Without risk of confusion we will also denote it
by O. Write f(P ) = P̃ for the restriction of the reduction map to E(Q). The
reduced point P̃ belongs to Ẽ(Fp), hence f : E(Q) → F̃ (Fp) is a well-defined
map. If P ∈ E(Q) then f(−P ) = f

(
(X : −Y : Z)

)
= (X̃ : −Ỹ : Z̃) = −f(P ).

Furthermore, if P , Q and R are three points (not necessarily distinct) forming
the intersection of E and the line L : aX + bY + cZ = 0. We may clear
denominators in L and assume that a, b and c are integers not all divisible by
p. Therefore there is a reduced line L̃ : ãX + b̃Y + c̃Z = 0 defined over Fp.
Again all three points P̃ , Q̃ and R̃ lie on L̃ and on Ẽ. This proves that, if
P + Q + R = O, then f(P ) + f(Q) + f(R) = O. We have shown that f is a
group homomorphism.

If p - ∆ then we say that the Weierstrass equation has good reduction oth-
erwise we say it has bad reduction. The above proposition has an extension
to the case of bad reduction: If one restricts the reduction map to the set of
points in E(Q) that do not map to the singular point in Ẽ then one obtains
a group homomorphism with the group of non-singular points on the singular
Weierstrass equation Ẽ.

Example. We consider the curve

E : y2 = x3 − 11x− 5

The discriminant is 74384. The reduction of E at p = 5 is exactly the curve Ẽ
described in (5.6) in a previous example. We recall that the point P1 = (2 : 1 :
1) of order 4 and the point P2 = (1 : 0 : 1) of order 2 generate the group Ẽ(F5)
of order 8. Consider the rational points Q1 = (−3 : 1 : 1) and Q2 = (−2 : 3 : 1)
in E(Q). Now Q̃1 = (2 : 1 : 1) is P1 while Q̃2 = (3 : 3 : 1) = P1 +P2. It follows
that Q2 cannot be of the form nQ1 as this is not true for the images in Ẽ(F5).
Even better: Since the reduction map is surjective onto the group Z/4Z × Z/2Z,
we conclude that E(Q) can not be a cyclic group. (In fact, E(Q) is isomorphic
to Z× Z generated by Q1 and Q2, but that is harder to show.) �

5.4 Transforming a cubic into a Weierstrass equation

Let C be any smooth cubic curve defined over k and let P ∈ C(k).
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Proposition 5.7. Suppose that the characteristic of k is not 2 or 3. For any
elliptic curve (C,P ) there exists a transformation that brings it to a Weierstrass
equation (5.2).

There are two distinct transformations depending on whether the point P is
an inflection point on C or not.
First if P is an inflection point on C. Let L : aX + bY + cZ = 0 be the

tangent line TP (C). Pick any other line L′ : a′X + b′Y + c′Z = 0 passing
through P and a third line L′′ : a′′X + b′′Y + c′′Z = 0 not passing through P .
Now make the change of variables: Z ′ = aX + bY + cZ, X ′ = a′X + b′Y + c′Z
and Y = a′′X+b′′Y +c′′Z. This transformation is invertible because the three
lines do not meet in one point and therefore the matrix with rows (a, b, c),
(a′, b′, c′) and (a′′, b′′, c′′) is an invertible matrix. Under this transformation
the point P is sent to (0 : 1 : 0) and the line at infinity meets the transformed
curve C ′ only at this point O. This imposes that the cubic equation of C ′ is
of the form

b0X
′3 + Z ′ · (b2X ′2 + b4X

′Y ′ + b5X
′Z ′ + b7Y

′2 + b8Y
′Z ′ + b9Z

′2) = 0

with b0 6= 0. This is non-singular at O if b7 6= 0. We can divide through by b0.
Then we can change the variable Z ′ by multiplying with Z ′′ = b7/b0Z

′. We
reach an equation of the form

Y 2Z + a1XY Z + a3 Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6 Z

6 (5.7)

(where we dropped the ’ for simplicity). Next, we complete the square on the
right hand side, by taking the new Y to be Y + 1

2a1X + 1
2a3Z. This allows

us to achieve a1 = 0 and a3 = 0 using the assumption that the characteristic
is not 2 in order to be allowed to divide by 2. Finally one can complete the
cube by replacing X by X + 1

3a2Z to obtain the Weierstrass equation as we
presented it.

Example. Consider the cubic C : X3 +Y 3 +dZ3 = 0 where d ∈ k is some non-
zero constant. As a point we may take P = (1 : −1 : 0). The transformation
X = U + V and Y = U − V gives 6UV 2 + 2U3 + dZ3 = 0. Scaling by taking
X ′ = −6dZ and Y ′ = 36dV = 18d(X − Y ) and Z ′ = U = (X + Y )/2 yields
finally Y ′2Z ′ = X ′3 − 432d2Z ′3. This is the Weierstrass equation with A = 0
and B = −432d2. �

We have to explain the second method of how to do the transformation
when P is not an inflection tangent. The method is due to Trygve Nagell, see
Chapter 8 in [1]. It is illustrated in Figure 25. Let Q be the third point of
intersection of the tangent TP (C).
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Figure 25: Transforming
into Weierstrass form

We may change coordinates such that Q is the
affine origin (0, 0) and TP (C) is the y-axis. This
means that the curve is given by an equation

0 = F1(X,Y )Z2 + F2(X,Y )Z + F3(X,Y )

with Fi ∈ k[X,Y ] a homogeneous polynomial of
degree i. The point P = (0 : yP : 1) is such that
y = yP is a solution to

0 = y F1(0, 1) + y2 F2(0, 1) + y3 F3(0, 1).

As it must have a double root one deduces that
the discriminant

F2(0, 1)2 − 4F1(0, 1)F3(0, 1) = 0 (5.8)

is zero. Consider the intersection of C with a general line through Q; in affine
form this is y = tx. In

0 = F1(1, t)x+ F2(1, t)x2 + F3(1, t)x3

we recognise the point Q for x = 0. The other two solutions are for x =
(−F2(1, t) + s)/F3(1, t) with s being a square root of the discriminant:

s2 = F2(1, t)2 − 4F1(1, t)F3(1, t).

The right hand side of this equation is a cubic polynomial in t because of (5.8).
Therefore the transformation with t = Y/X and s = F3(1, t)X/Z + F2(1, t)
transforms C into required form; except for maybe the appearance of a quad-
ratic term on the right hand side. But this can be sorted again by completing
the cube.

Example. The computations are often quite involved even for relatively simple
examples. We present here the results without details for the cubic curve

X3 + 2Y 3 − 3Z3 = 0

and the point P = (1 : 1 : 1). The tangent is X+2Y −3Z = 0 which meets C
again at Q = (−5 : 4 : 1). The change X ′ = X + 2Y − 3Z and Y ′ = Y − 4Z
and Z ′ = Z transforms the curve to

0 = (75X − 54Y )Z2 + (−15X2 + 60XY − 36Y 2)Z+

+ (X3 − 6X2Y + 12XY 2 − 6Y 3).
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Using the above formula we find the equation

s2 = 72 t3 − 216 t2 + 216 t− 75.

The final change s′ = 9 s and t′ = 18 t − 18 brings this to the Weierstrass
equation s′2 = t′3 − 243. �

It is to note that even when the characteristic is 2 or 3, we will always be able
to transform our smooth cubic into the form of equation (5.7). This is called
the general Weierstrass equation. Because of the issue with characteristic
2 and 3 even for equations with integer coefficients it is often better to work
with the general Weierstrass equation. For this module, we concentrate mainly
on the simpler, also called the short Weierstrass equation (5.2).
We should also add that there is even a more general definition of “elliptic

curve”. It is a projective smooth curve E defined over k in some Pn, whatever
that is precisely, together with a point O and an algebraically defined operation
that makes E(K) into a group for all fields K containing k. One can show
that a certain invariant called the genus has to be 1 under this condition. The
theorem of Riemann-Roch can be used to prove that any such curve can be
transformed into a general Weierstrass equation.
In summary, we do not loose any generality if we only consider elliptic curves

given by a Weierstrass equation.
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6 Torsion points

Let E be an elliptic curve over a field k. We wish to investigate what the group
E(k) looks like as an abstract group. We will start by studying the elements
of finite order in this group.

Definition. A point P ∈ E(k) is said to be a torsion point if there is an
integer n > 0 such that

nP := P + P + P + · · ·+ P︸ ︷︷ ︸
n terms

is equal to O. The smallest such n is called the order of P in E(k).

The only point of order 1 is O. If the group E(k) is finite then all points
are torsion. This happens for instance when k is a finite field. For fields like
C most points are not torsion; however they are particularly important in the
theory of elliptic curves as we might see a glimpse of later.
We assume from now on that it is given by a Weierstrass equation

E : y2 = x3 +Ax+B

with A and B in k.

Example. We wish to give an example which is not too simple: The curve
E : y2 = x3 − 27x + 55350 over Q and the point P = (−21 : 216 : 1). The
tangent through P has equation y = 3x + 279 and we find 2P = (51,−432).
The line through P and 2P has equation y = −9x + 27 which turns out to
be tangent at 2P . Therefore 3P = (51, 432) = −2P . Hence 5P = O shows
that P is a point of order 5. We should already be suspicious of how nicely
everything stayed within integers and did not involve any denominators. �

Definition. If m > 0 is an integer then we will write E(k)[m] for the set of
points in E(k) such that mP = O.

We will show in the exercises that E(k)[m] is a subgroup of E(k).

6.1 Points of order two

Lemma 6.1. The points (x, y) ∈ E(k) of order 2 are those with y = 0.

Proof. To say that 2P = P + P = O is the same as to ask that P = −P .
We know that −P = (x,−y) in a Weierstrass equation. Therefore P = −P is
equivalent to y = 0.
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If P = (xp, 0) is a point of order 2 then xP is a solution to x3 +Ax+B = 0.

Proposition 6.2. The subgroup E(k)[2] has either isomorphic to {O}, Z/2Z or
Z/2Z × Z/2Z, depending on whether 0 = x3 +Ax+B has 0, 1 or 3 solutions in
k.

Proof. If a point is in E(k)[2] then its order is either 2 or 1. From the previous
lemma it is clear that we can count the elements of order 2 by counting the
number of solutions to 0 = x3 + Ax + B. This tells us the size of E(k)[2].
If there are no points of order 2 then E(k)[2] = {O}. If there is exactly one
point of order 2 then E(k)[2] ∼= Z/2Z. Finally if there are three then the group
is either Z/2Z × Z/2Z or Z/4Z. However all elements have order 2 so it must be
E(k)[2] = Z/2Z × Z/2Z.

Let E be an elliptic curve with three points of order 2 defined over k. Then
we can write

y2 = (x− e1)(x− e2)(x− e3)

for some ei ∈ k. Then E(k)[2] =
{
O, (e1, 0), (e2, 0), (e3, 0)

}
. It is not hard to

see that (e1, 0) + (e2, 0) = (e3, 0). The discriminant of E in this form is

∆ = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2. (6.1)

In particular the curve is smooth if and only if e1, e2, e3 are all distinct.

Example. Take k = R. Any real cubic polynomial has at least one root. So
there is always a point of order 2. If it has three roots e1, e2, e3 in R then the
discriminant in (6.1) is positive. Instead, if there is only one real root e1 then
the other two complex roots are complex conjugates e2 and e3 = e2. In that
case the discriminant

∆ = 16 ·
(
(e1 − e2)(e1 − e2)

)2 · (e2 − e2)2

= 16 ·
(
(e1 − e2)(e1 − e2)

)2 · (2 i Im(e2))2

= −64 · |e1 − e2|4 · Im(e2)2

is a negative real number.
In summary, if ∆ > 0 then E(R)[2] = Z/2Z × Z/2Z. If ∆ < 0, then E(R)[2] =

Z/2Z. This corresponds to the two different real pictures shown in Figure 15. �
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6.2 Torsion points have integer coordinates

We now start our work to find a way to determine all torsion points in E(Q)
for an elliptic curve over Q. Our first aim is to show that any torsion point
O 6= P = (x : y : 1) has integer coordinates x and y. In an exercise, we have
shown that this is equivalent to proving that P never reduces to the identity
modulo any prime p.
Let us fix a prime p. The exercise referred to above also showed that the

normalised representation of a point P ∈ E(Q) is of the form (a e : b : e3) with
gcd(a, e) = gcd(b, e). For n > 0, define the following subset

En(Q) =
{
P = (a e : b : e3) ∈ E(Q)

∣∣∣ pn | e}.
The first set E1(Q) of these set is precisely the set of points P that reduce to
O modulo p. Since the reduction is a group homomorphism in case of good
reduction, E1(Q) is a subgroup of E(Q) as it is the kernel of this homomorph-
ism. Our aim is to show that all En(Q) are subgroups and that none of them
contains a torsion point other than O. Note already that these sets form a
chain

E(Q) ⊃ E1(Q) ⊃ E2(Q) ⊃ · · ·

and that the only point which belongs to all of them is O. We abbreviate the
notation and write simply En for En(Q).
We introduce a new variable t = −x/y = −X/Y . We see that P ∈ En has

pn | t(P ) = −xP /yP = ae/b.

Lemma 6.3. If P , Q, R are points in En satisfying P + Q + R = O, then
tP + tQ + tR ≡ 0 (mod p5n).

Proof. We introduce a second variable s = 1/y = Z/Y . Conversely we have
x = −t/s and y = 1/s. Substituting this into the Weierstrass equation yields

1

s2
=
(
− t
s

)3
+A

(
− t
s

)
+B.

Multiplying with s3 and rearranging gives

t3 +As2t−B s3 + s = 0. (6.2)

This is a new affine equation of E. In these coordinates the point O is at the
origin (s, t) = (0, 0).
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Let us write down how to add points in these coordinates. The slope of the
line s = λ t+ ν through the points P and Q is still

λ =
sP − sQ
tP − tQ

. (6.3)

The intersection of the line and E in the equation (6.2) is obtained from

0 = t3 +A (tλ+ ν)2t−B(tλ+ ν)3 + (tλ+ ν) = c(t− tP )(t− tQ)(t− tR).

As before we look at the quadratic term, but we also need to look at the leading
term. We get

1 +Aλ2 −Bλ3 = c;

2Aλν − 3Bλ2ν = c(−tP − tQ − tR).

We have obtained an expression for the quantity that we are after:

tP + tQ + tR =
(3Bλ− 2A)λν

1 +Aλ2 − 3Bλ3
. (6.4)

We will now proceed to prove that λ is divisible by p2n and ν is divisible by p3n,
by which we mean that the numerator of these rational numbers are divisible
by the corresponding power of p. It will then follow that the numerator of the
right hand side of equation (6.4) is divisible by p5n The denominator is not
divisible by p since it is congruent to 1 modulo p4n.
As P and Q are in En, we know that pn divides tP and tQ. Also s = e3/b

shows that p3n divides sP and sQ. From equation (6.3), we see that we have a
good chance that p2n divides λ. However it could be that tP − tQ is divisible
by a higher power than pn in case they happen to be congruent modulo pn+1.
We’d better find another formula for λ.
The idea is to take the difference between the equation (6.2) at the point P

and Q.

0 = (t3P − t3Q) +A(s2
P tP − s2

QtQ)−B(s3
P − s3

Q) + (sP − sQ).

This can be rearranged to

0 = (t2P + tP tQ + t2Q)(tP − tQ)+

+A
(
s2
Q(tP − tQ) + tP (sP + sQ)(sP − sQ)

)
−B(s2

P + sP sQ + s2
Q)(sP − sQ) + (sP − sQ)
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and then separating tP − tQ and sP − sQ one obtains

(t2P + tP tQ + t2Q +AsQ)(tP − tQ) =(
−AtP (sP + sQ) +B(s2

P + sP sQ + s2
Q) + 1

)
(sP − sQ)

which finally gets us to

λ =
sP − sQ
tP − tQ

=
t2P + tP tQ + t2Q +AsQ

1 +B(s2
P + sP sQ + s2

Q)−AtP (sP + sQ)
. (6.5)

In this form it is now clear that p2n divides λ as the denominator on the right
hand side is congruent to 1 modulo p and the numerator is divisible by p2n.
Finally ν = sP − λtP is now divisible by p3n as so is sP and λ · tP .
This deals with the case when P 6= Q. We should now redo everything for

the tangent at P in case P = Q. However, it turns out that we are allowed to
set tP = tQ and sP = sQ in the right hand side of equation (6.5) and we get
the correct slope of the tangent, namely

λ =
3t2P +As2

P

1 + 2AtP sP − 3Bs2
P

and now the argument is the same as before.

Corollary 6.4. For any n > 1, the set En is a subgroup of E(Q). The map
t : En → Z/p5nZ sending P to tP + p5nZ is a group homomorphism.

Proof. It is clear that O ∈ En and that En is closed under taking inverses as
t−P = −tP . Let P and Q belong to En. Using the notation from the previous
proof sP+Q = −sR = −λ tP+Q−ν. Now p3n divides ν and λ tP+Q ≡ λ(tP +tQ)
(mod p5n). If P + Q = (ae : b : e3) then sP+Q = e3/b. This shows that pn

divides e and therefore P +Q ∈ En.
Now that En is a group to show that t is a group homomorphism it is enough

to show that t(−P ) = −t(P ) and t(P ) + t(Q) + t(R) = 0. This is now clear
from the previous lemma.

Proposition 6.5. The only torsion point in the subgroup E1 is O. In particu-
lar, for any prime of good reduction, the map E(Q)tors → Ẽ(Fp) is an injective
group homomorphism.
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Proof. Let O 6= P be a torsion point and suppose to the contrary that P ∈ E1.
Say pn is the highest power of p dividing the numerator of tP . There is an
m > 1 such that mP = O.
By the above lemma 0 = tmP ≡ m · tP (mod p5n). By our choice of n, this

means that p4n divides m. Let m′ = m/p and set Q = m′ P . The point Q is
now a point of order p. Let pl be the highest power of p dividing the numerator
of tQ. Then 0 = tpQ ≡ p tQ (mod p5l). However by our choice of l the highest
power dividing p ·tQ is pl+1, which is the contradiction we were looking for.

Example. The fact that the reduction map is injective on torsion points can
often be used effectively to determine them. As a first example take the curve
E : y2 = x3 + 2x + 5. The discriminant ∆ = −11312 is not divisible by 3 so
the reduction at 3 is good. Checking all x in F3, we find that for this curve
Ẽ(F3) = {O} is the trivial group. By the above proposition E(Q)tors is also
trivial. �

Example. As a second example, we look at the curve E : y2 = x3 + 4x + 2.
The discriminant ∆ = −5824 is not divisible by 3. We find all points modulo
3:

Ẽ(F3) =
{
O, (1 : 1 : 1), (1 : 2 : 1), (2 : 0 : 1)

}
.

This time we can only conclude that E(Q)tors has either 1, 2 or 4 elements.
Since ∆ is not divisible by 5 we can also look at the reduction modulo 5.

Ẽ(F5) =
{
O, (3 : 1 : 1), (3 : 4 : 1)

}
.

This implies that the number of torsion point in E(Q) must also be a divisor
of 3. Hence E(Q)tors is trivial again.
Instead of looking at the reduction modulo 5, we could also argue as follows.

If there were non-trivial torsion points, then there would be an point of order
2. But a point P of order 2 has yP = 0 and so x3

P + 4xP + 2 = 0. But the only
real solution of that is about −0.47347; and that is not an integer. Therefore
there is no point of order 2 and hence no non-trivial torsion point in E(Q). �

Corollary 6.6. Any non-zero torsion point in E(Q) is an integral point.

We add a remark that the above idea of proof even works for the general
Weierstrass equation (5.7) if the coefficient a1 is zero. Otherwise there can be
denominators. For instance the curve E : y2 +x y = x3−x2 + 4x− 3 has only
two rational points: O and the point (3

4 : −3
8 : 1) of order 2.
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6.3 The theorem of Lutz and Nagell

The following is a theorem first found independently by Élisabeth Lutz and
Trygve Nagell in the 1930ies.

Theorem 6.7. Let E be an elliptic curve defined over Q by a Weierstrass
equation. Let O 6= P = (xP : yP : 1) be a torsion point in E(Q). Then xP and
yP are integers. Furthermore either yP = 0 or yP | D where D = −∆/16 =
4A3 + 27B2.

Proof. It was shown in Corollary 6.6 that xP and yP are integers. Suppose now
that yP 6= 0, which is equivalent to 2P 6= O. Since 2P is also a torsion point
it must also have integer coordinates. Therefore we know that λ2 = x2P −2xP
is also an integer.
We can do the Euclidean algorithm between the polynomial x3 + Ax + B

and its derivative 3x2 +A to find the equality

D = 9 (−2Ax+ 3B) (x3 +Ax+B) + (6Ax2 − 9Bx+ 4A2)(3x2 +A)

or alternatively one can just expand the right hand side to verify it. When
evaluating this at P , we find

D = 9 (−2AxP + 3B) y2
P + (6Ax2

P − 9BxP + 4A2) 2λ yP

since λ = (3x2
P + A)/(2yP ). This is an equality involving only integers and

hence yP divides D.

Figure 26: A curve with six torsion
points

Theorem 6.7 leaves only finitely many
choices for values of yP for torsion points
P .

Corollary 6.8. The torsion subgroup
E(Q)tors is a finite group.

On the other hand E(R)tors is either
isomorphic to Q/Z or to Z/2Z × Q/Z. Via
the map θ 7→ exp(2πiθ) the group Q/Z
can be identified with an infinite sub-
group of the unit circle in C. For k = C
we have always E(C)tors = Q/Z×Q/Z and
that is the biggest a torsion subgroup
on an elliptic curve can ever be. If you
know what p-adic numbers Qp are then you might detect that the above the-
orem is actually proving even that E(Qp)tors is finite.
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Example. As a further example, we take the curve E : y2 = x3 + 1. We have
D = 27 and so the only possibilities for the y-coordinate of a torsion point are
{0,±1,±3,±9,±27}. We compute the corresponding values of x3

P = y2
P − 1.

They are x3
P ∈ {−1, 0, 8, 80, 728}. But only −1, 0 and 8 are cubes. For each

of these points we can check if the point is indeed a torsion point. These gives
us the complete list of torsion points

E(Q)tors =
{
O, (−1, 0), (0, 1), (0,−1), (2, 3), (2,−3)

}
.

As there is only one abelian group of order 6 this is isomorphic to Z/6Z. The
point P = (2 : 3 : 1) is a generator as one can see quickly from drawing a few
lines on the curve as in Figure 26. �

6.4 Mazur’s theorem

We saw that it is easy to determine when an elliptic curve E defined over Q
has a point of order 2. In principle it is easy to check this for any given order d.
There is a polynomial ψd of degree (d2−1)/2 whose roots correspond to the x-
coordinates of all points of odd order d. These are called division polynomials.
For instance for d = 3 and d = 5, they are

ψ3 = 3x4 + 6Ax2 + 12B x−A3;

ψ5 = 5x12 + 62Ax10 + 380B x9 − 105A2 x8 + 240AB x7+

+ (−300A3 − 240B2)x6 − 696A2B x5 + (−125A4 − 1920AB2)x4+

+ (−80A3B − 1600B3)x3 + (−50A5 − 240A2B2)x2+

+ (−100A4B − 640AB3)x+A6 − 32A3B2 − 256B4.

Luckily for k = Q one never needs very large d. In fact there are no points
of order d in E(Q) when d > 12. This statement is actually really difficult
to prove. The conjecturally complete list of possible groups that can occur as
E(Q)tors was found by Levi in 1908 and rediscovered by Ogg in the 1960ies. It
was Barry Mazur in the 1970ies that found a proof of the following theorem
using so called modular curves.

Theorem 6.9. Let E be an elliptic curve defined over Q. Then E(Q)tors will
be one of the following fifteen possible abelian groups:

Z/dZ for 1 6 d 6 10 or d = 12 or
Z/2Z × Z/2dZ for 1 6 d 6 4.
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7 Mordell’s theorem

The main aim of this section is to prove, under some restriction, that a finite
number of initial points in E(Q) are enough to construct all points in E(Q)
using chords and tangents. Using the group law, we can state differently that
we want to show that E(Q) is a finitely generated abelian group. Note that it
is crucial that we work over Q here; the group E(R) is never finitely generated.

7.1 The weak theorem

Let E be an elliptic curve defined over Q. In this section, we will assume that
E(Q)[2] contains 4 points; or equivalently that

x3 +Ax+B = (x− e1)(x− e2)(x− e3)

for some e1, e2, e3 ∈ Q. We may assume that A and B are integers and so
ei ∈ Z, too. Saying that E is smooth amounts to assuming that e1, e2, and e3

are distinct.
We will now consider an important map. The target of this map is the

quotient Q×/� of Q× by its subgroup of squares � =
{
s2
∣∣ s ∈ Q×

}
. In an

exercise we show that we can represent each element uniquely as u · � where
u is a is a square-free integer u.
We define the maps κ1, κ2, κ3 as follows:

κi : E(Q)→ Q×/� (7.1)
P = (x, y) 7→ (x− ei) ·� if x 6= ei and P 6= O (7.2)

The two additional values are defined by

κi(O) = 1 and κi
(
(ei, 0)

)
= (ei − ej)(ei − ek) ·� (7.3)

where {i, j, k} = {1, 2, 3}. Putting the three maps together, we have a big map

κ : E(Q)→ Q×/� × Q×/� × Q×/� (7.4)
P 7→

(
κ1(P ), κ2(P ), κ3(P )

)
. (7.5)

It is called the Kummer map.

Example. Let E be the elliptic curve y2 = x3−43x+42 = (x−1)(x−6)(x+7).
The discriminant is ∆ = 16 · ((1− 6)(1− (−7))(6− (−7))2 = 16 · 52 · 82 · 132 =
210 · 52 · 132. There are the three two torsion points T1 = (1, 0), T2 = (6, 0)
and T3 = (−7, 0). With some luck we also spot P = (−3, 12), Q = (11, 30)
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and R = (19,−78) as some further points in E(Q). We compute the Kummer
map κ evaluated at these points.
For instance

κ(P ) =
(
(−3− 1) ·�, (−3− 6) ·�, (−3 + 7) ·�

)
=
(
−4 ·�,−9 ·�, 4 ·�

)
=
(
−1,−1, 1

)
.

We represented the images as u ·� with u square-free and we omitted ·�; we
will do likewise in the table below.

point T1 = (1, 0) T2 = (6, 0) T3 = (−7, 0)
κ (−10,−5, 2) (5, 65, 13) (−2,−13, 26)

point P = (−3, 12) Q = (11, 30) R = (19,−78)
κ (−1,−1, 1) (10, 5, 2) (2, 13, 26)

Here is an example with non-integral coordinates:

κ(−11
9 ,−

260
27 ) = (−11

9 − 1,−11
9 − 6,−11

9 + 7) = (−20
9 ,−

65
9 ,

52
9 ) = (−5,−65, 13).

It should already look suspicious that the same numbers kept appearing every-
where. �

Proposition 7.1. The map κi is a group homomorphism for all i = 1, 2, 3.

Example. Back to the elliptic curve in the previous example. For instance
Q = T1 + P and indeed κ(T1)κ(P ) = (−10,−5, 2)(−1,−1, 1) = (10, 5, 2) =
κ(Q). �

Proof. In an exercise we showed that x−1 = x in the group Q×/�. Since the
definition of κi only involves x, one has κi(−P ) = κi(P ) = κi(P )−1. We are
left to show that κi(P )κi(Q)κi(R) = � = 1 if P and Q and R lie on one line.
First, if one of the three, say P , is equal to O, then Q = −R. In this case

κi(P )κi(Q)κi(R) = 1 · κi(Q)κi(Q)−1 = 1.
Next to the case when all three are distinct from O and from (ei, 0). Let

y = λx + ν be the line through the three points. We can substitute into the
equation

(x− e1)(x− e2)(x− e3)− (λx+ ν)2 = (x− xP )(x− xQ)(x− xR) (7.6)

the value ei for x and obtain

−(λ ei + ν)2 = (ei − xP )(ei − xQ)(ei − xR) ∈ −κi(P )κi(Q)κi(R)
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which shows that the product κi(P )κi(Q)κi(R) is the identity element � in
Q×/�.
Finally, we have to treat the case when one point, say P , is equal to (e1, 0),

but none of the others is O. The cases (e2, 0) and (e3, 0) are very similar to
this. In this case the line is of the form y = λ(x− e1). Now we take the above
equation (7.6), but we divide it by x− e1:

(x− e2)(x− e3)− λ2 (x− e1) = (x− xQ)(x− xR).

Setting x = e1 yields κ1(P ) = κ1(Q)κ1(R).
This proves in all cases that κi is a group homomorphism.

Proposition 7.2. The kernel of κ is 2E(Q) =
{

2P
∣∣ P ∈ E(Q)

}
.

Example. Let us illustrate this again in the example. For instance Q′ =(
58
9 ,

154
27

)
is a point on E. Now κ evaluates to

(
49
9 ,

4
9 ,

121
9

)
= (1, 1, 1). By this

proposition it must be a multiple of another point by 2. Indeed it is 2 (−P ). �

Proof. The first part is to show that 2E(Q) ⊂ ker(κ). If Q ∈ E(Q), then
by the previous proposition κ(2Q) = κ(Q)2 = 1. That was the easy part,
the other inclusion follows from the following lemma: The assumption in that
lemma is equivalent to P ∈ ker(κ) and the conclusion is an explicit point P
such that ±P = 2Q. This implies P = 2Q or P = 2 (−Q) but in any case
P ∈ 2E(Q).

Lemma 7.3. Let O 6= P = (xP , yP ). Assume that for each i ∈ {1, 2, 3} there
is some ai ∈ Q× with xP − ei = a2

i . Let f = u0 + u1 x + u2 x
2 ∈ Q[x] be the

polynomial such that f(ei) = ai. Then Q = (u1 : 1 : u2) is a point on E(Q)
such that 2Q = P or 2Q = −P .

Example. Again we illustrate with a concrete example from before. We saw
that Q′ =

(
58
9 ,

154
27

)
is in the kernel of κ. This lemma should give us a way to

find Q′′ such that 2Q′′ = ±Q′. By the interpolation formula f = 1
78 (202 −

19x − x2) is such that f(1) = 7
3 , f(6) = 2

3 and f(−7) = 11
3 . Therefore

Q′′ =
(
−19

78 : 1 : − 1
78

)
= (19 : −78 : 1) is such that 2Q′′ = −Q′. Maybe we

should be surprised that we did not find P when we know that 2P = −Q′.
Well in fact Q′′ = P + T3. Therefore 2Q′′ = 2P + 2T3 = 2P . Clearly the
lemma just gives one of eight possible points. �
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Proof. Notice that such a polynomial exists and is unique by the usual in-
terpolation as long as the values of e1, e2 and e3 are distinct. Consider the
quartic polynomial g(x) = xP − x − f(x)2. By construction g(ei) = 0, which
implies that x3 + Ax + B divides g. This means that the remainder when
dividing f(x)2 by x3 +Ax+B is equal to xP − x. Since x3 ≡ −Ax−B and
x4 ≡ −Ax2 −B x modulo x3 +Ax+B one finds

xP − x ≡ +u2
0 + 2u0u1 x+ (u2

1 + 2u0u2)x2+

+ 2u1u2(−Ax−B) + u2
2 (−Ax2 −B x) (mod x3 +Ax+B).

Since the remainder when dividing is a unique polynomial of degree at most 2,
the above is actually an equality, not just a congruence. This results in three
equations for the coefficients in k[x]:

xP = u2
0 − 2B u1u2; (7.7)

−1 = 2u0u1 − 2Au1u2 −B u2
2;

0 = u2
1 + 2u0u2 −Au2

2. (7.8)

Multiply the middle equation with −u2 and the last by u1 and add them:

u2 = 2Au1u
2
2 +Bu3

2 + u3
1 −Au1u

2
2

or u2 = u3
1+Au1u

2
2+Bu3

2 which is precisely the statement thatQ = (u1 : 1 : u2)
lies in E(Q). Write xQ = u1/u2 and yQ = 1/u2 To complete the proof we
use (7.8) to write u0 also in terms of Q:

u0 =
Au2

2 − u2
1

2u2
=
A− x2

Q

2 yQ
;

and then we substitute the ui in (7.7) to discover

xP =
(A− x2

Q

2 yQ

)2
− 2B

xQ
y2
Q

=
x4
Q − 2Ax2

Q − 8B xQ +A2

4 y2
Q

and this is precisely the duplication formula (5.5). This shows that 2Q =
±P .

Example. Here a further example E : y2 = x3 − 351x+ 1890 = (x+ 21)(x−
6)(x− 15). The image of the torsion point T = (15, 0) is

κ(T ) =
(
15 + 21, 15− 6, (15 + 21)(15− 6)

)
=
(
36, 9, 36 · 9

)
= (1, 1, 1).
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By the above proposition there exists a point Q such that 2Q = T . Since
2T = O then 4Q = O.
The previous lemma can be used to find this point of order 4. The polynomial

f(x) = −40
9 −

11
54 x −

1
162 x

2 satisfies f(−21) = 6, f(6) = 3 and f(15) = 0.
Therefore Q = (−11

54 : 1 : − 1
162) = (33 : −162 : 1) is a candidate and indeed

2Q = T . �

Proposition 7.4. Let S be the set containing −1 and all odd primes p such
that p | ∆. Let H be the finite subgroup of Q×/� generated by S. The image of
κi is contained in H.

Example. In the example we followed so far, we have ∆ = 210 ·52 ·132. Hence
S = {−1, 2, 5, 13}. Indeed all the images in of κi that we have computed so
far were products of these four integers. �

Proof. To simplify the notation we assume i = 1. Let P ∈ E(Q) and consider
κ1(P ) = c · � with a square-free integer c. Let p be a prime that does not
divide ∆. In particular, the reduction of E modulo p is an elliptic curve and
therefore the three elements ẽ1, ẽ2, ẽ3 in Fp are distinct.
We treat first the case that P 6= O and P 6= (e1, 0). Assume p divides the

numerator or the denominator of xP − e1. Write xP = a/e2 with coprime
integers a and e. Since xP − e1 = (a − e1 e

2)/e2, either p | a − e1 e
2 or p | e.

However if p | e then p - c as an even power of p will divide the denominator
of xP − e1 Therefore p divides a− e1 e

2.
As e2 6≡ e1 (mod p) the expression a− e2 e

2 is not divisible by p. Similar for
a− e3 e

2. The Weierstrass equation with yP = b/e3 gives

b2 = (a− e1 e
2)(a− e2 e

2)(a− e3 e
2).

Hence p divides b. We see that the left hand side is divisible by an even power
of p, therefore the right hand side, too. We conclude that xP − e1 is divisible
by an even power of p. Therefore c is not divisible by p.
Finally if P = O then c = 1. If P = (e1, 0) then κ1(P ) = (e1−e2)(e1−e3)·�.

Since the ei are distinct modulo p also this value of κ will not contain p to an
odd power.
In all cases, c is a product of some primes p in S and maybe −1. Therefore

κ1(P ) ∈ H.

Theorem 7.5. If E(Q)[2] ∼= Z/2Z × Z/2Z, then the group E(Q)/2E(Q) is a
finite group.
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Proof. The map κ : E(Q)→ Q×/�×Q×/�×Q×/� is a group homomorphism by
Proposition 7.1. This map has kernel 2E(Q) by Proposition 7.2. The image
is in the finite group H ×H ×H by Proposition 7.4. By the first isomorphism
theorem, we get an isomorphism E(Q)/2E(Q)→ im(κ) of finite groups.

This theorem is called the weak Mordell-Weil theorem. Unfortunately it is
not enough for proving thatE(Q) is finitely generated. For instanceA = 〈Q,+〉
is an abelian group such that A/2A is finite, even trivial. We need to show
that no element P of E(Q) can be “divided by” 2n for all n > 1, meaning that
for all n > 1 there is a point Qn ∈ E(Q) such that 2nQn = P .
Theorem 7.5 also holds without the assumption that there are 3 rational

points of order 2. One way to extend the above proof is presented in [4] where
the ring Q[x]/(x3 + Ax + B) is used. Extending to the case when there is
one rational point of order 2 is presented in [6]. The most general proof uses
algebraic number fields given in [1] for instance.

7.2 Heights

Definition. We define the height of a rational number r = a
b to be the

logarithm of the maximum of |a| and |b| when a
b is the reduced fraction of r:

h
(a
b

)
= log max

{
|a|, |b|

}
.

One could say that this is a measure of how much ink one needs to write down
the reduced fraction of r. Rational numbers with large height are arithmetically
more complicated than those with small height.

Lemma 7.6. Given a bound B > 0. There are only finitely many rational
numbers r with h(r) < B.

Proof. It says that |a| < eB and |b| < eB. That leaves only finitely many
options for r = a/b.

Example. The list
{
−2,−1,−1

2 , 0,
1
2 , 1, 2} contains all rational numbers with

height less than 1. If h(r) < 3 then |a| and |b| must be less than e3 ≈ 20.09;
this leaves 511 possible r. �
For a non-zero point P ∈ E(Q) on an elliptic curve in Weierstrass form, we

define h(P ) = h(x). It makes sense to set h(O) = 0. Since for each x there
are at most two points P , there is a finite number of points in P with a height
lower than a given bound.
There are two technical lemmas about how the height changes under addition

and duplication.
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Lemma 7.7. For a fixed elliptic curve E in Weierstrass form, there is a con-
stant C such that h(2P ) > 4h(P )− C for all P ∈ E(Q).

Note C will depend on A and B, but not on P . In fact, the multiplication
by 2 roughly multiplies the number of digits of x by 4. In Figure 27 there is
an illustration. The parabola appearing above the numbers there suggest that
h(nP ) is roughly n2 times a constant.

0
1
4

72

− 287
1296
43992
82369
26862913
1493284

−3596697936
8760772801
7549090222465
8662944250944
51865013741670864
6504992707996225

−173161424238594532415
310515636774481238884
6005923027069067356081464
4609517672092049172106561
516800901506579137034097949153
116165201153061098261023776144

−37736542366253475570818485617967128
57941674335049479987688768274352769
23419679382776533016338728874246651427713
12258805697617629893689847027495187248836
26449452347718826171173662182327682047670541792
9466094804586385762312509661837302961354550401

−38936704813849549996845541108410674936880408883714559
57067021596582095418792572856507183982778272745812224
459164594120565175874339937667854764043911036647258297689120
160157595403155079810589226497356772258765026652179097182081
6895918262031138877857731197222958072676014955764715576837291968641
3694465184889387771322562406691752609229758212407789486437899148100

−192213963958496808206022650324690142827789568666593186602979081002044415320
296918098432425407525773276985596641548336044615314761541661145231217340801
45889113506746061755939334774844873737209801747894547663449687796544554933032988641
10000421195400838200377728244194903373980117609644984613889776434542245978910953104

Figure 27: The x-coordinates of nP with P = (0 : 1 : 1) on E : y2 = x3 +x+1
for 1 6 n 6 20

We are not going to include the proof of this lemma (and the next one).
The above is shown in Section III.3 in [6]. The main idea is to look at the
duplication formula (5.5) for a point P = (a/e2, b/e3), which can be written
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as a fraction of two integers:

x2P =
a4 − 2Aa2e4 − 8B ae6 +A2 e8

4(a3 +Aa e4 +B e6)e2
.

If there is not too much cancellation in this fraction then the numerator and
the denominator will be roughly the forth power of max{|a|, e2}. Taking log-
arithms, we should expect that h(2P ) is roughly 4h(P ).

Lemma 7.8. Given an elliptic curve E defined over Q in Weierstrass form
and given a fixed point P0 ∈ E(Q). Then there exists a constant C0 such that

h(P + P0) 6 2h(P ) + C0

for all points P ∈ E(Q).

Again, we emphasise that C0 will depend on A, B and P0, but not on P . The
proof of this lemma is Section III.2 in [6]; it is based on the explicit formula
for adding P0 to P .
These are now all ingredients for concluding the main theorem of this section.

Theorem 7.9 (Mordell’s theorem). Let E be an elliptic curve defined over Q.
The group E(Q) is a finitely generated abelian group.

Proof. By Theorem 7.5 or its generalisation if E(Q)[2] has less than 4 points,
the group E(Q)/2E(Q) is finite. For each coset modulo 2E(Q) we pick an
element. This is the list Q1, Q2, . . . , Qn. We will add a few more points to
these to get a generating set.
Use Lemma 7.8 with the point P0 = −Qi. There is a constant Ci depending

on i such that h(R −Qi) 6 2h(R) + Ci for all R ∈ E(Q). Take C ′ to be the
largest of the Ci for 1 6 i 6 n so that h(R−Qi) 6 2h(R) +C ′ for all i and R.
Let C be the constant given in Lemma 7.7. Let S be the finite list containing
Q1, Q2, . . . , Qn and all points in E(Q) with height less than C + C ′.
Let P be any point in E(Q). As it belongs to some coset, there is a point

P1 and an integer 1 6 i1 6 n such that P = 2P1 + Qi1 . The point P1 also
belongs to some coset and we can do the same again. We get a chain of points
P1, P2, . . . in E(Q) and a chain of indices i1, i2, . . . in {1, 2, . . . , n} such that

P = 2P1 +Qi1

P1 = 2P2 +Qi2

P2 = 2P3 +Qi3
...

...
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Intuitively, we should believe that the points P1, P2, . . . have decreasing height;
this is what we wish to justify now. For any j > 1, we find

4h(Pj) 6 h(2Pj) + C = h(Pj−1 −Qij ) + C 6 2h(Pj−1) + C ′ + C.

As long as h(Pj−1) > C + C ′, we have

h(Pj) 6 1
2 h(Pj−1) + C+C′

4 = 3
4h(Pj−1)− 1

4

(
h(Pj−1)− C − C ′) 6 3

4h(Pj−1).

As the height decreases, there exists an m such that h(Pm) 6 C + C ′. Hence
Pm ∈ S.
We can substitute recursively, starting with P = 4P2 + 2Qi1 +Qi2 until we

get to
P = 2m Pm + 2m−1Qim−1 + · · ·+ 2Qi2 +Qi1 .

This shows that we can express any point P ∈ E(Q) as a combination of points
from our finite list S. Therefore E(Q) is finitely generated.

7.3 Determination of the rank

From Mordell’s theorem, we know that E(Q) is a finitely generated abelian
group. In G13GTH=MATH3001 you might see the proof that this implies
that there exists an integer r such that E(Q) ∼= E(Q)tors × Zr. The integer r
is called the rank of E. It is the smallest integer such that there are r rational
point P1, P2, . . . , Pr of infinite order that generate E(Q) together with the
finite set of torsion points. Since we know how to get all torsion points, we are
left to determine r and the point Pi to find information on E(Q).
Since

E(Q)/2E(Q) ∼= E(Q)tors/2E(Q)tors ×
(Z/2Z)r

it is therefore enough to look at the weak Mordell-Weil theorem 7.5 to determ-
ine r; we do only need heights if we want the points Pi.
Let us assume that E(Q)[2] contains four elements. It follows that the quo-

tient group E(Q)tors/2E(Q)tors has also four elements. Therefore E(Q)/2E(Q)
has 2r+2 elements.

Proposition 7.10. Let h be the number of prime divisors of ∆. Then r 6 2h.

Proof. The map κ has its image contained in H ×H ×H by Proposition 7.4.
However since y2 = (x − e1)(x − e2)(x − e3), the image lands even in the
subgroup of triples (a, b, c) such that abc = 1 in H. Therefore the image of κ1

and κ2 already determine the image of κ.
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Since H is generated by −1 and all the prime divisors of ∆ there are 2h+1

elements in H. Therefore

2r+2 = #E(Q)/2E(Q) 6 #H ·#H = 22h+2

which gives the above bound.

Often this bound is much too large. Here is an idea to decrease the bound in
practice. Let a, b, c be three square-free integers whose prime divisors divide
∆ and such that abc is a square. We would like to determine if there is a point
P such that κ(P ) =

(
a · �, b · �, c · �

)
. This translates into finding rational

numbers x, u, v and w with

x− e1 = a u2 ;

x− e2 = b v2 ;

x− e3 = cw2 .

Eliminating x, this reduces to the two equations

a u2 − b v2 = e2 − e1 and a u2 − cw2 = e3 − e1. (7.9)

Here the constants a, b, c, e1, e2, e3 are given and we are looking for u, v, w in
Q. If we can prove that there cannot be a rational solution to these equation,
then we can shrink the upper bound to r, otherwise if we can spot a solution
we can find x and then P .

Example. Let us consider our example y2 = (x − 1)(x − 6)(x + 7). We try
to determine the image of κ1 × κ2 in H ×H where H is generated by −1, 2,
5 and 13. We already know that the image contains the subgroup generated
by (−1,−1), (−10, 10) and (−2, 13) which is a subspace of dimension 3 over
F2 in a vector space H ×H of dimension 8. Now we are using equation (7.9),
which in our case is

a u2 − b v2 = 5 and a u2 − abw2 = −8

where (a, b) runs through H× H. Write the rational numbers with a common
denominator u = U/T , v = V/T and w = W/T . This turns it into equations
to solve in integers U , V , W , T with no common divisor to all four integers:

aU2 − b V 2 = 5T 2 and aU2 − abW 2 = −8T 2. (7.10)

Consider the following grid representing the elements (a, b) in H ×H:

72



Elliptic curves G13ELL=MATH3031 cw ’18

Here are a few facts which are not too hard to prove: There are no solutions
to (7.10) if

• a < 0 < b or b < 0 < a;

• 13 divides a;

• 5 | a but 5 - b;

• 5 | b but 5 - a;

• b is even.

As example let us prove the middle statement: If 5 | a then 5 | aU2 − 5T 2 =
bV 2. As 5 - b, we have 5 | V . Also 5 divides a(U2 − bW 2) = 8T 2 so 5 | T .
Hence 52 divides 5T 2 + bV 2 = aU2. As a is square-free it is not divisible by 25
which means that 5 | U . Similarly 25 | abW 2 implies that 5 | W . We reached
a contradiction as 5 divides all four variables.
Using the five conditions above, one can exclude many possibilities in the big

grid. We are left with 16 elements in H ×H that could belong to the image of
κ. For 8 of them we know a point. But, for instance (2, 1) is not yet excluded.
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Let us prove that (2, 1) is not in the image of κ: The first equation 2U2−V 2 =
5T 2 modulo 5 gives 2U2 ≡ V 2 (mod 5). As 2 is not a square modulo 5 this
implies that 5 | U and 5 | V . Now 52 divides 5T 2 which shows that also T is
divisible by 5. From the second equation we deduce the contradiction that 5
also divides W .
Therefore, we are left with 15 elements; however the number of elements in

the image of κ is a power of 2. So it must be 8. We conclude that E(Q)/2E(Q)
is generated by T1, T2 and P and has 8 elements. This shows that r = 1. One
could now use heights and prove that E(Q) itself is generated by these three
points. �

In the example above, we were successful in finding the rank of E(Q). In most
examples with reasonably small coefficients this is the case. However there are
situation when it is really difficult. One reason could be that the equation (7.9)
are soluble, but all solutions have very large height. Another reason could be
that the equations are a counter-example to the Hasse principle (as discussed in
G12ALN=MATH2015); namely there are real solutions and there are solutions
modulo m for all integers m, yet there are no integer solutions. In these cases
it is very difficult to come up with a proof of the insolubility. The so-called
Tate-Shafarevich group X(E/Q) measures this.
Also, it turns out that it is more efficient to search for solutions for the

equations (7.9) than for the original Weierstrass equation.
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8 Additional topics

8.1 History

Disclaimer: I am not a historian, so this may not be as accurate as I wish.
Mostly I learned about the history of elliptic curves from reading papers by
Franz Lemmermayer, in particular from [5].
Elliptic curves occurred for the first time, if only implicitly, in the work of Di-

ophantus of Alexandria, and the topic has remained close to the mathematical
branch of diophantine geometry throughout the centuries. A typical example
from Diophantus is the following: given a number, say 7, that can be written
as a difference of two cubes (7 = 8 − 1), find two positive rational numbers a
and b such that 7 = a3 + b3. Diophantus succeeded with clever substitutions,
and it was discovered much later by Isaac Newton (1643–1727), Édouard Lucas
(1842–1891) and James Joseph Sylvester (1814–1897) that there is a geometric
interpretation for these manipulations. In the example above, consider the
curve E : x3 − y3 = 7 and the rational point P = (2, 1). Then the chord and
tangent construction will give a new rational points and some of them will have
positive coordinates.
These kind of diophantine problems were a big thing for Pierre de Fermat

(1607–1665) and Leonhard Euler (1707–1783), but then Carl Friedrich Gauss
(1777–1855) started giving number theory a new direction by proving quadratic
and biquadratic reciprocity laws. Generalising these to higher powers was a
central occupation for a lot of number theorists.
In mathematical analysis certain inverse functions to elliptic integrals where

studied by Niels Henrik Abel (1802–1829) in his proof that equations of degree
larger than 4 cannot be solved by radicals. Carl Gustav Jacob Jacobi (1804–
1851) and Karl Weierstrass (1815–1897) developed the theory of these elliptic
functions further.
During these times, elliptic curves were studied mainly by less known num-

ber theorists like Augustin-Louis Cauchy (1789–1857), Lucas, Sylvester, Henri
Poincaré (1854–1912) and Beppo Levi (1875–1961) (most of whom are known
for their contributions to other areas of mathematics) as well as by what we
would classify as complex algebraic geometers like Alfred Clebsch (1833–1872)
or Christian Juel (1855–1935). Clebsch, in the 1860s, proved that curves of
genus 0 are parametrized by rational functions, and that those of genus 1 are
parametrized by elliptic functions. Juel was the first to point out the geometric
interpretation of the group law in the 1890s.
Louis J. Mordell (1888–1972) proved a tacit assumption in one of Poincaré’s

articles, namely that the group of rational points on elliptic curves is generated
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by finitely many points. André Weil (1906–1998), one of the greatest mathem-
aticians of the 20th century, gave a new and clearer proof of Mordell’s theorem
and generalised it to abelian varieties over number fields. He was also a pi-
oneer in applying geometric methods to the study of algebraic equations over
finite fields. He extended the work of Helmut Hasse (1898–1979) on the num-
ber of solutions of elliptic curves over finite fields and launched a far-reaching
programme which was eventually completed by Pierre Deligne (1944–) in the
1970s.
It was, by the way, Weil’s student Élisabeth Lutz (1914–2008) and, inde-

pendently, Trygve Nagell (1895–1988) who first proved Theorem 6.7 on the
torsion points. Another important result on the structure of torsion groups
was obtained by Jean-Pierre Serre (1926–) in the early 1970s. This lead Barry
Mazur (1937–) to prove Theorem 6.9 described earlier. There are still some
open problems relating to torsion points on elliptic curves, like Serre’s uniform
boundedness conjecture.
The method of the proof of the Mordell-Weil Theorem 7.9 was refined by

Ernst Sejersted Selmer (1920–2006) and Ian Cassels (1922–2015). John Tate
(1925–) and Igor Shafarevich (1923–2017) used co-called Galois cohomology to
describe the groups found by Selmer. In their honour, the group X(E/Q) is
called the Tate-Shafarevich group. It is a conjecture that this group is finite.
In the 1960s using one of the first computers in the world, Peter Swinnerton-

Dyer (1927–) and Bryan Birch (1931–) discovered a conjecture which is still
open. It was chosen among the seven millennium problems by the Clay Math-
ematics Institute. We will describe it in some details later.
There is a strong connection between elliptic curves over Q and modular

forms. The work of Goro Shimura (1930–) allowed to obtain elliptic curves from
certain modular forms. In the 1990s, it was the ground-breaking achievements
of Andrew Wiles (1953–) and Richard Taylor (1962–) that showed that every
elliptic curve can be obtained in this way. This was sufficient to conclude
Fermat’s Last Theorem.
Beyond the abstract interest in elliptic curve, there are now also important

applications. Neil Koblitz (1948–) and Victor S. Miller (1947–) discovered in
the 1980s that elliptic curves can be used in cryptography. In computational
number theory, it was Hendrik Lenstra (1949–) who found a way to use elliptic
curves for factorisation of large integers.
Research in elliptic curves is still a very active area. Major important results

were recently found by Kazuya Kato, Richard Taylor, Christopher Skinner,
Éric Urban, Manjul Bhargava, Wei Zhang, . . .
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8.2 Cryptography

The basic idea behind modern asymmetric cryptosystems is the use of a trap-
door function: something that can be done easily but is very hard to undo.
The examples discussed in G13CCR=MATH3011 are either built on the prob-
lem of factoring large integer or on the discrete logarithm problem. Elliptic
curves over finite fields have their own discrete logarithm problem.
Let k be a finite field with a huge number of elements. You may think of

k = Fp with p a prime number having hundreds or thousands of decimal digits.
In practice one often uses certain fields F2k of characteristic 2 because they are
more efficient to implement in a computer.
Let E be a fixed elliptic curve with coefficients in k and let P ∈ E(k). We

suppose that P has large order in E(k). The data p, E, P can be made public
and in fact they are often part of the standards implemented in a cryptographic
library or a browser.
Note first that the multiplication of P by any large integer n can be done

relatively fast using the following method. It is the elliptic curve analogue of
fast modular exponentiation.

• Set Q = O ∈ E(k) and R = P and k = n.

• While k > 0 do the following:

◦ If k is odd replace Q by Q+R.

◦ Replace R by 2R.

◦ Divide k without remainder by 2.

• Return Q

It takes at worst log2(n) additions on the curve E and the same number of
multiplications by 2. So even if n has hundreds of digits this can be done very
quickly.
One central theorem on elliptic curves over finite fields was found by Hasse.

Theorem 8.1. Let E/k be an elliptic curve over a finite field k. Then |E(k)|
is between #k − 2

√
#k + 1 and #k + 2

√
#k + 1.

In average the number of elements in the group E(k) is about #k = p. For
cryptography it is best to take |E(k)| to be a prime number N 6= p and P to
be a generator of this cyclic group E(k). We will from now on suppose that
we are in this case, i.e., E(k) ∼= Z/NZ P .
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Discrete Logarithm Problem. Given a point Q ∈ E(k), find n ∈ Z/NZ such
that Q = nP .

This is considered a computationally very hard problem. There are very few
ideas how to compute the discrete logarithm problem. Baby-step-giant-step
method for instance still require about

√
N steps which is too much to do for

a computer if N is large.
Now one can adapt the encryption, decryption, key exchange and signature

methods to elliptic curves and get secure methods as long as nobody is able to
break the discrete logarithm problem on that particular curve. As an example
we will illustrate the Diffie-Hellman key exchange.
Suppose two people, usually called Alice and Bob, want to agree on a com-

mon secret key without wanting to meet physically. For instance such a key
could then be used for a not so expensive symmetric encryption method like
AES.

• They first agree on p, E and P .

• Alice chooses a random n and multiplies Q = nP on the curve. Alice
keeps n secret.

• Bob also choose a randomm and multiplies R = mP and keepsm secret.

• Now Alice send Q over to Bob and Bob send R over to Alice.

• Alice now multiplies R by n to get nR = nmP . Similar Bob computes
mQ = mnP = nmP .

They both have the point nmP whose x-coordinate they can use as a key for
instance. An attacker listening to the conversation will know p, E, P , Q, R,
but does not know n, m, or nmP . If they know how to break the discrete
logarithm problem they can get the key.
Elliptic curve cryptography is now widely used. On the one hand the op-

erations on the curve are more costly than the operations in (Z/pZ)× used in
classical cryptosystems. On the other hand the system are believed to be se-
curer as the known methods for breaking the elliptic curve discrete logarithm
are less efficient than the ones for the usual discrete logarithm. Therefore one
can work with smaller p. It turns out in the end that elliptic curve cryptography
is faster than the classical one. You probably use elliptic curve cryptography
daily on your mobile phone or online on your computer.
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8.3 Primality testing

Let n be a large integer. We already discussed in G12ALN=MATH2015 meth-
ods to check if n is composite without having to find factors. The idea is to
use Fermat’s Little Theorem. If an−1 6≡ 1 (mod n) then n is composite. We
used fast modular exponentiation to evaluate an−1 in about log2(n) steps.
Suppose now n is a number that has passed a few of these tests and also we

used trial division to be sure that no small prime divides it. The number n is
either prime or one of the few numbers that are pseudo-prime to many bases.
How could we now prove that n is prime?
Henry Cabourn Pocklington (a school teacher in Leeds, 1870–1952) found

the following method.

Theorem 8.2. Suppose n − 1 = `α1
1 · `

α2
2 · · · `αs

s · r with primes `i and some
r <
√
n whose factorisation we do not know. If for each 1 6 i 6 s we find an

integer ai such that an−1
i ≡ 1 (mod n) and n is coprime to a(n−1)/`i

i − 1, then
n is a prime number.

This is very efficient in case we know how to find enough of the factorisation
of n− 1, but that may be very difficult.
Shafi Goldwasser (1959–) and Joe Kilian (1963–) proposed the following

theorem that can be used very efficiently.

Theorem 8.3. Let A and B be in Z/nZ such that E : y2 = x3 +Ax+B has
discriminant ∆ = −16(4A3 − 27B2) coprime to n. Suppose there exist prime
numbers `1, `2, . . . , `s and points P1, P2, . . . , Ps in E(Z/nZ) of the form
Pi = (xi : yi : 1) such that

• `i Pi = O and

•
∏s
i=1 `i >

(
4
√
n+ 1

)2.
then n is a prime number.

Proof. Suppose p is a prime divisor of n. Consider the reduced points P̃i on
the curve Ẽ reduced modulo p. The assumptions guarantee that P̃i has order
equal to `i in Ẽ(Fp). It follows that

∏
`i divides the order of the group Ẽ(Fp).

Therefore (
4
√
n+ 1

)2
<

s∏
i=1

`i 6
∣∣Ẽ(Fp)

∣∣.
The theorem by Hasse 8.1 implies that |Ẽ(Fp)| < (

√
p+ 1)2. Therefore 4

√
n <√

p. But
√
n < p is impossible unless n = p. Hence n is prime.
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Example. Suppose we want to test that n = 907 is prime. Pick E : y2 =
x3 + 10x − 2 and P = (819, 784). Then 71P = O. Since 71 is prime and
71 > (1 + 4

√
907)2 ≈ 42.1, we conclude that n is prime. �

If we did not know in the above that 71 is a prime, we could use the method
again with n = 71 and some other elliptic curve. In general, we may find a
point Pi is of some order, which we suspect to be a prime `i. So we first have
to use the algorithm to check that the much smaller prime `i is indeed a prime.

Example. Say we wish to certify that n = 12345678901234567891 is a prime
number. We pick the curve E : y2 = x3 − 1 over Z/nZ and find on it a
point P = (12080163983756654009, 5815984457902168698) whose order is ` =
253595994697. This satisfies the theorem except that we are not certain that
` is prime.
Now we take the curve E2 : y2 = x2 + 2x+ 1 defined over Z/̀ Z. On it there

is a point (221240833535, 87782106347) having order `2 = 545387. This again
satisfies the conditions except that we have to certify that `2 is prime. At this
stage this can be done quickly with trial division. This now shows that n is a
prime number. �

Of course, the efficiency of this method needs that one can multiply points
on an elliptic curve even by huge integers in reasonable time and that we can
find the order of a point quickly. The first is done with fast multiplication
explained in the previous section. The latter can be computed fairly quickly
with a method like baby-step-giant-step.

8.4 Factorisation

Given a large integer n of which we know that it is not a prime number, say
because it did not pass a Fermat primality test. Our aim is to find a non-trivial
divisor 1 < d < n of n.
The basic idea is the following. Just pretend that n is a prime. Pick an

elliptic curve E : y2 = x3 + Ax+ B with coefficients A and B in Z/nZ. Pick
a point P with coordinates there. Now start multiplying the point and adding
it to others. In doing so we have to compute expressions like

yP − yQ
xP − xQ

or
3x2

P +A

2yP
.

It can happen that a denominator D above is not invertible modulo n. Either
it is a multiple of n, in which case it is of no use, or the greatest common
divisor of n and D is a non-trivial divisor d.
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The obvious first objection should be that it seems rather random and we
might as well just pick random numbers and compute their greatest common
divisor with n. That, however, would be very inefficient for large n. Instead
the elliptic curve method is much more likely to find a divisor.
A prime number p is C-smooth if all prime factors ` of p − 1 are smaller

than C. Recall the classical Pollard’s p− 1 method for factorisation. Given a
bound C set K = C!. Pick a random a and use fast modular exponentiation to
evaluate aK modulo n. If aK 6≡ 1 (mod n) then it is likely that gcd(n, aK − 1)
is a non-trivial divisor of n.
The following is Lenstra’s version using elliptic curves:

• Pick random A, x0 and y0 in Z/nZ.

• Set B = y2
0−x3

0−Ax0 and check that ∆ = −16 (4A3 +27B2) is coprime
to n.

• Let E be the elliptic curve y2 = x3+Ax+B and P = (x0, y0) ∈ E(Z/nZ).

• Choose a bound C, maybe a million or so.

• Compute (C!) ·P by computing successively P , 2P , 3 ·2P , 4 ·3 ·2P , . . .

• If at some stage this computation fails, it could be because a denominator
has a non-trivial factor with n and we are done. Otherwise start again
with a different choice of E and P .

Of course, we can do this in parallel on thousands of computers to increase
our chances to find a divisor. In practise, this method is efficient for finding
factors that have up to 30 decimal digits. For integers n with more than 60
digits other factorisation methods, like sieve methods, are more efficient.
We have yet to explain why the method works. Suppose p is a prime number

dividing n. Let Ẽ/Fp be the equation y2 = x3 + Ax+ B with the coefficients
reduced modulo p. Let P̃ be the reduced point in Ẽ(Fp). The order of the group
Ẽ(Fp) is approximatively p by the theorem of Hasse 8.1. Most integers with
30 digits will be C-smooth numbers which implies that (C!) · P̃ = O. Hence
at some stage (m!) · P̃ = O. This will mean that p will divide a denominator
in the computation. It is unlikely that the (m!) ·P reduced modulo a different
prime factor q of n to O and so the appearing non-invertible denominator will
not be divisible by q. So we are likely to find a non-trivial divisor of n.
A very much optimised implementation can be found at http://ecm.gforge.

inria.fr/. Using this, my office computer can factor

602400691612422154516282778947806249229526581

in less than 0.2 seconds.
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8.5 Elliptic curves over C

We will start with something that does not seem to have to do anything with
elliptic curves at all. But be patient, we will get there!
Let ω1 and ω2 be two complex numbers with different argument. Consider

Λ =
{
aω1 + b ω2

∣∣∣ a, b ∈ Z
}

which is a subset of C called a lattice. It is naturally a subgroup of C with
addition. The parallelogram

F =
{
xω1 + y ω2

∣∣∣ 0 6 x < 1, 0 6 y < 1
}

is called a fundamental parallelogram of Λ.
A meromorphic function f : C → C ∪ {∞} is called doubly periodic with

period lattice Λ if f(z+ ω) = f(z) for all ω ∈ Λ. Meromorphic means roughly
that, for all a ∈ C, the function can be expanded as a Taylor series ar(z−a)r+
ar+1(z − a)r+1 + · · · for some r ∈ Z and ai ∈ C. Poles are the places where
r < 0. Now complex function theory as in G12COF=MATH2007 shows that if
f is doubly period but has no poles then it must be a constant function. Also
the numbers of poles and zeros (counted with multiplicity) within F are equal.
It is impossible to find such a function with a single simple pole in F ; the
easiest doubly period function will have a pole of order two, meaning r = −2.
For a lattice Λ, define

℘Λ(z) =
1

z2
+

∑
ω∈Λ\{0}

( 1

(z − ω)2
− 1

ω2

)
.

It can be shown that this sum converges absolutely for all z ∈ C. It gives a
doubly periodic function with period lattice Λ having a single pole of order
two at each point of the lattice. It is called the Weierstrass ℘-function.
Automatically, its derivative

℘′Λ(z) = −2
∑
ω∈Λ

1

(z − ω)3

is also a doubly period function, but now with a single pole of order 3 in F .

Theorem 8.4. All doubly periodic functions for Λ can be obtained as quotients
of polynomials in ℘Λ and ℘′Λ.
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Other naturally defined doubly periodic functions are Jacobi’s and Abel’s
elliptic functions. They appear when studying the generalisation of trigono-
metric functions from the circle to ellipses and when calculating arc lengths on
the ellipse. Hence the name – which elliptic curves inherited.
The expansion of ℘Λ(z) at z = 0 looks like

℘Λ(z) =
1

z2
+

1

20
g4(Λ) z2 +

1

28
g6(Λ) z4 + · · ·

where

g4(Λ) = 60
∑

ω∈Λ\{0}

1

ω4
and g6(Λ) = 140

∑
ω∈Λ\{0}

1

ω6
.

The functions ℘Λ and ℘′Λ satisfy the relation

(℘′Λ(z))2 = 4℘Λ(z)3 − g4(Λ) · ℘Λ(z)− g6(Λ).

This means that there is a map z 7→ (℘Λ(z), ℘′Λ(z)) whose image lands among
the points of the curve

EΛ : y2 = 4x3 − g4(Λ)x− g6(Λ).

This is an affine curve defined over C whose projective closure is a smooth
projective curve with a natural point (0 : 1 : 0) to make this into an elliptic
curve. As the functions ℘Λ and ℘′Λ are doubly periodic, they induce a map

ϕ : C/Λ → EΛ(C).

Note the left hand side is an abelian group obtained as a quotient of 〈C,+〉 by
its subgroup Λ.

Theorem 8.5. The map ϕ defines a group isomorphism from C/Λ to EΛ(C).

How should we picture C/Λ? Each coset of this quotient has exactly one
element in the fundamental parallelogram F . So C/Λ looks topologically as F
with the boundaries glues together in the natural way. Glueing two sides we
get a cylinder and glueing the other two afterwards result in a torus, a bagel
shaped surface.
One can show that every elliptic curve E/C is isomorphic to a EΛ for some

lattice Λ. We may change the basis elements ω1 and ω2 in Λ to ω′1 = aω1 +bω2

and ω′2 = cω1+dω2 as long as γ =
(
a b
c d

)
belongs to SL2(Z). Scaling and turning

the lattice Λ will not change the elliptic curve so one can always change the
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lattice to the form Λτ = Z + Zτ with ω1 = 1 and ω2 = τ for some τ ∈ C with
Im(τ) > 0.
Hence every elliptic curve E/C is isomorphic to Eτ = EZ+Zτ . Moreover two

such Eτ and Eτ ′ are isomorphic if and only if τ ′ = (aτ + b)/(cτ + d) for some
γ ∈ SL2(Z) as above. It is therefore interesting to study the upper half plane,
that is all τ ∈ C with Im(τ) > 0, with its group action by SL2(Z).
Functions g that associate (in an analytic way) to a lattice Λ a complex num-

ber g(Λ) such that g(λΛ) = λ−k g(Λ) for all λ ∈ C× are called modular forms
of weight k and level 1. They are often written as a function in τ satisfying
some functional equation with respect to all γ ∈ SL2(Z). The functions g4 and
g6 and ∆ = g3

4 − 27g2
6, the discriminant of Eτ , are modular forms of weight 4,

6 and 12 respectively.
It is very useful to write modular forms in terms of the new variable q =

exp(2πiτ). Then the discriminant has a very nice form

∆ = q ·
∞∏
n=1

(1− qn)24 = q − 24 q2 + 252 q3 − 1472 q4 + 4830 q5 + · · · .

Now we have a nice justification why we multiplied our formula for ∆ by −16.

8.6 Birch and Swinnerton-Dyer conjecture

How to win a million dollars with elliptic curves?
Let E be an elliptic curve defined over Q. We saw in Section 7.3 that it can

be very difficult to determine the rank of E(Q). So even to know if an elliptic
curve has infinitely many solutions or not can be very hard.
Birch and Swinnerton-Dyer experimented with specific curves on one of the

world’s first computers, the EDSAC2. They found an interesting way one
might be able to the get rank r. The reasoning is the following: If there are
plenty of points in E(Q) then there should be a lot of points in Ẽ(Fp) for all
primes p as we can reduce all of them modulo p. Let Np = |Ẽ(Fp)|. By Hasse’s
theorem 8.1 we know that Np is about p. If r > 0 then we might expect that
Np is often larger than p.
They considered the function

f(X) =
∏

primes p6X

Np

p

as X is an increasing real number. Based on numerical experiments they
conjectured the following.
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Conjecture. f(X) stays bounded if and only if there are only finitely many
solutions in Q.

Even further they conjectured that f(X) grows like log(X)r, where r is the
rank of E(Q). This is still an open problem. But it is not in this form that it
is useful as we have no means to actually determine the growth rate of f(X)
from a finite amount of data. Instead they reformulated it using the L-function
of E, which we explain now.
Set a1 = 1. If p is a prime of good reduction then set ap = p+ 1− |Ẽ(Fp)|.

By Hasse’s theorem 8.1, we have |ap| < 2
√
p. For all k > 1, defined apk =

p · apk−2 − ap · apk−1 . If p is a prime of bad reduction then set apn = ±1 or 0

depending on a fixed and easy recipe. If n has prime factorisation pk11 ·p
k2
2 · · · pkss

then we define an = a
p
k1
1

· · · a
pkss

so that n 7→ an is a multiplicative arithmetic
function. Define the L-series attached to the elliptic curve E by

L(E, s) =
∞∑
n=1

an
ns
.

It can also be written as an infinite product

L(E, s) =
∏
p

1

1− ap p−s + ε(p) p1−2s

where ε(p) is zero if the reduction is bad and +1 if the reduction is good. The
two formulae should remind us of the Euler product formula for the Riemann
zeta function. Hasse’s theorem can be used to prove that L(E, s) converges
absolutely for s > 3/2.
If we plug s = 1 into the product (though we do not know that the result

is meaningful as we have no way of showing that the product or the sum are
convergent) we get

L(E, 1) “ = ”
∏
p

1

1− ap/p+ ε(p)/p
=
∏
p

p

Np

at least for good primes. This is a very informal link to the function 1/f(X)
above.
Luckily since the work of Taylor and Wiles discussed in the next section

there is a way to make sense of L(E, s) for all s ∈ R and even s ∈ C.

Conjecture. L(E, 1) = 0 if and only if E(Q) is infinite. Furthermore, the
order of vanishing of L(E, s) at s = 1 is equal to the rank r of E(Q)
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This means that the Taylor expansion of the function L(E, s) at s = 1 looks
like ar(s−1)r+ · · · . There is even a precise conjectural formula what ar should
be. It is a bit complicated to explain, but it contains as one term the size of
the mysterious group X(E/Q).
This conjecture is an open problem and considered very difficult. The Clay

Mathematics Institute has chosen it among the 7 millennium problems and
promises a million dollars for the first person to prove (or disprove) this con-
jecture.
Some results are known about it. Here a result which was proven through

work of Kolyvagin, Gross and Zagier and, in special cases, by Coates and Wiles.

Theorem 8.6. If L(E, 1) 6= 0 then E(Q) is finite. If L(E, 1) = 0 and
L′(E, 1) 6= 0 then the rank r is 1.

This confirms one implication for the cases of rank 0 and 1. The other
implication is only known if we assume that X(E/Q) is finite by the work of
Zhang and Skinner. There are also a lot of partial results on the leading term
formula. Yet, the conjecture is still open.
Note by the way, that the the initial reasoning is really too naive. Taylor

showed that, for any elliptic curve, independent of the rank r, there are (in
some precise sense) the same number of primes p such that Np is larger than
p as there are primes with Np smaller than p. This is a consequence of the
Sato-Tate distribution of the values ap.

8.7 Fermat’s Last Theorem

Theorem 8.7. Let n > 3. Then the only points in C(Q) for C : Xn+Y n = Zn

are those with XY Z = 0.

For n = 2 the equation is a conic and C(Q) is in bijection with P1(Q). For
n = 3, the curve is an elliptic curve with precisely three points in C(Q). The
curve for n = 4 is also linked to an elliptic curve.
So we may suppose that n > 5. Kummer already showed in the 19th century

that the theorem is true for all n 6 100 with the possible exception of 37, 59
and 67.
Here we illustrate vaguely the ideas that went into the proof finalised by

Andrew Wiles in the 1990s.
Suppose an + bn = cn is a solution to C with abc 6= 0. We may also suppose

that they are pairwise coprime. Consider now the elliptic curve

E : y2 = x(x− cn)(x− bn).
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This is called a Frey curve; the aim is to show that it cannot exist. The
discriminant of E is

∆ = 16
(
cnbn(cn − bn)

)2
= 16 (abc)2n.

For all primes p not dividing 2abc the curve has good reduction. If p is odd
and divides abc, then it divides exactly one of them. This shows that only one
of e1 − e2 = cn, e1 − e3 = bn and e2 − e3 = an is divisible by p. It follows that
the reduction of E at p is a nodal curve; so called multiplicative reduction.
Let ` be prime number not dividing any integer that appeared so far. Con-

sider the points of order ` in E(C). Their coordinates are in fact in the field of
all algebraic numbers Q̄. For each prime p - abc` the map E(Q̄)[`]→ E(F̄p)[`]
is injective. The curve has such nice properties that (in some sense) even the
map for p | abc behaves well. In fact, it is the `-adic Galois representation
attached to E that has super good properties.
The main theorem of Taylor and Wiles shows that there exists a modular

form f associated to E. We discussed modular forms quickly at the end of
Section 8.5. What is this modular forms? Recall from the Section 8.6 that
E has an L-series L(E, s) =

∑
n>1 ann

−s. The modular form f(τ) is simply∑
n>1 anq

n where q = exp(2πiτ) is a function on τ ∈ C with Im(τ) > 0. To
say that this analytic function is a modular modular form forces it to satisfy
certain precise functional equations involving a number called the level N .
For our Frey curve the level is simply the product of all primes dividing abc.
Ribet and Mazur proved earlier that if the Galois representation of f is super
nice, then there is another modular form g with a lower level and the same
Galois representation. The Frey curve would be so nice that this level would
drop all the way down to N = 2. However it is not hard to show that there
are no modular forms of that level. This yields the final contradiction on the
assumption of the existence of the solution (a : b : c).
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