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Abstract
Under suitable, fairly weak hypotheses on an elliptic curve E/Q and a primitive

non-trivial Dirichlet character χ, we show that the algebraic L-value L (E,χ) at s = 1
is an algebraic integer. For instance, for semistable curves L (E,χ) is integral whenever
E admits no isogenies defined over Q.
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1 Introduction
Let E/Q be an elliptic curve. The value of the L-function of E twisted by a primitive
Dirichlet character χ at s = 1 can be normalised by periods in order to obtain an algebraic
value L (E,χ). We aim to investigate what conditions on E and χ guarantee the integrality
of L (E,χ).

Let us first define L (E,χ). For a given χ, we will write m for the conductor of χ and
d for its order. Set ε = χ(−1) ∈ {±1} depending on whether we deal with an even or odd
character. The Gauss sum of χ is

G(χ) =
∑

a mod m

χ(a) exp(2πia/m).

Fix a global Néron differential ω on E. Let c∞ denote the number of connected components
of E(R). We use the following definition for the periods of E, which is best suited for Artin
formalism as in [6]:

Ω+(E) =

∫
E(R)

ω = c∞ ·
∫
γ+

ω and Ω−(E) =

∫
γ−
ω
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where we picked a generator γ+ of the subgroup ofH1

(
E(C),Z

)
fixed by complex conjugation

and a generator γ− for the subgroup where complex conjugation acts by multiplication by
−1 in such a way that Ω+(E) > 0 and Ω−(E) ∈ iR>0.

We will use the motivic definition of the L-function L(E,χ, s) given in full detail in
Section 7. If m is coprime to N , then it coincides with the following definition La(E, χ̄, s)
commonly used for modular forms: If we write the L-function L(E, s) of E as the Dirichlet
series

∑
n≥1 an n

−s, then La(E,χ, s) =
∑
n≥1 χ(n) an n

−s.
The algebraic L-value is

L (E,χ) =
L(E,χ, 1) ·m
G(χ) · Ωε(E)

= ε · L(E,χ, 1) ·G(χ̄)

Ωε(E)
. (1)

In Section 7 we will deduce from the theorem of Manin and Drinfeld [10, 7] that L (E,χ) is
an algebraic number in the field Q(ζd) of values of χ.

These values appear in many places in the literature. In Iwasawa theory one interpolates
them p-adically as the conductor of χ is of the form M · pn with n > 0 varying to get the
p-adic L-function; see [11]. In a recent paper, which was the starting point for this work [6],
Dokchitser, Evans and the first named author study the Artin formalism of such L-values
and draw surprising conclusions assuming conjectures like the Birch and Swinnerton-Dyer
conjecture.

First a result if one is willing to assume that the curve is semistable:

Theorem 1. Suppose E/Q is a semistable X0-optimal elliptic curve. Then L (E,χ) ∈ Z[ζd]
for all non-trivial primitive Dirichlet characters χ of order d.

In particular, L (E,χ) is integral if E admits no isogenies defined over Q.
Below we will give more general results with more elaborate conditions. We should point

out that one has to expect that these values L (E,χ) are often integral. By the Birch and
Swinnerton-Dyer conjecture for elliptic curves over abelian extensions of Q and its gener-
alisations (like the equivariant Tamagawa number conjecture), one expects an arithmetic
interpretation of L (E,χ). We may expect that the value L (E,χ) is not integral when
there is a torsion point on E whose field of definition is the abelian field Kχ, which is the
field fixed by the kernel of χ. We will give explicit examples in the last section.

To state a more general result, we need to recall the definition of the Manin constant.
Let f be the newform of level N , equal to the conductor of E, and weight 2 associated
to the isogeny class of E. Also write ϕ0 : X0(N) → E for a modular parametrisation
of E of minimal degree such that the Manin constant c0 = c0(E) defined by ϕ∗0(ω) =
c0(E) · 2πif(τ) dτ is positive. It is known that c0 is an integer. The original conjecture by
Manin states that the Manin constant of the X0-optimal curve in the isogeny class of E
is 1. See [1] for details on the conjecture and an overview of some results. The conjecture
is verified routinely for all curves in Cremona’s database [4]. Yet there are non-optimal
curves for which c0 > 1. If one uses the Manin constant c1 = c1(E) analogously defined
with respect to the minimal modular parametrisation ϕ1 : X1(N)→ E one has the following
weaker conjecture (see Conjecture I in [15]):

Stevens’s Manin constant conjecture. For any elliptic curve E/Q, the Manin constant
c1(E) is 1.

Our main result is the following theorem.

Theorem 2. Let E be an elliptic curve defined over Q.

a) Assume the conjecture that c1(E) = 1 holds. Then L (E,χ) ∈ Z[ζd] for all non-trivial
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primitive Dirichlet characters χ of order d > 1 whose conductor m is not divisible by
a prime of bad reduction for E.

b) Suppose the Manin constant c0(E) is 1. Then L (E,χ) ∈ Z[ζd] for all non-trivial
primitive Dirichlet characters χ of order d > 1 whose conductor m is not divisible by
a prime of additive reduction for E.

One can further relax the restriction on the conductor m. We will prove in Theorem 16
the integrality in more generality but for the value of the L-function La(E,χ, s) instead. To
conclude the same for L (E,χ) one still needs to check that no prime of additive reduction
becomes semistable over Kχ as explained in Section 7. Theorem 1 follows from Theorem 2
because c0(E) = 1 is know for the X0-optimal curve by [3] if E is semistable.

Corollary 3. Let E be an elliptic curve defined over Q. Assume the conjecture that c1(E) =
1 holds. Then there are only finitely many χ such that L (E,χ) is non-integral.

We will prove the theorem using modular symbols by studying their integrality property.
A similar question was discussed in [17]. The closely related question of the integrality of
the Stickelberger elements is discussed by Stevens in [14]; in Section 3 we will refine his
methods.

Though even when there are torsion points defined over the field cut out by the charac-
ter χ, one may still get an integral value for L (E,χ). This is for instance predicted by the
main conjecture in Iwasawa theory where the p-adic L-function turns out to be an integral
power series. On the arithmetic side the explanation for integrality comes from the cancella-
tion of terms in the Birch and Swinnerton-Dyer formula as studied for instance in [9]. In the
opposite direction, the very last example in Section 8 shows that one can have a non-integral
L-value, yet no new torsion points appearing in the corresponding field.

Overview

The setup of the paper is as follows. In Section 2 we prove some first integrality results
using Birch’s formula and the geometry of modular symbols. In Section 3 we obtain further
integrality results but now using the Galois action on cusps in X1(N). In Section 4, we
briefly depart from the modular symbols and record some results about acquiring torsion
points in abelian extensions of Q. We use these and other results from previous sections
to prove some results about integrality of modular symbols in Section 5. In Section 6 we
prove one of our main integrality results. In the penultimate section, Section 7, we compare
the motivic definition of the L-function to the arithmetic definition. Finally in Section 8 we
include some detailed examples to demonstrate why the assumptions in our main theorems
can not be weakened. We finish with a table containing all examples of non-integral L-values
for elliptic curves with conductor below 100.
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2 Integrality using the geometry of modular symbols
We aim to show that the algebraic L-value for the L-function La(E,χ, s) is integral in two
steps. First, we will write it as a sum involving only elements in the Néron lattice Λ. The
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second step takes care of the possible denominator 2 by splitting the sum into two equal
parts.

Let E/Q be an elliptic curve of conductor N . Let f be the newform of weight 2 associated
to the isogeny class of E. For r ∈ Q, define

λ(r) = 2πi

∫ r

i∞
f(τ)dτ =

1

c0
·
∫
γ(r)

ω (2)

where the first integral follows the vertical line in the upper half plane from i∞ to r ∈ Q and
γ(r) is the image in E(C) of this path under ϕ0. Let Λ be the Néron lattice of E, i.e., the
set of all values of

∫
γ
ω as γ runs through closed loops in E(C). This can have two possible

shapes. If E(R) has c∞ = 2 connected components (which is illustrated in the picture on
the left in Figure 1 below), then Λ = 1

2Ω+(E)Z ⊕ Ω−(E)Z. Instead if c∞ = 1 as in the
picture on the right in Figure 1, then Λ is spanned by Ω+(E) and 1

2 (Ω+(E) + Ω−(E)). Note
the periods in [17, 16] are differently normalised: there Ω+(E)/c∞ is used instead of Ω+(E).

Figure 1: The two types of Néron lattice

We note that in both cases we have the following{
Re(z)

∣∣ z ∈ Λ
}

= 1
2Ω+(E)Z

and {
Im(z) i

∣∣ z ∈ Λ
}

= 1
2 c∞ Ω−(E)Z ⊂ 1

2Ω−(E)Z,

which we will use frequently to prove our results.
We fix a non-trivial primitive character χ of conductorm and order d. SetD = gcd(m,N)

and δ = gcd(D,N/D). Write m = D · m̃ and note that m̃ is coprime to δ.
Assume first that δ 6= 2. For any invertible a modulo m, we define α(a,m) to be the

least residue of a m̃ modulo δ; by definition this means that −δ/2 < α(a,m) < δ/2 and
α(a,m) ≡ a m̃ (mod δ). Note that am̃ 6≡ δ/2 (mod δ) unless δ = 2 which is why we will
treat this case separately. We define

µ
( a
m

)
= λ

( a
m

)
− λ

(α(a,m)

D

)
= 2πi

∫ a/m

α(a,m)/D

f(τ)dτ.

If δ = 2, we set simply set µ
(
a
m

)
= λ

(
a
m

)
.

We note here that if m is even, which is necessarily the case when δ = 2, m must be
divisible by 4 since we are interested in non-trivial primitive characters only.
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Lemma 4. If δ 6= 2, then for all r, we have µ(r) ∈ c−10 Λ. If δ = 2, then µ(r) ∈ (2c0)−1 Λ
for all r.

Proof. First if δ 6= 2. By Proposition 2.2 in Manin [10] any cusp a
m is Γ0(N)-equivalent to

the cusp α(a,m)
D . Since these two cusps are equivalent, the path between them maps to a

loop in X0(N)(C). Therefore its image γ in E(C) will be closed as well. Hence

µ(r) = 2πi

∫ a/m

α(a,m)/D

f(τ)dτ =
1

c0

∫
γ

ω ∈ c−10 Λ

for all r ∈ Q.
The case δ = 2 is different. First N has to be divisible by 4 and, since m is even, also m

is divisible by 4. It follows that the second Hecke operator annihilates the newform f . For
the modular symbols λ, this means that λ

(
r
2

)
+ λ

(
r+1
2

)
= 0 (see e.g. [11, (4.2)]). Applied

to r = 2a
m , one finds the relation

λ
( a
m

)
= −λ

( a
m

+
1

2

)
if δ = 2. (3)

Since the cusps a
m and a

m + 1
2 are both Γ0(N)-equivalent to 1

D , the difference

2µ
( a
m

)
= 2λ

( a
m

)
= λ

( a
m

)
− λ
( a
m

+
1

2

)
belongs to c−10 Λ.

Lemma 5. For all r ∈ Q, we have µ(−r) = µ(r).

Proof. The equality λ(−r) = λ(r) can be verified through explicit computation using the
action τ 7→ −τ̄ on the upper half plane and that the modular form f has real coefficients.
This proves already the case δ = 2.

If δ 6= 2, our choice of representative α(a,m) modulo δ implies that α(−a,m) = −α(a,m).
We obtain

µ
( a
m

)
= λ

( a
m

)
− λ
(α(a,m)

D

)
= λ

(
− a

m

)
− λ

(
−α(a,m)

D

)
= λ

(−a
m

)
− λ
(α(−a,m)

D

)
= µ

(−a
m

)
.

Write L(E, s) =
∑
n≥1 an n

−s for the Dirichlet series for the L-function of E, which
converges absolutely for Re(s) > 3

2 . We define La(E,χ, s) as the analytic continuation of
the Dirichlet series

La(E,χ, s) =
∑
n≥1

an χ(n)

ns
.

This is the L-function of the modular form f twisted by χ as in [11].

Lemma 6. Suppose δ 6= m. Then

La(E, χ̄, 1) =
G(χ̄)

m

∑
a

χ(a)µ
(
a
m

)
where the sum runs over all invertible a modulo m.
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Note that the condition m 6= δ is satisfied as soon as χ is non-trivial and (m,N) = 1 or,
more generally, if no additive place ramifies in Kχ/Q.

Proof. We use the Birch’s formula (see formula (8.6) in [11]):

La(E, χ̄, 1) =
G(χ̄)

m

∑
a

χ(a)λ
(
a
m

)
(4)

where the sum runs over a ∈ Z/mZ. Again, this proves already the case δ = 2.
Suppose now that δ 6= 2. The sum can be rewritten as∑

a

χ(a)λ
(
a
m

)
=
∑
a

χ(a)µ
(
a
m

)
+
∑
a

χ(a)λ
(α(a,m)

D

)
and we are left to show that the second summand on the right is equal to zero. This sum is
equal to ∑

−δ/2<x<δ/2

λ
(
x
D

) ∑
a mod m

am̃≡x (mod δ)

χ(a). (5)

For a fixed x, we wish to show that the last sum on the right is zero. As m̃ and a are coprime
to δ it is possible to pick an invertible y modulo m such that am̃ ≡ y (mod δ). Then every
a modulo m such that am̃ ≡ y (mod δ) can be written uniquely as a = y(1 + kδ) for one
0 ≤ k < m/δ. Therefore

∑
a mod m

am̃≡x (mod δ)

χ(a) =

m
δ −1∑
k=0

χ
(
y(1 + kδ)

)
= χ(y) ·

∑
h∈H

χ(h)

where H is the kernel of (Z/mZ)× → (Z/δZ)×. Since m 6= δ, the kernel H is non-trivial as
it is impossible that δ is odd and m = 2δ since m is the conductor of a character. Now the
above sum is

∑
h∈H χ|H(h) and by character theory this is 0 unless χ restricts to the trivial

character on H. But the latter is impossible as χ is assumed to be primitive modulo m.

We define
L a(E,χ) =

La(E, χ̄, 1) ·m
G(χ̄) · Ωε(E)

analogous to the definition in (1).

Proposition 7. Assume that the Manin constant c0 for E is 1 and suppose m2 - N . Then
L a(E,χ) ∈ Z[ζd].

Proof. Note first that the assumption m2 - N is equivalent to m 6= δ. By the definition of
L a(E,χ) and Lemma 6, we have

L a(E,χ) =
1

Ωε(E)

∑
a mod m

χ(a)µ
(
a
m

)
.

If m is even then χ(m/2) = 0 since m cannot be equal to 2. Therefore for all m we may
split the above sum into two sums as

L a(E,χ) =
1

Ωε(E)

[m−1
2 ]∑

a=1

χ(a)µ
(
a
m

)
+

1

Ωε(E)

[m−1
2 ]∑

a=1

χ(−a)µ
(−a
m

)
=

1

Ωε(E)

[m−1
2 ]∑

a=1

(
χ(a)µ

(
a
m

)
+ ε · χ(a)µ

(
− a
m

))
.
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Using Lemma 5, one obtains

L a(E,χ) =
1

Ωε(E)

[m−1
2 ]∑

a=1

χ(a) ·
(
µ
(
a
m

)
+ ε · µ

(
a
m

))
. (6)

Assume now first that δ 6= 2. If ε = +1, then µ(r) + ε µ(r) = 2 ·Re
(
µ(r)

)
. By Lemma 4,

µ(r) ∈ Λ. In either case, whether Λ is rectangular or not, the set of Re(z) for z ∈ Λ is
1
2Ω+(E)Z. Therefore, if ε = +1

µ
(
a
m

)
+ ε µ

(
a
m

)
Ωε(E)

belongs to Z. If ε = −1 the same argument also works since µ(r)− µ(r) = 2 · Im
(
µ(r)

)
i ∈

Ω−(E)Z for both forms of the lattice. Since χ takes values in Z[ζd] when χ has order d, this
proves that L a(E,χ) ∈ Z[ζd].

The case δ = 2, requires more as µ(r) = λ(r) does not necessarily belong to Λ, but only
to 1

2Λ as seen in Lemma 4. We now split the sum in equation (6) once more, using the fact
that m is divisible by 4 in this case.

L a(E,χ) =
1

Ωε(E)

m
4 −1∑
a=1

χ(a) ·
(
λ
( a
m

)
+ ε · λ

( a
m

))
+

+
1

Ωε(E)

m
4 −1∑
a=1

χ(m2 − a) ·
(
λ
(1

2
− a

m

)
+ ε · λ

(1

2
− a

m

))
We concentrate on the second sum. First χ

(
m
2 − a

)
= χ(−1)χ(a)χ

(
1 + m

2

)
(recall that a

must be odd and therefore am
2 is congruent to m

2 modulo m). Since 1 + m
2 is of order two

and because χ has conductor m, we must have χ
(
1 + m

2

)
= −1. Further we use (3) and

reach

L a(E,χ) =
1

Ωε(E)

m
4 −1∑
a=1

χ(a) ·
(
λ
( a
m

)
+ ε · λ

( a
m

)
− ε ·

(
−λ
( a
m

)
+ ε · λ

( a
m

)))

=

m
4 −1∑
a=1

χ(a) · 2 ·
λ
(
a
m

)
+ ε · λ

(
a
m

)
Ωε(E)

.

With the extra factor of 2 and knowing that λ
(
a
m

)
∈ 1

2Λ, we can conclude again.

For curves with c0 > 1, we can use the modular parametrisation by X1(N) instead. The
result will be a bit weaker but it should apply to all curves. Recall that the Manin constant
c1 satisfies ϕ∗1(ω) = c1 · 2πifdτ , where ϕ1 : X1(N) → E is the modular parametrisation of
minimal degree, and that it is conjectured to be 1.

Proposition 8. Assume that c1 = 1. Then L a(E,χ) ∈ Z[ζd] for all non-trivial primitive
characters χ of conductor m - N .

Proof. We define an analogue of α(a,m) in this proof to account for our change in para-
metrisation. We let β(a,m) be the least residue of a modulo D, where D = gcd(m,N) as
before. For any a and b that are coprime to m, the cusps a

m and b
m are Γ1(N)-equivalent

if and only if a ≡ b (mod D); see for instance Proposition 3.8.3 in [5]. Assume first that
D 6= 2 which assures that the least residue β(a,m) of a modulo D is well-defined. Set
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µ
(
a
m

)
= λ

(
a
m

)
− λ

(β(a,m)
m

)
. Then it is not hard to check that µ

(
a
m

)
∈ 1/c1 Λ = Λ and that

µ(−r) = µ(r) for all r = a
m . With these two properties one can now follow precisely the

proof of Proposition 7. The corresponding sum that replaces the sum in (5) is∑
−D/2<x<D/2

(x,m)=1

λ
(
x
m

) ∑
a mod m

a≡x (mod D)

χ(a)

which is 0 as long as χ is a primitive character modulo m and D 6= m.
Now to the case when D = 2. Since m is even, it must be divisible by 4. All cusps a

m
with a coprime to m are Γ1(N)-equivalent. Write w = λ

(
1
m

)
. Then w−w = λ

(
1
m

)
−λ
(−1
m

)
is an element of 1/c1 Λ = Λ. More generally λ

(
a
m

)
= w + ν(a) with ν(a) ∈ Λ. We compute

L a(E,χ) ·Ωε(E) =
∑

a mod m

χ(a)·
(
w+ν(a)

)
=

m/2∑
a=1

χ(a)·
(
ν(a)+ε ν(a)

)
+
(m/2∑
a=1

χ(a)
)
·
(
w+εw

)
.

The first sum in the last expression belongs to Z[ζd] because ν(a) ∈ Λ. Finally

m/2∑
a=1

χ(a) =

m/4∑
a=1

(χ(a) + χ(m2 − a)) =

m/4∑
a=1

χ(a) · (1− ε)

shows that the second sum in this expression is zero if ε = 1. Instead if ε = −1 then

2 (w − w) ·
m/4∑
a=1

χ(a)

also belongs to Z[ζd] because w − w ∈ Λ.

3 Integrality using the Galois action
In this section we will use the Galois action on cusps to obtain further cases when L a(E,χ)
is integral. As the statements are a bit stronger, we will use the modular parametrisation
ϕ1 : X1(N)→ E, but the argument works the same for X0(N). For a cusp r, we will denote
by Pr = ϕ1(r) ∈ E(Q). Under the isomorphism E(C) ∼= C/Λ this point corresponds to
c1 · λ(r) + Λ. Throughout the section we will assume that c1 = 1. Also, since we know the
integrality already when m - N by Proposition 8, in this section we will prove results for
m | N .

If L a(E,χ) is not integral, then there is some a for which λ
(
a
m

)
does not belong to Λ.

We will see that this implies that the point Pa/m is a non-trivial torsion point.

Lemma 9. For any r = a
m with m | N , the torsion point Pr is defined over Q(ζm).

Proof. In the proof of Lemma 3.11 in [15] the action of the Galois group on the cusps
in X1(N) is explicitly given. The cusps are defined over Q(ζN ) and the element σb ∈
Gal
(
Q(ζN )/Q

)
sending ζN to ζbN acts on the cusp represented by a

m by sending it to the
cusp ab∗

m where bb∗ ≡ 1 (mod N). If b ≡ 1 (mod m), then b∗ ≡ 1 (mod m) and hence the
cusp ab∗

m is Γ1(N)-equivalent to a
m . Hence these σb fix the cusp a

m on X1(N) and hence Pr
in E(Q).

If one uses the parametrisation ϕ0 : X0(N) → E instead, one can show that the points
P 0
a/m = ϕ0(a/m) are defined overQ(ζδ) using Theorem 1.3.1 in [14]. In particular P 0

r ∈ E(Q)
for all r if E is semistable.
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Proposition 10. Assume that c1 = 1. Let χ be a non-trivial primitive character of con-
ductor m and order d such that m | N . Let Kχ be the field fixed by the kernel of χ. Suppose
Kχ 6⊂ Q(P1/m). Then L a(E,χ) ∈ Z[ζd].

Before we start with the proof, we introduce the standard notation for the normalised
modular symbols [r]±; which we define by

[
r
]+

=
Re
(
λ(r)

)
Ω+(E)

and
[
r
]−

=
Im
(
λ(r)

)
i

Ω−(E)
=

Im
(
λ(r)

)
|Ω−(E)|

for any r ∈ Q.
From formula (4), we get that

Ωε(E)·L a(E,χ) =
1

2

∑
a mod m

(
χ(a)λ

( a
m

)
+χ(−a)λ

(−a
m

))
=

∑
a mod m

χ(a)
λ
(
a
m

)
+ ελ

(−a
m

)
2

which can be rewritten as

L a(E,χ) =
∑

a mod m

χ(a) ·
[ a
m

]ε
. (7)

From λ(−r) = λ(r), it follows that
[−a
m

]ε
= ε ·

[
a
m

]ε.
Proof. From the above lemma, we know that Pa/m belongs to Q(ζm) and how its Galois
group acts on these points: if b is in (Z/mZ)× then σb(Pa/m) = Pab∗/m where b∗ is the
inverse of b. In particular the Galois group acts transitively on the set of (not necessarily
distinct) points Pa/m as a varies through invertible elements modulo m.

Let H be the stabiliser of Pa/m viewed as a subgroup of (Z/mZ)× and F the field fixed
by H, so that Pa/m ∈ E(F ). Pick a set of coset representatives U of G/H.

Because each h ∈ H fixes Pa/m, we find the following relations: For each invertible a
modulo m and h ∈ H

λ
(
ah
m

)
− λ

(
a
m

)
∈ 1

c1
Λ = Λ. (8)

Let u ∈ U and for a ∈ uH define

κ(a) =
[ a
m

]ε
−
[ u
m

]ε
From the above equation (8), we see that κ(a) ∈ 1

2Z and, if ε = −1 and c∞ = 2 then even
κ(a) ∈ Z.

Using (7), the algebraic L-value becomes

L a(E,χ) =
∑

a mod m

χ(a)

(
κ(a) +

[ u
m

]ε)
=

∑
a mod m

χ(a)κ(a) +
∑
u∈U

∑
h∈H

χ(uh)
[ u
m

]ε
.

The last sum on the right is is equal to∑
u∈U

χ(u)
[ u
m

]ε
·
∑
h∈H

χ(h).

By our hypothesis, χ is not trivial on H as otherwise Kχ ⊂ F and hence this last sum is
zero giving L a(E,χ) =

∑
a χ(a)κ(a). This already proves the lemma in case ε = −1 and

c∞ = 2.
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Otherwise, as before, we are left with trying to eliminate the possible denominator 2.
First we assume that −1 6∈ H or equivalently that P1/m 6∈ E(R). Then −a ∈ uH for all
a ∈ uH. Therefore

κ(−a) =
[−a
m

]ε
−
[−u
m

]ε
= ε · κ(a).

We get

L a(E,χ) =

[m−1
2 ]∑

a=1

(
χ(a)κ(a) + χ(−a)κ(−a)

)
=

[m−1
2 ]∑

a=1

χ(a) · 2κ(a).

Since κ(a) ∈ 1
2Z, we can conclude that L a(E,χ) ∈ Z[ζd].

We may now assume that −1 belongs to H. Then we may choose U such that, if u ∈ U
then −u ∈ U . Therefore

κ(−a) = ε
[ a
m

]ε
−
[u
n

]ε
=

{
κ(a) if ε = +1

κ(a)− 2[ um ]− if ε = −1.

Therefore if χ is even, the same argument as for −1 6∈ H works. Otherwise, if χ is odd,
then, by the earlier conclusion, we may assume that c∞ = 1. In that case, the lattice is not
rectangular and so Pu/m ∈ E(R) implies that

[
u
m

]− is in 1
2Z for all u ∈ U . Hence in that

case κ(−a) differs from κ(a) by an integer and we can prove the integrality again.

This argument uses ingredients similar to those in the result in Theorem 3.14 in [15]. In
this theorem, Stevens proves an integrality statement for the Stickelberger elements which
is a bit weaker than our refined result here.

Note that Proposition 10 implies the following. If c1 = 1 and L a(E,χ) is non-integral
for some non-trivial χ of conductor m then E

(
Q(ζm)

)
contains a torsion point that is not

defined over Q.

4 Torsion points over abelian extensions
We gather some statements about the possibility of acquiring a new torsion point in an
abelian extension of Q. In our proofs we make use of Kenku’s classification [8] of cyclic
isogenies defined over Q.

Lemma 11. Let E/Q be an elliptic curve and p an odd prime number and n ≥ 1. Suppose P
is a point of order pn defined over an abelian extension K/Q. Then Q(P ) is contained in a
field obtained by adjoining points in the kernel of cyclic isogenies φ : E → E′ defined over Q
whose degree are powers of p.

This is a generalisation of Lemma 5 in [17].

Proof. Let G = Gal
(
Q(E[pn])/Q

)
and N its subgroup corresponding to the intermediate

field Q(P, ζpn). Since Q(P ) and Q(ζpn) are abelian extensions of Q so is Q(P, ζpn). Therefore
N is a normal subgroup of G with abelian quotient.

Pick a basis {P,Q} of E[pn] and use it to identify G as a subgroup of GL2(Z/pnZ).
The subgroup N is then formed by the elements in G of the form

(
1 ∗
0 ∗
)
that belong to

SL2(Z/pnZ). Therefore it is a subgroup of matrices of the form
(
1 ∗
0 1

)
. We have two cases:

the special case when N is trivial and the non-trivial case.
Case 1: N is trivial. In this case G itself is abelian. In order to prove the lemma

for N trivial we will explicitly create the field that contains Q(P ). Consider the complex
conjugation g ∈ G. Since p is odd, there is a basis {T+, T−} of E[pn] such that g(T±) = ±T±.
For any h ∈ G we have h(T±) = ±hg(T±) = ±gh(T±) as G is abelian. Therefore h(T±) is
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a multiple of T± and this shows that all elements in G fix the subgroups generated by T±.
We have therefore found two isogenies φ± defined over Q and G is contained in the group
of diagonal matrices with respect to the new basis {T+, T−}. The lemma is then proven in
this case as Q(P ) ⊂ Q

(
E[pn]

)
= Q(T+, T−). (It turns out that in this Case 1, we are in a

very special situation: Having two cyclic isogenies of degree pn leaving E, there is a curve
in the isogeny class of E over Q with an isogeny of degree p2n defined over Q. By Kenku’s
classification [8], we know that this only occurs if pn is 3 or 5.)

Case 2: N is non-trivial. It is generated by
(
1 pk

0 1

)
for some 0 ≤ k < n. We consider the

action of G and N on the set of cyclic pn-isogenies leaving from E, which we may identify
with P1(Z/pnZ) via our chosen basis {P,Q} of E[pn]. Let X be the set of points fixed by
N . The above generator fixes (x : y) if and only if y2 pk = 0 in Z/pnZ. Therefore X is a set
containing pm elements withm = [n−k2 ] all of which have the same reduction as 〈P 〉 = (1 : 0)
modulo p. Since #X is odd, the complex conjugation g has precisely one fixed point on X,
say x0 = 〈U〉. The quotient G/N acts on X. Since G/N is abelian, we can again conclude
that x0 is fixed by all elements in G/N . Therefore x0 is fixed by all of G.

First, we can treat the easier situation when x0 = 〈P 〉: The isogeny with P in its kernel
is then defined over Q and the lemma is proven again. Since we assume that N is non-trivial,
we are in this situation if n = 1 because then X only contains 〈P 〉.

Therefore, we are left with the more complicated situation when n > 1, the group N
is non-trivial and x0 6= 〈P 〉. Set N ′ to be the subgroup of G corresponding to the field
Q(P,U, ζpn). Again this is a normal subgroup of G with abelian quotient. If N ′ is trivial,
then G is abelian and we can conclude as above. Therefore we assume that N ′ is not trivial
and hence it is generated by h =

(
1 pm

0 1

)
∈ N ′ for some k ≤ m < n. For any two g =

(
a b
0 d

)
and g′ =

(
a′ b′

0 d′

)
in G, we must have gh ∈ hgN ′. This is equivalent to ab′ + bd′ ≡ a′b+ b′d

(mod pm). This implies that b′(a − d) ≡ b(a′ − d′) (mod p). Let Ḡ be the image of G in
GL2(Fp), which is the Galois group of Q(E[p])/Q. Pick any

(
a b
0 d

)
∈ Ḡ with a 6= d which

exists because the determinant is surjective onto F×p . The above congruence implies that
the line generated by

(
b

d−a
)
is fixed by Ḡ. In other words besides pn−1U there is a second

point S in E[p] whose subgroup is fixed by G.
As the isogeny class of E over Q now contains a cyclic isogeny of degree pn+1 ≥ p3, we

see that p = 3 and n = 2 from Kenku’s classification [8].
We now change the basis of E[pn] = E[p2] by taking {U, S′} such that pS′ = S. Then G

is in the subgroup of matrices of the form
(
a b
0 d

)
with p | b. The elements in G that fix both

U and S are of the form
(
1 b
0 d

)
for which p | b and d ≡ 1 (mod p). The point P is of the

form uU + pvS′ for units u and v. Therefore all elements that fix U and S also fix P . We
conclude finally that Q(P ) ⊂ Q(U, S). Since both 〈U〉 and 〈S〉 are defined over Q we have
completed the proof in the last case, too.

Lemma 12. Let E/Q be an elliptic curve. Suppose P is a point of exact order 4 defined
over an abelian extension K/Q. Then there is an cyclic isogeny on E defined over Q of
degree 2.

Proof. Let Q = 2P . Since GL2(F2) ∼= S3, there are three possibilities that Q is defined over
an abelian extension of Q. For the first two of the possibilities, when Q(Q) is either of degree
1 or of degree 2, there is already a 2-isogeny defined over Q. Therefore we assume we are in
the third case, that Q(Q)/Q is a cyclic cubic extension, and show that this contradicts the
assumption.

Consider G = Gal
(
Q(E[4])/Q

)
as a subgroup of GL2

(
Z/4Z

)
with P as the first element

of the basis of E[4]. The image of G in GL2(F2) is the subgroup generated by
(
0 1
1 1

)
. Let

H = Gal
(
Q(E[4])/Q(P, i)

)
which is a normal subgroup of G contained in the matrices of
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determinant 1 and in those that have the form
(
1 ∗
0 ∗
)
. Hence H is contained in the cyclic

subgroup of order 2 generated by
(
1 2
0 1

)
∈ GL2

(
Z/4Z

)
.

If H is non-trivial then G must belong to the normaliser of H in GL2

(
Z/4Z

)
, but that

would mean that G is contained in the stabiliser of P which contradicts our assumption on
the image of G in GL2(F2).

We may suppose that H is trivial and hence Q
(
E[4]

)
= Q(P, i) is abelian over Q. Since

all points in E[2] are defined over R, the Néron lattice is rectangular. Therefore the complex
conjugation must be

(
1 0
0 −1

)
∈ GL2

(
Z/4Z

)
under a suitable, possibly different choice of a

basis for E[4]. All the matrices commuting with that matrix reduce to the identity matrix
modulo 2, which contradicts again our assumption on Q(Q).

It is tempting to hope that Lemma 11 could be generalised to include p = 2. However
this turns out to be far from possible. The possible Galois groups of Q(E[2∞])/Q were
determined and listed in [12]. We find that of the 1208 possible groups only 582 satisfy the
property that the field of definition of all abelian torsion point can be obtained using isogenies
over Q. In particular this fails for the three groups with the property that Q(E[2])/Q is
cyclic of order 3. But there are other more surprising examples: There is a curve with
the 2-primary torsion subgroup defined over the maximal abelian extension of Q equal to
Z/16Z⊕ Z/4Z.

Corollary 13. Let E/Q be an elliptic curve. Suppose P is a torsion point of exact order t
defined over an abelian extension K/Q. Then there exists a cyclic isogeny E → E′ of
degree p defined over Q for each odd prime divisor p of t. Further if t is even, either

• 4 - t and the minimal discriminant ∆ is a square or

• there is a non-trivial cyclic isogeny E → E′ of degree 2 defined over Q.

Moreover if t is odd then Q(P ) is contained in a field obtained by adjoining points in kernels
of cyclic isogenies defined over Q.

Proof. First, P can be written as a linear combination of torsion points Qp over abelian
extensions whose orders are powers of p | t. From the above proof we learn that the only
option for Q2 to be defined over an abelian extension without having a rational 2-isogeny is
when Q

(
E[2]

)
is a cyclic extension of degree 3. It is know that this only occurs when the

discriminant ∆ is a square, see for instance 5.3a) in [13].
Therefore, if t is odd or ∆ is not a square then the previous two lemmas imply the

existence of p-isogenies defined over Q. The last sentence is a consequence of Lemma 11 and
Q(P ) = Q

(
{Qp

∣∣ p | t}).
5 Integrality of modular symbols
We record here an auxiliary result that may be of independent interest. Recall first that
modular symbols are the unique rational numbers such that

λ(r) = [r]+ · Ω+(E) + [r]− · Ω−(E)

for any r ∈ Q.

Proposition 14. Let E/Q be an elliptic curve which does not admit any non-trivial isogenies
defined over Q. Assume that the Manin constant conjecture c0 = 1 holds. Then [r]± belongs
to 1

4Z for any r ∈ Q. Furthermore, if the minimal discriminant ∆ is not a square then [r]± ∈
1
2Z.
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Proof. Consider the image Pr of the cusp r ∈ X0(N) under the modular parametrisation
ϕ0. Lemma 9 implies that Pr is a torsion point defined over an abelian extension. From the
Lemmas 11 and 12, we conclude that Pr has either order 2 or Pr = O. Hence the endpoint
of the path γ in the definition (2) of λ(r) ends at a point in E[2]. So λ(r) ∈ 1

2Λ and the
comparison with the periods gives [r]± ∈ 1

4Z.
If ∆ is not a square, then Corollary 13 shows that Pr has to be O and hence λ(r) ∈ Λ.

We recall here that one can use the modular parametrisation ϕ0 to prove the following,
as per our comment after Lemma 9.

Proposition 15. Let E/Q be a semistable X0-optimal elliptic curve with no non-trivial
torsion point defined over Q. Then [r]± ∈ 1

2Z for all r ∈ Q.

Proof. The Manin constant conjecture c0 = 1 for E is known in the semistable case by [3].
All points P 0

r must be defined over Q, but since there are no torsion points defined over Q,
we get that P 0

r = O.

It is easy to find examples, even of semistable curves, which have denominator 2 among
the modular symbols: For instance the curve, labelled 43a1 in Cremona’s table [4], has[
1
5

]+
=
[
1
5

]−
= 1

2 , despite having no isogenies defined over Q. Proposition 14 does not rule
out that there are examples with denominator 4. However it seems very difficult to find any
such examples, if they exist at all.

6 Integrality of the modular L-values
In this short section we prove our main integrality result for L a(E,χ) by combining the
results from the previous sections.

Theorem 16. Let E/Q be an elliptic curve of conductor N and χ a non-trivial character
of order d and conductor m. Assume that c1(E) = 1 as conjectured.

Suppose that L a(E,χ) 6∈ Z[ζd]. Then the minimal discriminant ∆ is a square or there
is a cyclic isogeny E → E′ defined over Q. Moreover either

• c0 > 1 and m | N or

• m2 | N .

Finally, the field Kχ fixed by χ is contained in the extension of Q obtained by adjoining the
points of the kernels of all cyclic isogenies defined over Q and all torsion points of order a
power of 2 that are defined over an abelian extension of Q.

In the last section, we will give examples explaining why these conditions can not be
weakened.

Proof. By Proposition 10, we know that Kχ is contained in the field of definition of P1/m,
where P1/m = ϕ1( 1

m ). This point is defined over an abelian extension by Lemma 9. Corol-
lary 13 implies that ∆ is a square or there is a cyclic isogeny defined over Q. Proposition 8
proves that m | N . Proposition 7 shows that either m2 | N or c0 > 1. The statement about
Kχ is a consequence of Lemma 11.
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7 Comparison of the L-functions
In this section, we compare the motivic definition of the L-function to the arithmetic defin-
ition. This allows us to prove our main theorems.

We may view a primitive Dirichlet character χ as usual as a character on the absolute
Galois group of Q via setting χ(Frp) = χ(p) where Frp is an arithmetic Frobenius element
for a prime p. For any prime `, let Vχ be the 1-dimensional Q`-vector space on which
the absolute Galois group acts by χ. Let VE be the dual of T`E ⊗Z` Q` where T`E is the
Tate-module of E.

Given such a compatible system of Galois representations V , we define its L-function as
usual by

L(V, s) =
∏
p

det
(

1− Fr−1p p−s
∣∣∣ V Ip)

where Ip is the inertia subgroup for p and for each prime p we take V with respect to any
prime ` 6= p. For our definitions of Vχ and VE above, we obtain L(χ̄, s) = L(Vχ, s) =∑
n≥1 χ(n)n−s and L(E, s) = L(VE , s) =

∑
n≥1 an n

−s. We set L(E,χ, s) = L(VE ⊗ Vχ, s).
Recall that La(E,χ, s) =

∑
n anχ(n)n−s, but L a(E,χ) is obtained from La(E, χ̄, s).

The following is not difficult to prove by looking at each local factor in the product.

Lemma 17. If E does not have semistable reduction at any prime of Kχ above a prime p
of additive reduction over Q, then L(E,χ, s) = La(E, χ̄, s).

As a consequence of modularity, we obtain that L(E,χ, s) admits an analytic continu-
ation to all s ∈ C.

Proof of Theorem 1 and Theorem 2. If no prime of additive reduction divides m, then m2 -
N and so c0 = 1 implies that L a(E,χ) ∈ Z[ζd] by Theorem 16. Part b) of Theorem 2 then
follows from the above lemma as it implies L (E,χ) = L a(E,χ).

If no prime of bad reduction divides m then m - N and so c1 = 1 implies part a) of
Theorem 2. As mentioned before, Theorem 1 is a consequence of Theorem 2 and the fact
that we know c0 = 1 for the X0-optimal curve as shown in [3].

The case when the above lemma does not apply is trickier; the two Euler products differ
by a finite number of local factors. We have

L (E,χ) = L a(E,χ) ·
∏
p∈S

C(E,χ, p)

where S is the set of primes p for which the reduction becomes semistable over Kχ and
the correction factor C(E,χ, p) is the local factor of the Euler product of L(E,χ, s) at p
evaluated at s = 1.

For instance if χ is a quadratic character and E achieves good reduction at p, then
C(E,χ, p) is p/Np where Np is the number of points on the reduction of E × Kχ at the
unique prime above p. It is therefore not clear that L (E,χ) is integral as these correction
factors may introduce new denominators. In fact, it is not even obvious that the value of
L (E,χ) is still in the correct field. However, Vladimir Dokchitser kindly provided us with
the argument to complete this.

Proposition 18. For any Dirichlet character χ of order d, we have L (E,χ) ∈ Q(ζd).

Proof. The Manin-Drinfeld theorem [10, 7] implies that the modular symbols are rational
numbers. Putting this theorem together with Birch’s formula (4) we obtain that L a(E,χ) ∈
Q(ζd).
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Let χ be a Dirichlet character of order d such that the local factor of the Euler product
at a prime p for L(E,χ, s) is non-trivial, while the factor for L(E, s) is trivial. So E is an
elliptic curve with additive reduction at p, yet does not have additive reduction over Kχ any
more.

Assume first that E has good reduction at primes above p in Kχ. Pick a prime p above
p in Kχ and fix ` 6= p. The inertia group Ip inside the Galois group of Kχ/Q acts on the
Q`-vector space VE through the character χ and its inverse χ−1 as the determinant must be
trivial by the Weil pairing. Therefore the action of Ip on VE ⊗Q`(ζd) will be diagonal for a
suitable basis.

If Qnr
p denotes the maximal unramified extension of Qp, then (Kχ)p Qnr

p /Qp is abelian.
Therefore the action of Frp on VE commutes with the action by Ip. We conclude that Frp
is also diagonal on VE ⊗Q`(ζd) and hence the characteristic polynomial of Frp has roots in
Q`(ζd) for all `. Since the local factor of the Euler product of L(E,χ, s) at p is a factor of
the one of L(E/Kχ, s), the correction term C(E,χ, p) is the evaluation of a polynomial over
Q(ζd) at p−1.

The case when E acquires multiplicative reduction over Kχ works the same if VE in
the above argument is replaced by its subspace fixed by the inertia subgroup of Kχ at p.
We note that since χ is quadratic in this case, the argument before the statement of this
proposition also applies.

8 Examples
We wish to end by listing a few examples of non-integral values of L (E,χ) to demonstrate
that the assumptions in the statements of the theorems are really needed.

All computations with modular symbols were done using Sage [16] with the implementa-
tion described in [18]. We used Magma [2] for the computation of L-values. For all examples
c1 = 1 as expected.

Example 1: For a curve like X0(11)

y2 + y = x3 − x2 − 10x− 20,

the Manin constant c0 is 1 and the conductor is square-free. Therefore all values L (E,χ)
will be integral. This, despite the fact that the modular symbols [r]+ have denominator 10

for many r; for instance
[
1
3

]+
= − 3

10 .

Example 2: For the semistable curve X1(11)

y2 + y = x3 − x2,

which is 11a3 in Cremona’s database, the Manin constant is c0 = 5. The modular symbols
like [0]+ = 1

25 and [ 12 ]+ = − 4
25 have large denominator. By Proposition 8, only for characters

of conductor 11, we could have non-integral L (E,χ). Indeed, the character χ of conductor 11
and order 5 sending 2 to ζ5 produces L (E,χ) = 1

5 (2 + 4ζ5 + ζ25 + 3ζ35 ). This value and the
conjugate ones under Gal

(
Q(ζ5)/Q

)
are all values that are non-integral for this curve.

Example 3: Next, let E be the elliptic curve

E : y2 = x3 − 7x+ 7,

with label 392f1. Then E does not admit an isogeny over Q. This curve is not semistable
and ∆ = 24 · 72 is a square. For the Dirichlet character χ of conductor 7 and order 3
sending 3 to ζ3, we find L a(E,χ) = 1

2 (2 + ζ3). Here E acquires all 2-torsion points over the
cyclic cubic field with polynomial x3− 7x+ 7. The two places of additive reduction are still
additive over that field. Therefore L (E,χ) = L a(E,χ).
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Example 4: Finally, an example with a new torsion points of order 5 over Kχ: The
curve 75a1 has no torsion points defined over Q, but there are 5-torsion points defined
over Q(ζ5) which are not fixed by complex conjugation. For the Dirichlet character χ of
conductor 5 and order 4 sending 2 to i, we obtain L (E,χ) = 1

5 (2− i). The reduction type
IV stays the same in the extension Kχ/Q at p = 5 so that L (E,χ) = L a(E,χ).

Now we pass to some examples where the reduction type changes in the extension Kχ/Q.

Example 5: Let E be the curve labelled 162b1. This curve has a rational 3-torsion point
over Q. This time the curve acquires a new 7-torsion point over the maximal real sub-
field Q(ζ9)+ of Q(ζ9). For the Dirichlet character of conductor 9 and order 3 sending 2 to ζ3,
we find L a(E,χ) = 1

7 (3+ζ3). The correction factor here is the local factor (1+(1−ζ3)T )−1

evaluated at 1
3 which gives C(E,χ, 3) = 1

7 (5 + ζ3). We obtain L (E,χ) = 1
7 (2 + ζ3), which

is still not integral.

Example 6: Next we let E be the curve 150a1. This curve has additive reduction of type
III over Q, but has good reduction over Q(ζ5) with 10 points in the reduction. The curve
has a 2-torsion point defined over Q and over Q(ζ5) the torsion subgroup is of order 10.
Take χ to be the character of order 4 and conductor 5 sending 2 to i. Then the L-values are
L a(E,χ) = 1

5 (2 + i) which has norm 1
5 ; however L (E,χ) = 1

10 (3 + i) of norm 1
10 . The local

factor of L (E,χ, s) for the prime p = 5 is (1 + (2− i)T )−1 with T = 5−s. Again, L (E,χ)
is not integral, but this time we even have a new factor 2 in the denominator.

Example 7: Our final example is the curve 99b1 and the non-trivial character χ of con-
ductor 3. The values L a(E,χ) = 2 is integral, but L (E,χ) = 3

2 is not integral. It turns
out that the curve does not acquire any new torsion points over Kχ = Q(ζ3).

Table
The following table contains all (E,χ) for which the value of L a(E,χ) is not integral and
the conductor of E is below 100. Only one character χ for each conjugacy class is listed and
the trivial character is omitted for all curves.

The value of L a(E,χ) is only mentioned when it differs from L (E,χ). The fourth
column lists if the minimal discriminant ∆ is a square or not. We use t(Q) and t(Kχ) to
denote the order of the torsion subgroup of E(Q) and E(Kχ) respectively.

If the character χ is quadratic corresponding to Q
(√
D
)
, we write (D/·). Otherwise we

give the primitive elements that are sent to the d-th root of unity.

Table 1: All non-integral L (E,χ) for N < 100

Curve c0 c∞ �? t(Q) t(Kχ) m χ L a L (E,χ)

11a3 5 1 no 5 25 11 2 7→ ζ5 (2 + 4ζ5 + ζ25 + 3ζ35 )/5
14a4 3 1 no 6 18 7 3 7→ ζ3 (1− ζ3)/3
14a6 3 2 no 6 18 7 3 7→ ζ3 (1− ζ3)/3
15a3 2 2 yes 8 16 5 (5/·) 1/2
15a7 2 2 no 4 8 5 (5/·) 1/2
15a8 4 1 no 4 8 3 (−3/·) 1/2
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Curve c0 c∞ �? t(Q) t(Kχ) m χ L a L (E,χ)

15a8 4 1 no 4 16 5 2 7→ i (1 + i)/2
15a8 4 1 no 4 8 5 (5/·) 1/2
20a2 2 2 no 6 12 5 (5/·) 1/2
20a4 2 2 no 2 4 5 (5/·) 3/2
21a4 2 1 no 4 8 3 (−3/·) 1/2
21a4 2 1 no 4 8 7 (−7/·) 1/2
24a4 2 1 no 4 8 4 (−1/·) 1/2
24a4 2 1 no 4 8 3 (−3/·) 1/2
26a3 3 1 no 3 9 13 2 7→ ζ3 (2 + ζ3)/3
27a1 1 1 no 3 9 3 (−3/·) 1/3
27a2 1 1 no 1 3 3 (−3/·) 1/3
27a3 3 1 no 3 9 9 2 7→ ζ3 (2 + ζ3)/3
27a3 3 1 no 3 9 3 (−3/·) 1/3
27a4 3 1 no 3 9 9 2 7→ ζ3 (2 + ζ3)/3
32a1 1 1 no 4 8 4 (−1/·) 1/2
32a2 2 2 yes 4 8 4 (−1/·) 1/2
32a2 2 2 yes 4 8 8 (2/·) 1/2
32a3 2 2 no 2 4 4 (−1/·) 1/2
32a4 2 2 no 4 8 8 (2/·) 1/2
33a2 2 2 no 2 4 3 (−3/·) 1/2
33a2 2 2 no 2 4 11 (−11/·) 1/2
35a3 3 1 no 3 9 7 3 7→ ζ3 (1− ζ3)/3
36a1 1 1 no 6 12 3 (−3/·) 1/2
36a3 1 1 no 2 12 3 (−3/·) 1/2
40a3 2 2 no 4 8 5 (5/·) 1/2
45a1 1 1 no 2 8 3 (−3/·) 1/4 3/16
45a2 1 2 yes 4 8 3 (−3/·) 1/2 3/8
45a3 1 2 no 2 4 3 (−3/·) 1/2 3/8
45a4 1 2 yes 4 8 3 (−3/·) 1 3/4
45a5 1 2 yes 4 4 3 (−3/·) 2 3/2
45a6 1 1 no 2 8 3 (−3/·) 1 3/4
45a8 1 1 no 2 2 3 (−3/·) 2 3/2
48a1 1 2 yes 4 8 4 (−1/·) 1/2
48a2 1 2 no 2 4 4 (−1/·) 1/2
48a4 2 1 no 2 8 4 (−1/·) 1/4
48a4 2 1 no 2 4 3 (−3/·) 1/2
49a1 1 1 no 2 28 7 3 7→ ζ3 + 1 (3 + 2ζ3)/7
49a1 1 1 no 2 4 7 (−7/·) 1/2
49a2 1 2 no 2 14 7 3 7→ ζ3 + 1 (6 + 4ζ3)/7
49a3 1 1 no 2 4 7 (−7/·) 7/2
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Curve c0 c∞ �? t(Q) t(Kχ) m χ L a L (E,χ)

50a1 1 1 no 3 15 5 2 7→ i (1 + 2i)/5
50a2 1 1 no 1 5 5 2 7→ i (1 + 2i)/5
50b1 1 1 no 5 15 5 (5/·) 1/3
50b3 1 1 no 1 3 5 (5/·) 5/3
52a2 2 2 no 2 4 13 (13/·) 3/2
54a3 3 1 no 3 9 9 2 7→ ζ3 (1 + 2ζ3)/3
54b1 1 1 no 3 9 3 (−3/·) 1/3
54b2 1 1 no 1 3 3 (−3/·) 1/3
57b2 2 2 no 2 4 3 (−3/·) 1/2
57b2 2 2 no 2 4 19 (−19/·) 1/2
63a1 1 1 no 2 8 3 (−3/·) 1/4 3/8
63a2 1 2 yes 4 16 3 (−3/·) 1/2 3/4
63a3 1 2 no 2 8 3 (−3/·) 1/2 3/4
63a4 1 2 yes 4 8 3 (−3/·) 1 3/2
63a6 1 1 no 2 4 3 (−3/·) 1 3/2
64a1 1 2 yes 4 8 8 (2/·) 1/2
64a3 1 2 no 4 8 8 (2/·) 1/2
64a4 2 1 no 2 4 4 (−1/·) 1/2
64a4 2 1 no 2 4 8 (2/·) 1/2
64a4 2 1 no 2 4 8 (2/·) 1/2
72a1 1 1 no 4 8 3 (−3/·) 1/2 3/8
72a1 1 1 no 4 4 12 (3/·) 1 3/2
72a2 1 2 yes 4 8 3 (−3/·) 1 3/4
72a2 1 2 yes 4 8 12 (3/·) 1 3/2
72a3 1 2 no 2 4 3 (−3/·) 1 3/4
72a4 1 2 yes 4 4 3 (−3/·) 2 3/2
72a4 1 2 yes 4 16 12 (3/·) 1 3/2
72a5 1 2 no 2 8 12 (3/·) 1 3/2
72a6 1 1 no 2 2 3 (−3/·) 2 3/2
75a1 1 1 no 1 5 5 2 7→ i (2− i)/5
75b1 1 1 no 2 16 5 2 7→ i (3 + i)/2
75b1 1 1 no 2 8 5 (5/·) 1/4 5/16
75b2 1 2 yes 4 16 5 (5/·) 1/4 5/16
75b3 1 2 yes 4 16 5 (5/·) 1/2 5/8
75b4 1 2 no 2 8 5 (5/·) 1/4 5/16
75b5 1 2 yes 4 8 5 (5/·) 1 5/4
75b6 1 1 no 2 8 5 (5/·) 1 5/4
75b7 1 2 no 2 4 5 (5/·) 2 5/2
75b8 1 1 no 4 4 5 (5/·) 2 5/2
77b3 3 1 no 3 9 7 3 7→ ζ3 (2 + ζ3)/3
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Curve c0 c∞ �? t(Q) t(Kχ) m χ L a L (E,χ)

80a2 2 2 no 2 4 4 (−1/·) 1/2
80b1 1 1 no 2 12 4 (−1/·) 1/3
80b2 2 2 no 2 6 4 (−1/·) 1/3
80b2 2 2 no 2 4 5 (5/·) 1/2
80b4 2 2 no 2 4 5 (5/·) 1/2
90c1 1 1 no 4 12 3 (−3/·) 1/3 1/2
90c3 1 1 no 12 12 3 (−3/·) 1 3/2
98a1 1 1 no 2 36 7 3 7→ ζ3 + 1 (4 + 5ζ3)/3
98a1 1 1 no 2 12 7 (−7/·) 1/3 7/18
98a2 1 2 no 2 18 7 3 7→ ζ3 + 1 (8 + 10ζ3)/3
98a2 1 2 no 2 6 7 (−7/·) 2/3 7/9
98a3 1 1 no 2 12 7 (−7/·) 1 7/6
98a4 1 2 no 2 6 7 (−7/·) 2 7/3
98a5 1 1 no 2 4 7 (−7/·) 3 7/2
99b1 1 2 no 4 4 3 (−3/·) 2 3/2
99b2 1 2 yes 4 4 3 (−3/·) 2 3/2
99b3 1 2 no 2 4 3 (−3/·) 2 3/2
99b4 1 1 no 2 2 3 (−3/·) 2 3/2
99d1 1 1 no 1 5 3 (−3/·) 1/5 3/25
99d2 1 1 no 1 5 3 (−3/·) 1 3/5
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