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Abstract
We study the action of the Galois group G of a finite extension K/k of number fields on the

points on an elliptic curve E. For an odd prime p, we aim to determine the structure of the
p-adic completion of the Mordell-Weil group E(K) as a Zp[G]-module only using information
of E over k and the completions of K.
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1 Introduction
Let E be an elliptic curve defined over a number field k and let G be the Galois group of a finite
Galois extension K/k. The main aim is to study the action of G on the group E(K). In this
investigation we wish to go deeper than to decompose E(K) ⊗ C into irreducible representations
of G, instead we are interested in the integral representation theory of E(K). Since Z[G]-modules
can be very complicated even for small groups G, we will p-adically complete E(K) to get a Zp[G]-
module for a prime p. If p does not divide the group order of G, we would recover only the structure
of E(K)⊗Q and so we will focus on the case when p divides the degree [K : k].

Throughout the paper we will assume that p is an odd prime, that E(K) contains no p-torsion
elements (Assumption 2 in Section 6) and that the p-primary parts of the Tate-Shafarevich groups
X(E/L) are finite (Assumption 1 in Section 6) for all elliptic curves E and number fields L. The
main object of study is the p-adic completion M = E(K)⊗Zp of E(K) viewed as a Zp[G]-module.

Here is an example of the type of theorem obtained from our methods.

Theorem 1. Assume that G is isomorphic to the dihedral group Dp with 2p elements. Let F

be the intermediate field with [F : k] = 2 and let Ĕ be the quadratic twist of E with respect
to F . Assume that X(E/k) and X(Ĕ/k) contain no elements of order p, that K/F is everywhere
unramified and that all places v such that p divides the Tamagawa number cv of E or Ĕ split
in K/F . If rk E(k) + rk Ĕ(k) ⩽ 1, then the Zp[G]-isomorphism class of M = E(K) ⊗ Zp is
completely determined by rk E(k), rk Ĕ(k) and local information for E/K. Furthermore, in all
cases rk E(K) ⩽ p.
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By “local information for E/K”, we mean knowledge of E that can be computed over the
completions Kw of K at all places w in K. In practice, one only needs to know the type of
reduction, Tamagawa numbers and the number of points in the reduction at a finite number
of finite places. For k = Q, the above gives a fast way to determine M for most curves (see
Theorem 45). It is often much harder to calculate explicitly the group E(K): Searching for points
over large degree fields K can be very costly as well as bounding the rank by an infinite descent
because the class groups involved may be hard to determine.

Theorem 1 is stated for the dihedral group Dp since for this group we know the 6 distinct
isomorphism classes of indecomposable Zp[G]-modules. Even when the conditions of the theorem
do not hold, we can very often determine the decomposition of M into a direct sum of these
indecomposable modules using only easily accessible information. See Sections 7.1.1 and 7.3 for
examples illustrating this, and Example I for which we cannot determine E without having to
search for points.

For certain groups, including Dp, a theorem by Torzewski [44] lists the invariants we need to
know to determine M . (See Proposition 43.) Our task is to express them in terms of arithmetic
invariants of E. At least conjecturally, we could gain the knowledge of E(K)⊗Q from the order of
vanishing of L-functions of E twisted by the irreducible representations of G. Instead the so-called
Dokchitser regulator constants (see (3) for a definition) and the group cohomology H1(G, M) are
not as easy to access. This is the main reason that we focus our attention on the dihedral and
cyclic case here.

As expected the Zp[G]-structure of M is linked to the p-primary part X(E/K)[p∞] of the Tate-
Shafarevich group. Here is another simplified statement that can be deduced from our methods.

Theorem 2. Let E/Q be an elliptic curve and let K/Q be a cyclic extension of degree p. Write
u1 for the number of primes ℓ such that p divides the Tamagawa number cℓ and ℓ is inert in K/Q.
Denote by u2 the number of primes ℓ that ramify in K/Q such that the number of points in the
reduction of E over ℓ is divisible by p. If L(E, χ, 1) ̸= 0 where χ is a primitive character of K/Q
and u1 + u2 > rk E(Q), then the Fp-dimension of X(E/K)[p] is at least u1 + u2 − rk E(Q).

We produce this bound by studying the control theorem which links the p-primary Selmer group
of E/k with the G-invariant subspace of the p-primary Selmer group of E/K. The cokernel of the
restriction map α between them can be determined completely and we can effectively calculate
it using only local information and information of E over k. See Proposition 29 for a precise
statement.

One important ingredient for this calculation is to understand the cokernel of the norm map
E(Kw) → E(kv) where w is a place in K and v the place below w. This is analogous to the
main question in local class field theory and it has been studied before. In Proposition 13, we
will see that in the case that the ramification index ev is not divisible by p, the cokernel is cyclic
determined by the Tamagawa number cv and the residue class degree fv.

This leads to the local question. The p-adic completion E(Kw) ⊗̂ Zp of E(Kw) is finite unless
Kw is a p-adic field. If Kw is a p-adic field, then E(Kw) ⊗ Qp is isomorphic to Qp[Gw] where
Gw is the Galois group of Kw/kv. We determine the Zp[Gw]-structure explicitly for all reduction
types, when Kw is the unramified cyclic extension of kv = Qp in Theorem 26. Here is a simplified
statement not covering all cases.

Theorem 3. Let E be an elliptic curve over Qp with p ⩾ 5 and let Kw/Qp be the unramified
extension of degree p. Suppose that the reduction is anything but split multiplicative. Then we
are in one of the following three cases:

• If E(Qp) contains no element of order p, then E(Kw) ⊗̂ Zp
∼= Zp[Gw].

• If E(Qp) contains an element of order p, but E(Kw) contains no element of order p2, then
E(Kw) ⊗̂Zp is a non-split extension of Zp ⊕ ker

(
Zp[Gw]→ Zp

)
by the finite group Z/pZ with

trivial Gw-action.
• Otherwise E(Kw) is the direct sum of Zp[Gw] and a finite group of order p2 with a non-trivial

Gw-action.
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Underlying to this theorem is the complete classification of all Zp[G]-modules M in the case
G is cyclic of order p and M is a finitely generated Zp-module with a cyclic torsion part. See
Theorem 19 for the complete list.

This investigation here grew out of [12, 13] where the Zp[G]-structure of Selmer groups plays
an important role in trying to understand the explicit reformulation of the equivariant Birch and
Swinnerton-Dyer conjecture under restrictions on the elliptic curve. One of the motivations of our
work is to understand how to remove some of these restrictions; however the present paper does
not link to algebraic L-values yet. See [8, 11, 22].

Similar methods to the ones used here have been successful in obtaining results on the change
of Mordell-Weil groups, Selmer groups and Tate Shafarevich groups under finite extensions. For
instance, [10, 31, 46] use versions of the control theorem. Bartel in [1, 3] used regulator constants to
predict growth of the p-Selmer group in dihedral extensions. Our work can be seen as a continuation
and generalisation of these methods.

Ouyang and Xie [36] prove that the size of X(E/K) is unbounded as K varies through the
cyclic extensions K/k for a fixed curve E using further methods initiated by Mazur and Rubin as
in [32] and [33]. In [34], the latter show the following for any elliptic curve E over a number field k:
For a positive proportion of primes p, for all n ⩾ 1 and all finite set S of places in k, there are
infinitely many cyclic extensions K/k of degree pn such that all places in S split and E(K) = E(k).
Their emphasis is on constructing extensions K/k given a curve E/k, while we fix both and try to
determine as much as we can on E(K).

Representation theory, viewing E(K) ⊗ C as a C[G]-module, has produced lots of surprising
results already. Much of the work of Tim and Vladimir Dokchitser [20, 21] is centred around these
questions, especially in connection with parity phenomena. See [14] for a nice overview with plenty
of examples.

In [7], the authors use E(K) ⊗ Q as a Q[G]-module to make prediction about high order
vanishing of certain L-functions. Greenberg has used modular representation theory for Selmer
groups in [26] to obtain results about the growth of the rank in extensions K/k, however there k
is an infinite extension of Q. Finally, [9, 30] and other work by Macias Castillo and Bley contain
the study of E(K) ⊗ Zp as Zp[G]-modules. Instead the question to determine what E(K) is as a
Z[G]-module has attracted less attention, likely because it is much harder to say much about it.
However, Theorem 6 in [22] shows that the arithmetic of L-values should predict interesting results
in this direction.

The structure of this article is as follows. In Section 3 we will investigate the cokernel of the
norm map for a local extension. Part of these results are well-known, but we try to be as general as
possible. Then Section 4 is devoted to gathering results on the integral representation theory for a
cyclic group of order p, where we allow non-trivial torsion, and certain groups that are extensions
of cyclic groups by cyclic groups of order p. This is then used in Section 5 where we determine
the local group of points as a Zp[Gw]-module in the case of the unramified extension of degree p.
General results on the control theorem in a general global extension are presented in Section 6.
Finally they are applied to global extensions with cyclic or dihedral Galois groups in Section 7.
This section also includes a list of examples, which illustrate how to use the general method to
determine the Zp[G]-module structure.

2 Notations
Throughout, p is an odd prime and Zp denotes the ring of p-adic integers.

In general, for an abelian group Z, we denote the projective limit of Z/pnZ by Z ⊗̂ Zp, which
we call the p-adic completion of Z. If Z is finitely generated this coincides with Z ⊗Z Zp and, if
Z is finite, it is isomorphic to the p-primary torsion subgroup Z[p∞]. If Z is an discrete abelian
p-primary group, or a compact Zp-module, then Z∨ denotes the Pontryagin dual Hom(Z, Qp/Zp).

Throughout the paper G will stand for a finite group. For a Zp[G]-module M , we will write Mt

for the torsion subgroup of M and Mf to be the quotient of M by Mt. The action is always from
the left, even if we tend to write M⊗Qp for the Qp[G]-module obtained by extending the scalars. In
Section 4.3, we will define the saturation index ι(M). The Dokchitser regulator constants CΘ(M)
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and their valuation sΘ(M) are defined in Section 4.2. The groups Hi(G, M) refer to the usual
group cohomology with MG = H0(G, M) and Ĥi(G, M) is the modified version by Tate.

The symbols Zp, Z̆p, Zp{i}, A, Ă, A{i}, B, B̆ and B{i} denote indecomposable Zp[G]-modules
for the case when G is a cyclic group of order p as in Section 4.1, a dihedral group Dp or one of the
metacyclic groups as in Section 4.2. Furthermore by

{Z/piZ
∣∣ Zp

}
,

{Z/piZ
∣∣ A

}
and,

{Z/piZ
∣∣ Zp⊕A

}
we denote certain non-split extensions in the case of cyclic groups as explained in Theorem 19.
Proposition 17 and Lemma 18 contain the definitions of the finite modules Ji and Fi.

The symbols k and K will stand for fields such that K/k is an extension of group G. In
Sections 3 and 5 they are local fields, while they are number fields in the Sections 6 and 7. For a
place v in k, the completion is kv and Fv is the residue field. The discriminant is ∆k. The letters
e = ev and f = fv are the ramification index and residue class degree at a place v.

The letter E will stand for an elliptic curve defined over k, while E , E0
v , and Φv relate to the

Néron model as explained at the start of Section 3. If the reduction is good, we will use Ẽ(Fv) for
the group of points in the reduction. The Tamagawa number of E at the finite place v is denoted
by cv. The modified product C(E/k) of the Tamagawa number is defined in Section 7.

For a finite place v, the group D = Dv = Ĥ0(
G, E(Kw) ⊗̂Zp

)
is investigated in Section 3. The

p-primary Selmer group Sk of E appears first in Section 6. To shorten the notation, we will write
Xk = X(E/k)[p∞] for the p-primary part of the Tate-Shafarevich group. In Section 6, we will
encounter the maps α, β, γ, δ, ε and η. The capitulation is the kernel CK/k = ker η and DK/k

stands for the sum of Dv over all places in the set S containing all places of bad reduction for E,
all places ramified in K/k and all infinite places.

In Section 7, Ĕ denotes a quadratic twist of E. While rF is the rank of E(F ) for a field F , the
rank of Ĕ(F ) is r̆F .

3 The local norm
The aim of this section is to study the cokernel of the norm map on an elliptic curve under a
finite extension of local fields. The analogous question, which is central in local class field theory,
concerns the cokernel of the norm map on units. However the situation is more complicated here
and it will leads us to treat different cases apart. While this has been studied partially in many
situations, we try to be as general as possible.

Let k be a local field with valuation v and let K be a finite Galois extension with valuation w.
By Fv and Fw we will denote their residue fields, by Ov and Ow their rings of integers and by mw

and mw their maximal ideals. Let G be the Galois group of K/k. The ramification index is e and
f stands for the residue class degree of the extension K/k. The degree [K : k] = e · f is denoted
by n. When we write v | p, we mean that k is a finite extension of Qp. The group we wish to
determine is

D = Ĥ0(
G, E(K) ⊗̂ Zp

)
= coker

(
N: E(K) ⊗̂ Zp → E(k) ⊗̂ Zp

)
where Ĥ denotes Tate’s modification of group cohomology and E(K) ⊗̂Zp is the p-adic completion
lim←−E(K)/piE(K) of E(K).

Let Ev be the Néron model of E over the ring of integers Ov of k. Write E0
v /Ov for the connected

component of the identity, Ẽ0
v /Fv for its special fibre, and let Φv/Fv be the group of components

of the special fibre. If we have good reduction, we will simply write Ẽ for E0
v as there is no danger

of confusion. The Tamagawa number of E over k is denoted by cv = |Φv(Fv)|. We use similar
notation for E/K with v replaced by w.

Lemma 4. If v ∤ p, then we have an exact sequence of finite Zp[G]-module

0 // Ẽ0
w(Fw)[p∞] //E(K) ⊗̂ Zp

//Φw(Fw)[p∞] //0.

Note this does not necessarily mean that the G-fixed part of the outer terms of this sequence
are the corresponding groups for k as the Néron model may change in the extension.
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Proof. We claim that, even if the Néron model changes, we may choose the model over Ow such
that the subgroup E0

w(Ow) is a G-submodule. To prove this claim, we may assume that E has
bad reduction over K and hence over k, too. We may translate a chosen equation over Ov to
obtain a first Weierstrass model whose singular point over Fv is (0, 0). The Néron model over Ow

constructed starting from this equation satisfies the claim.
Since the kernel of E0

w(Ow)→ Ẽ0
w(Fw) is divisible by p, we have E0

w(Ow) ⊗̂Zp
∼= Ẽ0

w(Fw) ⊗̂Zp =
Ẽ0

w(Fw)[p∞]. The projective limit over m of the exact sequence

Φw(Fw)[pm] //E0
w(Ow)/pm //E(Kw)/pm //Φw(Fw)/pm //0

stays exact and the first term will vanish as Φw is finite.

Lemma 5. Suppose E has split multiplicative reduction over k. Let q ∈ Ov be the Tate parameter
such that E(k) ∼= k×/qZ. Then D is the quotient of the p-primary part of k×/ N(K×) by the group
generated by q.

Write Gp-ab for the Galois group of the maximal abelian p-extension within K/k. If rec : k× →
Gp-ab is the reciprocity map, then D is isomorphic to Gp-ab/⟨rec(q)⟩.

Proof. First recall that the reduction type of E is still split multiplicative over K with the same
parameter q. Since the torsion subgroup of E(K) is finite, we get a diagram with exact rows

0 // qZp //

��

K× ⊗̂ Zp
//

N
��

E(K) ⊗̂ Zp
//

N
��

0

0 // qZp // k× ⊗̂ Zp
// E(k) ⊗̂ Zp

// 0.

This shows that D, the cokernel on the right, is the quotient of the cokernel in the middle by the
subgroup generated by q.

Proposition 6. Suppose E has split multiplicative reduction over k and that v ∤ p.

• If p | cv and p | f , then D is non-trivial.

• If p ∤ gcd(f, cv) and p ∤ gcd
(
e, |F×

v |
)
, then D is trivial.

Note this leaves the case when p divides e and |F×
v |, but does not divide cv and f . In that last

case, it could be trivial or non-trivial, which can only be determined by a finer analysis.

Proof. Note that the reduction is still split multiplicative over K. Inserting our knowledge about
the curve with split multiplicative reduction into Lemma 4 shows that we have a commutative
diagram

0 // F×
w [p∞] //

[e]·NFw/Fv

��

E(K) ⊗̂ Zp
//

N
��

Z/ecvZ
//

��

0

0 // F×
v [p∞] // E(k) ⊗̂ Zp

// Z/cvZ
// 0.

The vertical map on the right sends 1 + ecvZ to f + cvZ. We deduce the exact sequence

Z/e (cv,f)Z //F×
v [p∞]/e //D //Z/(cv,f)Z //0

where the second term is the quotient of the p-primary component of F×
v by its e-th powers. If

p | gcd(cv, f), then D is non-trivial. If both terms next to D are trivial, i.e., when p ∤ gcd(cv, f)
and p ∤ gcd(e, |F×

v |), then D is trivial.
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3.1 Unramified places
Lemma 7. Suppose K/k is unramified. Then D ∼= Ĥ0(

G, Φv(Fw)[p∞]
)
.

Proof. Since we assume that the extension is unramified, the Néron model does not change: Ew =
Ev ×Ow and in particular Φw = Φv × Fw. It is shown in Section 4 of [23] that for an unramified
extension E0

w(Ow) is a cohomologically trivial G-module. From the fact that Φv(Fw) is finite, we
obtain the exact sequence

0 //E0
w(Ow) ⊗̂ Zp

//E(K) ⊗̂ Zp
//Φv(Fw)[p∞] //0.

Since the first term is cohomologically trivial, we get D ∼= Ĥ0(
G, E(K) ⊗̂ Zp

)
is isomorphic to

Ĥ0(
G, Φv(Fw)[p∞]

)
.

For any integer m, we will denote the highest power of p dividing m by gcd(m, p∞).

Lemma 8. Assume that K/k is unramified. Then D is a cyclic group of order c′ = gcd
(
cv, n, p∞)

.
In particular, D is trivial except possibly if either E has split multiplicative reduction over k

of Kodaira type In with p | n or if p = 3 and the special fibre of Ev is of Kodaira type IV or IV∗.

Proof. Since K/k is unramified Φw = Φv×Fw and D is a quotient of
(
Φw(Fw)[p∞]

)G = Φv(Fv)[p∞]
by Lemma 7. Therefore if p does not divide cv then D is trivial. From the assumptions that p ̸= 2,
the classification of bad fibres of elliptic curves implies that Φv(Fw) may contain a p-torsion element
only if the reduction is split multiplicative or if p = 3 and the type is IV or IV∗.

Assume that E has split multiplicative reduction in which case we may use Lemma 5. Since
the extension is unramified, the valuation v induces an isomorphism k×/ N(K×) to Z/nZ = Z/fZ.
As the valuation of the Tate parameter q is equal to the Tamagawa number cv, we find that D is
indeed cyclic of order c′.

If p = 3 and the fibre is of type IV or IV∗ with p = cv then Φv is the constant group scheme
Z/3Z. Therefore D ∼= Ĥ0(

G, Z/3Z
)

is the cokernel of multiplication by n on Z/3Z. So once again D is
cyclic of order gcd

(
cv, n, p∞)

.

If p were allowed to be 2, then we could in the same fashion go through all Kodaira types in
Tate’s algorithm and determine explicitly the group D from the type and the degree n.

3.2 Totally ramified places
In this subsection we assume K/k is totally ramified. We begin by considering the case where v
does not divide p.

Proposition 9. Suppose that v ∤ p.

• If the reduction of E is good then, then D ∼= Z/nZ where Z is the group Ẽ(Fv)[p∞].

• Suppose E has split multiplicative reduction with Tamagawa number cv and write q =
u ·N(πw)cv for a choice of a uniformiser πw of K and a unit u ∈ O×

v . Then D is isomorphic
to the quotient of the p-primary part of F×

v by its subgroup generated by u and by all n-th
powers.

• If E has non-split multiplicative reduction over k, then D is cyclic of order gcd
(
n, |Fv|+1, p∞)

.

• If E has additive reduction, then D is cyclic of order gcd
(
cv, n, p∞)

.
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Proof. Suppose first that the reduction is good over k. Then the reduction is also good over Ow

and Lemma 4 tells us that D ∼= Ĥ0(
G, Ẽ(Fw)[p∞]

)
. As the extension is totally ramified the action

of G is trivial on Z = Ẽ(Fw)[p∞]. We conclude that D is isomorphic to Z/n Z.
If the reduction is split multiplicative over k we use Lemma 5. Since the extension is totally

ramified and v ∤ p, the group k×/ N(K)× identifies with the quotient of F×
v by its n-th powers.

The group generated by q under this identification is the one generated by u.
Next, we treat the case when the reduction is additive with p ∤ cv. Then E(k)⊗̂Zp

∼= Ẽ0
v (Fv)[p∞]

by Lemma 4; this group is trivial as v ∤ p and therefore D is also trivial.
The same argument also works for non-split multiplicative reduction as the reduction will still

be non-split over K, except that Ẽ0
v (Fv) is now a cyclic group of order |Fv| + 1 with the trivial

action by G on it.
Finally, we are left with the case of reduction of type IV or IV∗ and cv = p = 3. If the reduction

is still of the same type over K, then E(K) ⊗̂Zp is isomorphic to Φw(Fw) ∼= Z/3Z with trivial action
by G. Hence in this case D is trivial unless 3 | n in which case it is cyclic of order 3 = cv.

Instead if the reduction type changes, the Tamagawa number cw must be coprime to 3. Then
E(K) ⊗̂ Zp is isomorphic to Ẽ0

w(Fw)[p∞] and has trivial action by G. But the G-fixed part is
E(k) ⊗̂ Zp which is cyclic of order 3. Yet again we can draw the same conclusion as before.

Now we consider one case when v divides p.

Proposition 10. Suppose v | p. Assume that K/k is totally ramified and that E has good
ordinary reduction over k. Let Z = Ẽ(Fv)[p∞] and let Y = Gp−ab be the maximal abelian
p-primary quotient of G. Then there is an exact sequence

Z
[
n

]
//Y/(1− α)Y //D //Z/n Z //0,

where α ∈ Z×
p is the unit root of the characteristic polynomial X2 − a X + #Fv = 0 of Frobenius

with a = #Fv + 1−#Ẽ(Fv).

Proof. Write Ê for the formal group associated to a minimal Weierstrass equation of E. Consider
the exact sequence

Ĥ−1(
G, Ẽ(Fw)[p∞]

)
//Ĥ0(

G, Ê(mw)
)

//Ĥ0(
G, E(K) ⊗̂ Zp

)
//Ĥ0(

G, Ẽ(Fw)[p∞]
)

where the very last map is surjective since the map E(k) ⊗̂ Zp → Ẽ(Fv)[p∞] is surjective. As the
extension is totally ramified, the two extremal non-trivial terms in the sequence are isomorphic to
the kernel and cokernel of multiplication by n on the group Z.

Let L be the maximal tame extension of k inside K. The wild ramification group G1 is the
p-Sylow subgroup of G and therefore Ĥ0(

G, Ê(mw)
) ∼= Ĥ0(

G1, Ê(mw)
)
. Now we use Theorem 1

in [29] by Lubin and Rosen, which applies as we assumed good ordinary reduction. This shows
that Ĥ0(

G1, Ê(mw)
) ∼= Gab

1 /(1− α)Gab
1 .

Recall that we say that E has anomalous reduction at a place of good reduction over k if p
divides #Ẽ(Fv).

Corollary 11. Suppose v | p. Assume that K/k is wildly ramified and that E has good ordinary
reduction over k. Then D is non-trivial if and only if E has anomalous reduction.

Proof. The group A in Proposition 10 is non-trivial if and only if E has anomalous reduction. In
that case D is non-trivial as n is divisible by p.

Instead assume that the reduction is not anomalous. Then 1− α divides the evaluation of the
characteristic polynomial at X = 1, which equals #Ẽv(Fv). Therefore 1−α ∈ Z×

p and therefore D
is trivial.

7



3.3 The general case
We drop any assumption on the local extension K/k. Recall that e is the ramification index, which
is the order of the inertia subgroup I.

Lemma 12. Let X be a G-module and let I ⩽ G be a normal subgroup. Then the following is an
exact sequence:

Ĥ−1(G, X) //Ĥ−1(G/I, XI) //Ĥ0(I, X)G/I
//Ĥ0(G, X) //Ĥ0(G/I, XI) //0.

In particular, if XI is cohomologically trivial as a G/I-module, then Ĥ0(G, X) is isomorphic to
Ĥ0(I, X)G/I .

Proof. The norm map with respect to G is equal to the composition XG = (XI)G/I → (XI)G/I →
(XI)G/I = XG where the first map ρ is induced by the norm map for I and the second is the norm
map for G/I. The result can now be deduced from the kernel-cokernel sequence, which gives the
desired exact sequence except that the term Ĥ0(I, X)G/I is replaced by coker ρ. But these two
groups are equal as taking G/I-coinvariants is right exact.

Proposition 13. If p ∤ e, then D is cyclic of order c′ = gcd(cv, n, p∞).

Proof. Apply the lemma with A = E(K)⊗̂Zp. The assumption that p ∤ e implies that Ĥ0(I, A) = 0.
Therefore D is reduced to the computation of the same group for the unramified extension KI/k
and that was done in Lemma 8.

More generally, this proof shows that D has a cyclic quotient of order c′ = gcd(cv, f, p∞) where
f is the residue class degree, for all local extensions.

Proposition 14. Suppose that p ∤ cv. If p = 3, assume further that f is odd or that the reduction
type is not IV or IV∗. If the reduction is non-split multiplicative of type In, assume that f is odd
or p ∤ n. Then D ∼= Ĥ0(

I, E(K) ⊗̂ Zp

)
G/I

where I is the inertia subgroup of G.

Proof. Let L be the subextension fixed by I with valuation w′. The assumption are made to assure
that the Tamagawa number of E over L is still not divisible by p: If the Tamagawa number cw′

over L is divisible by p, but not cv, then we must either be in the case IV or IV∗ and p = 3 or in
the case In with p | n. Further the group Φv acquires new points of order p in either cases, only if
L/k is of even degree.

Since L/k is unramified, the Néron model Ev does not change under the extension. Therefore
AI = E(L) ⊗̂Zp = E0

v (Ow′) ⊗̂Zp is a G/I-module that is cohomologically trivial, again by [23]. It
follows that D ∼= Ĥ0(

I, E(K) ⊗̂ Zp

)
G/I

by Lemma 12 with A = E(K) ⊗̂ Zp.

In practice this means that in these cases the calculation of D reduces to the totally ramified
case treated in Section 3.2. Here is one important example.

Proposition 15. Suppose E has good reduction and v ∤ p. Then D ∼= Z/eZ where Z = Ẽ(Fv)[p∞]
and e is the ramification index.

Proof. From the proof of Proposition 9, we see that Ĥ0(
I, E(K) ⊗̂Zp

)
is isomorphic to the group

Ẽ(Fw)[p∞]/eẼ(Fw)[p∞] as a G/I-module. Since the norm Ẽ(Fw) → Ẽ(Fv) is surjective, the
G/I-coinvariant space of E(Fw)[p∞] is E(Fv)[p∞].

While the results in this section do not cover all cases, they do cover a lot and in the remaining
ones one can often use the same methods to reduce it to a simple calculation. There is one major
exception to this, that is when we have wild ramification, but the reduction is not good ordinary.
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4 Representation theory
In his section, we will gather the representation theoretic results used later in the case that the
Galois group is either cyclic or dihedral. We should emphasis that this is integral representation
theory, in that we deal with Zp[G]-modules.

For a finite group G, we will say that M is a Zp[G]-lattice, or simply G-lattice, if it is a finitely
generated Zp[G]-module that is free as a Zp-module. As all modules will be finitely generated, we
say M is a finite module if it has finitely many elements, and no confusion should arise.

4.1 Cyclic group of order p

Let G be the cyclic group of order p. We will write τ for a generator of G.
This is of course the easiest group of interest and, not surprisingly, we can give clear classification

results for Zp[G]-modules. First, there are only two irreducible Qp[G]-modules, namely Qp and the
kernel of N: Qp[G] → Qp. The classification of indecomposable Zp[G]-lattices is also well-known
(see Section 34B of [16], though this goes back to [19] and [40]).

Proposition 16. There are exactly three isomorphism classes of indecomposable Zp[G]-lattices,
namely the trivial lattice Zp, the free module Zp[G] and the augmentation kernel A of N: Zp[G]→
Zp.

We may view A = (τ − 1)Zp[G] also as the ring Zp[ζ] with ζ a primitive p-th root of unity and
the action of τ ∈ G given by multiplication with ζ. It is important to note that Zp[G] and Zp ⊕A
are the only G-lattices of rank p over Zp. In this simple case the concepts of free and projective
coincide.

Proposition 17. For 1 ⩽ i ⩽ p, let Ji be the i-dimensional Fp-vector spaces and the action by τ
written as a unique Jordan block with 1 on the diagonal. Then these Ji are the only indecomposable
finitely generated Fp[G]-modules.

Proof. The action of G on a finite dimensional Fp-vector space is described by the matrix of the
action by the generator τ . This matrix can be put into Jordan normal form. The eigenvalues of a
matrix of order p must be 1 and the module is indecomposable if there is only one block. Such a
single Jordan block has order p if and only if its dimension is at most p.

For any i ⩾ 1, by Z/piZ we will mean the cyclic group of order pi with trivial action by G. For
i ⩾ 2, taking any other homomorphism G →

(Z/piZ
)×, which means picking an image w ̸= 1 in

1+pi−1Z/piZ for τ , defines a G-module Fi, which is a cyclic group of order pi but with a non-trivial
action by G. We may view w as a non-zero parameter in Z/pZ. There are really p − 1 different
non-trivial Z/piZ[G]-modules whose underlying group is cyclic of order pi, but we omit w from the
notation Fi.

Lemma 18. Let i ⩾ j ⩾ 0, If M is a finite Zp[G]-module, which is cyclic of order pi such that
MG is cyclic of order pj , then M is either Z/piZ and i = j or M is one of the Fi and i = j + 1 ⩾ 2.

Proof. If j < i, the action is non-trivial and we must have M ∼= Fi. Then MG = pM shows that
i = j + 1.

We are now interested in Zp[G]-modules M whose torsion part Mt is cyclic. We will use the
notation {X|Y } representing a non-split extension 0 //X //M //Y //0 . The ones
appearing in the following proposition will be constructed explicitly in its proof.

Theorem 19. Let M be a finitely generated Zp[G]-module and suppose that its Zp-torsion sub-
group Mt is cyclic. Then M is a direct sum of some of the following modules:
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M Ĥ0(G, M) H1(G, M) Conditions
Z/piZ Fp Fp i ⩾ 1
Fi 0 0 i ⩾ 1 and w ∈ F×

p

Zp Fp 0
A 0 Fp

Zp[G] 0 0{Z/piZ
∣∣ Zp

}
Fp 0 i ⩾ 1{Z/piZ

∣∣ A
}

0 Fp i ⩾ 1{Z/piZ
∣∣ Zp ⊕A

}
0 0 i ⩾ 1

The decomposition is unique up to reordering the summands.

Proof. Let M be a finitely generated Zp[G]-module. There is an exact sequence

0 //Mt
//M //Mf

//0 (1)

where Mf = M/Mt is a free, finitely generated Zp-module with an action by G. We assume that
Mt is a cyclic group, which implies by Lemma 18 that Mt is either Z/piZ or Fi for some i ⩾ 0.
Further by Proposition 16, the lattice Mf is a sum of Zp, A and Zp[G].

We are now going to prove the following three statements:

Ext1
G

(
Mf , Fi

)
= 0, Ext1

G

(
Zp, Z/piZ

) ∼= Fp, and Ext1
G

(
A, Z/piZ

) ∼= Fp. (2)

It is clear that Ext1
G(Zp[G], Fi) = 0 as Zp[G] is free and hence projective. The norm map on Fi

with w = 1 + pi−1z is the multiplication by

1 + w + w2 + · · ·+ wp−1 ≡ p + pi−1 p(p− 1)
2 z ≡ p (mod pi)

as p is odd. Therefore Ĥ0(
G, Fi

)
= F G

i / N(Fi) ∼= pFi/pFi = 0. By the Herbrand quotient on finite
modules H1(

G, Fi

)
= 0 and hence Ext1

G

(
Zp, Fi

)
vanishes, too.

Consider the short exact sequence 0 //Zp
N //Zp[G] //A //0 which yields

0 Ext1
G

(
A, Fi

)
oo HomG

(
Zp, Fi

)
oo HomG

(
Zp[G], Fi

)
.oo

By evaluation at 1 the right hand side identifies with pFi Fi
[p]oo and hence Ext1

G

(
A, Fi

)
= 0.

This concludes the proof for the first statement in (2)
Next, we see that Ext1

G

(
Zp, Z/piZ

) ∼= H1(
G, Z/piZ

) ∼= Z/pZ. Also with the same method as above,
we find Ext1

G

(
A, Z/piZ

) ∼= Z/pZ as it is the cokernel of the map [p] on Z/piZ. This concludes all
statements in (2).

We conclude that the only direct summands appearing in M are Z/piZ, Fi, Zp, A, Zp[G] as well
as any non-split exact sequence

0 //Z/piZ //M //Za
p ⊕Ab //0

with a, b ⩾ 0. By the above such short exact sequences are parametrised by Ext1
G

(
Za

p⊕Ab, Z/piZ
) ∼=

Fa+b
p . We are now going to show that there are only three distinct Zp[G]-modules among these

non-split exact sequences.
First, we proceed to construct the extensions explicitly. First, for any u ∈ Hom

(
Za

p,Fp

)
, we set

Mu to be Z/piZ × Za
p as a Zp-module, but with the action by a generator τ ∈ G defined by

τ · (t, x) = (t + u(x) pi−1, x) for t ∈ Z/piZ and x ∈ Za
p.
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Then
0 //Z/piZ //Mu

//Za
p

//0

is an non-split extension of Zp[G]-modules.
The connecting homomorphism Za

p → H1(
G, Z/piZ

)
≈ Z/pZ is equal to u, which shows that these

are distinct extensions and they are non-split when u ̸= 0. Assume u ̸= 0, we find MG
u consists of

all (t, x) with x ∈ ker u. The norm map on Mu sends (t, x) to

N(t, x) =
p−1∑
j=0

(
t + j · u(x) pi−1, x

)
=

(
pt + p p−1

2 u(x)pi−1, px
)

=
(
pt, px

)
as p is odd. Therefore Ĥ0(G, M) ∼= Fa

p and H1(G, M) = 0.
Next, for any Zp-linear v :

(
A/(τ − 1)A)b → Z/pZ, we will build an extension

0 //Z/piZ //M ′
v

//Ab //0

as follows. We identify A with Zp[ζ] where ζp = 1 and the action by τ is by multiplication
with ζ. We define M ′

v as the Zp-module Z/piZ × Zp[ζ]b together with the action by τ given by
τ(t, y) = (t + fv(y), ζ · y) where fv is a Zp-linear map Ab → Z/piZ such that fv

(
p

1−ζ y
)

reduces to
v(y) modulo p for all y. This fv exists as the condition only imposes the values on a b dimensional
Fp-subspace of the b(p− 1) dimensional space (A/pA)b. We find for 0 ⩽ j < p

τ j (t, y) =
(
t + fv(y) + fv(ζ y) + · · ·+ fv(ζj−1y), ζjy

)
=

(
t + fv( 1−ζj

1−ζ y), ζjy
)
.

and therefore

N(t, y) =
(

pt +
p−1∑
j=0

fv

(
1−ζj

1−ζ y
)

,

p−1∑
j=0

ζjy

)

=
(

pt + fv

(p−1∑
j=0

(1− ζj) y
1−ζ

)
, 0

)
=

(
pt + fv( p

1−ζ y), 0
)

The connecting homomorphism Ĥ−1(G, Ab) → Ĥ0(
G, Z/piZ

)
identifies with v. When v ̸= 0, then

Ĥ0(G, Mv) = 0 and H1(G, Mv) ∼= Fb
p.

Finally the extension Mu,v is defined as the group Z/piZ × Za
p × Ab with τ acting on (t, x, y)

by (t + u(x)pi−1 + fv(y), x, ζ y) with u, v and fv as above. It is not hard to calculate that
dimFp Ĥ0(

G, Mu,v

)
= a− 1 and dimFp H1(

G, Mu,v

)
= b− 1.

With the above, we have explicitly constructed all extensions in

Ext1(
Za

p ⊕Ab, Z/piZ
) ∼= Hom

(
Zp,Fp

)
⊕HomZp[ζ]

(
Zp[ζ],Fp

) ∼= Fa
p ⊕ Fb

p.

The group AutG

(
Za

p ⊕ Ab
)

acts from the left on this extension group and this action does
not change the isomorphism class of Mu,v as a Zp[G]-module. The group acting is isomorphic
to GLa(Zp) × GLb(Zp[ζ]) and, for α ∈ GLa(Zp)and β ∈ GLb(Zp[ζ]), the action on (u, v) gives(
u ◦ α−1, v ◦ β−1)

. It follows that there are four orbits on Fa
p ⊕ Fb

p corresponding to u and v being
zero or non-zero. We set

{Z/piZ
∣∣ Zp

}
:= Mu,

{Z/piZ
∣∣ A

}
:= Mv and

{Z/piZ
∣∣ Zp ⊕ A

}
:= Mu,v

for any choice of non-zero u and v with a = b = 1. For larger a or b, we can split off a− 1 direct
summands of Zp and b− 1 direct summands of A.

The last statement, that the direct sum is unique, is a consequence of the Krull-Schmidt-
Azumaya Theorem (See Theorem 6.12 in [16]).

Lemma 20. There are non-trivial extensions 0 //Zp[G] //M //F //0 where F is one
of the following finite G-module: F = Z/pZ, F = FpG or F ∼= F2. Moreover
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1. If F = Z/pZ then M ∼= Zp ⊕A as a Zp[G]-module.

2. If F ∼= F2 or if F = FpG and Mt is cyclic, then either M ∼= Zp[G] or M =
{Z/pZ

∣∣ Zp ⊕A
}

.

Proof. For the first statement, we need to compute Ext1(
F,Zp[G]

)
. Let pk be the exponent of F

as an abelian group and consider the multiplication by pk on Zp[G]. From

HomG

(
F,Zp[G]

)
= 0 //HomG

(
F, Z/pkZ[G]

)
//Ext1(

F,Zp[G]
) [pk]=0 //Ext1(

F,Zp[G]
)

we see that Ext1(
F,Zp[G]

) ∼= HomG

(
F, Z/pkZ[G]

)
. First the map from F2 with parameter w ∈

1+p Z/p2Z to Z/p2Z[G] sending 1 to
∑p−1

i=0 w−iτ i is a G-equivariant map; therefore Ext1(
F2,Zp[G]

)
̸=

0. Since HomG

(Z/pZ,Fp[G]
)

= Z/pZ and HomG

(
Fp[G],Fp[G]

)
̸= 0 we also have the non-trivial

extensions in the other cases.
Assume now M is such a non-trivial extension. Since Zp[G] is cohomologically trivial, we have

Hi(G, M) = Hi(G, F ). Note also that Mt injects into F , but it cannot surject otherwise the
extension would be split.

For F = Z/pZ the non-trivial extensions must then be torsion-free. Since H1(
G, Z/pZ

)
= Z/pZ,

the table in Theorem 19 tells us that M must be isomorphic to Zp ⊕A.
If F ∼= F2, then Mt is either trivial or Z/pZ. Since H1(G, F2) = 0, this only leaves Zp[G] or{Z/pZ

∣∣ Zp ⊕ A
}

; in the first case 1 ∈ Zp[G] is sent to τ − w̃, where w̃ ∈ Z×
p is a lift of w, in the

second case it is sent to (0, p, 1) ∈Mu,v.
If F = Fp[G] and Mt is cyclic then Mt has at most p elements. We reach the same conclusion

as above given that H1(
G,Fp[G]

)
also vanishes. Also here it is possible to write down an explicit

extension.

4.2 Metacyclic groups
Despite being interested mainly in the dihedral case, we present the results in a slightly more
general setting. Let m be a positive divisor of p− 1. Let ξ be a choice of a primitive m-th root of
unity in Zp. Let r ∈ Z such that r ≡ ξ (mod p) so that rm ≡ 1 (mod p). In this section we treat
the case of the metacyclic group

G =
〈
τ, σ

∣∣ τp = σm = 1 and στ = τ rσ
〉

of order pm. We write N for the normal subgroup generated by τ and H for the subgroup generated
by σ; so G = N ⋊ H. This includes the case G is the dihedral group Dp when m = 2 and r = −1.

For i ∈ Z/mZ, we define the G-lattice Zp{i} which, as a group, is just Zp, the action by τ is
trivial and by σ is the multiplication with ξi. We have Zp

[
G/N

] ∼= ⊕m−1
i=0 Zp{i} as the index of

N in G is coprime to p.
Next, we define A as the group Zp[ζ] where ζ is a primitive p-th root of unity. The group

action is defined by letting τ act as multiplication by ζ and σ(ζj) = ζrj for all 0 ⩽ j < p. For any
0 ⩽ i < m, we set A{i} = A⊗Zp

Zp{i}. It follows that IndG
N (A) ∼=

⊕m−1
i=0 A{i}. The complete list

of simple Qp[G]-modules is given by Zp{i} ⊗Qp and A{i} ⊗Qp.
Finally, let B = Zp

[
G/H

]
and set B{i} = B ⊗Zp

Zp{i}. Then Zp[G] ∼=
⊕m−1

i=0 B{i}. We have
a non-split exact sequence

0 //A{i} //B{i} //Zp{i} //0

for all 0 ⩽ i < m.
The following was found by Pu in [38]. See [27] for the case of dihedral groups.

Proposition 21. The lattices Zp{i}, A{i} and B{i} for 0 ⩽ i < m represent all isomorphism
classes of indecomposable finitely generated Zp[G]-lattices.
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Proof. Since [G : N ] is coprime to p, the proof of Proposition 33.4 in [16] shows that all indecom-
posable modules are summands of IndG

N (X) as X runs through all indecomposable N -lattices. The
proposition follows now from Proposition 16 and IndG

N (Zp) =
⊕m−1

i=0 Zp{i}, IndG
N (A) =

⊕m−1
i=0 A{i}

and IndG
N (Zp[N ]) =

⊕m−1
i=0 B{i}.

As all B{i} are direct summands of the free Zp[G], they are projective G-lattices. Therefore
they are cohomologically trivial. Write Fp{i} for the G-module Zp{i}/pZp{i}. Then we have that
Ĥ0(

N,Zp{i}
) ∼= Fp{i} and H1(

N, A{i}
) ∼= Fp{i} as G/N -modules.

Unlike for the cyclic group, the decomposition of a Zp[G]-lattice M into indecomposable lattices
cannot be determined by knowing the Qp[G]-module M⊗Qp and the cohomology groups Ĥi

(
N, M)

only. In [44], Torzewski considered an additional invariant, which we are going to introduce next.
For a general finite group G, we say that a Zp[G]-lattice M is rationally self-dual if HomQp

(
M⊗

Qp,Qp) ∼= M ⊗ Qp as Qp[G]-modules; equivalently there is a non-degenerate G-equivariant sym-
metric bilinear pairing β : M ×M → Qp. If M ∼= M̃ ⊗Z Zp for some Z[G]-lattice M̃ then it is
automatically rationally self-dual. All Zp[G]-lattices are rationally self-dual if G is the cyclic group
of order p or the dihedral group of order 2p. Instead for our group G, any rationally self-dual
lattice is a (not necessarily unique) direct sum of

Zp, A, B, A{i}, Zp{i} ⊕ Zp{−i}, B{i} ⊕ Zp{−i}, B{i} ⊕B{−i} for 0 < i < m
2

as well as B{m
2 }, Zp{m

2 } when m is even.

A Brauer relation for G is a formal sum Θ =
∑

H aH H of subgroups H ⩽ G with coefficients
aH ∈ Z such that

⊕
H Q

[
G/H

]aH is zero as a virtual representation of G. For our group G, all
Brauer relations can be obtained from Artin’s induction theorem, see Theorem 2.10 in [44]: For
each divisor 1 < d | m, let

Θd = 1− d ·Hd −N + d ·Gd

where Hd is the subgroup of H of order d and Gd = N ⋊ Hd.
To every Brauer relation Θ =

∑
H aH H and every rationally self-dual Zp[G]-lattice M one

associates a Dokchitser regulator constant CΘ(M) ∈ Q×
p /□ where □ =

{
z2

∣∣ z ∈ Z×
p

}
by

CΘ(M) =
∏
H

det
( 1
|H|

β
∣∣∣ MH

)aH

·□ (3)

where β is the G-equivariant pairing on M . See [20] for the basic properties, including the fact that
the definition is independent of the choice of β. The special case of dihedral groups was already
worked out by Bartel in Theorem 4.4 in [2].

We are interested in the integer sd(M) defined to be the p-adic valuation of CΘd
(M). As proved

in [44, Theorem 1.1], the kernel of the map s = ⊕sd from the Q-vector space with basis Zp[G/U ]
as U runs through all subgroups U ⩽ G to Q is equal to the subspace generated by all cyclic U .

Proposition 22. Let 1 < d be a divisor of m and 0 < i < m. We have sd

(
Zp

)
= 1 − d and

sd

(
Zp{i}⊕Zp{−i}

)
= 2. Also sd(A) = d− 1 and sd

(
A{i}

)
= 2i− 1− d and sd

(
B{i}⊕Zp{−i}

)
=

2i + 1 − d and sd

(
B

)
= rd

(
B{i} ⊕ B{−i}

)
= 0. Further, if m is even, sd

(
Zp{m

2 }
)

= 1 and
sd

(
B{m

2 }
)

= 0.

Note that sd can not be extended to an additive function on all lattices. The result in the
proposition can be deduced from the explicit and more general calculation by Torzewski in [44,
Proof of Theorem 4.1] where he found that sd

(
Zp[G/Ge]

)
= (1− gcd(d, e)) ·m/e/d for any d and e

dividing m. We proceed here to calculate it directly on all the minimal rationally self-dual lattices.

Proof. By Proposition 2.45.(3) in [20], the regulator constants satisfy CΘd
(M) = CΘd

(
M |Gd

)
, which

implies that we may restrict to the case when d = m. We will write C for CΘm
. To show that

C
(
Zp

)
= p1−m is a direct calculation on the definition. The same goes for C

(
Zp{i}⊕Zp{−i}

)
= p2

using the bilinear form
(

0 1
1 0

)
for all 0 < i < m. From the additivity of the regulator constant, see

Corollary 2.18 in [20], we may conclude that C
(
Zp{m

2 }
)

= ±p for even m.
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Let w =
∑m−1

j=0 ξ−jζrj ∈ A. It satisfies σ(w) = ξ · w. Using that ξ ≡ r (mod p), we find

w ≡
( m−1∑

j=0
ξ−j

)
+

(m−1∑
j=0

ξ−jrj
)
· (ζ − 1) ≡ 0 + m · (ζ − 1) ̸≡ 0 (mod (ζ − 1)2).

Consider the map A⊗Zp{i+1} → A⊗Zp{i} sending a⊗z to aw⊗z. Its image is (ζ−1)A⊗Zp{i},
which is of index p. Therefore we have the short exact sequence of Zp[G]-modules

0 //A{i + 1} //A{i} //Fp{i} //0. (4)

We conclude that A{i + 1} has index p in A{i} and that A{i + 1}H = A{i}H for all 0 < i < m.
Using A{i}N = A{i}G = 0, for all 0 < i < m, we have

C
(
A{i + 1}

)
=

det
(
β

∣∣ A{i + 1}
)

det
( 1

m β
∣∣ A{i + 1}H

)m =
p2 det

(
β

∣∣ A{i}
)

det
( 1

m β
∣∣ A{i}H

)m = p2 · C
(
A{i}

)
.

Thus C
(
A{i}

)
= p2(i−1) ·A{1} for all 1 ⩽ i ⩽ m. Since

⊕m
i=1 A{i} ∼= IndG

N (A), we find

C
(
IndG

N (A)
)

=
m∏

i=1
C

(
A{i}

)
= C

(
A{1}

)m · pm(m−1).

But since CΘm

(
IndG

N (A)
)

= CResN (Θm)
(
A

)
by Proposition 2.45 in [20] and the restriction of Θm

to N is trivial, we get C
(
A{1}

)m = p−m(m−1). Hence sm

(
A{1}

)
= 1 − m and by the above

recursion formula sm

(
A{i}

)
= 2 i − 2 + 1 − m = 2 i − 1 − m for all 1 ⩽ i ⩽ m. In particular

sm(A) = sm

(
A{m}

)
= m− 1.

Just as before C
(
B

)
= C

(
Zp[G/H]

)
= 1 because the restriction of Θm to H is trivial; that is

Lemma 2.46 in [20].
Consider the map

Φ: Zp

[
G/H

]
→ Zp ⊕A

p−1∑
i=0

ai τ iH 7→
(p−1∑

i=0
ai,

p−1∑
i=0

aiζ
i
)

It is an injective G-equivariant map whose image is
{

(x, a) ∈ Zp⊕A
∣∣ x ≡ a (mod ζ−1)

}
of index

p. We deduce the exact sequence

0 //B{i} ⊕ Zp{−i} //A{i} ⊕ Zp{i} ⊕ Zp{−i} //Fp{i} //0

for all i. When 0 < i < m, then the G and H-invariant parts of the first two terms are equal, while
the N -invariant parts are of index p. The same reasoning as above concludes now that

C
(
B{i} ⊕ Zp{−i}

)
= C

(
A{i} ⊕ Zp{i} ⊕ Zp{−i}

)
= C

(
A{i}

)
· C

(
Zp{i} ⊕ Zp{−i}

)
and hence sm

(
B{i} ⊕ Zp{−i}

)
= 2 i− 1 + m + 2 = 2 i + 1−m.

Finally

C
(
B{i} ⊕B{−i}

)
· C

(
Zp{i} ⊕ Zp{−i}

)
= C

(
B{i} ⊕B{−i} ⊕ Zp{i} ⊕ Zp{−i}

)
= C

(
B{i} ⊕ Zp{−i}

)
· C

(
Zp{i} ⊕B{−i}

)
shows that, for 0 < i < m, we have sd

(
B{i}⊕B{−i}

)
= 2 i+1−m+2(m− i)+1−m−2 = 0.

In the special case m = 2, when the group is dihedral, all G-lattices are rationally self-dual.

Theorem 23. Let p > 2 be a prime and let G = Dp. Then a Zp[G]-lattice is determined up to
isomorphism by the knowledge of
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• M ⊗Qp as a Qp[G]-module,
• H1(N, M) as a Fp[G/N ]-module, and
• the regulator constant s(M) = ordp

(
CΘ2(M)

)
.

This is explained in [44, Section 7.1], but can also be read off the Table 1 below. This theorem
does not extend to the more general meta-cyclic groups even if one restricts to rationally self-dual
G-lattices.

4.3 Saturation index
Given a finite group G and a Zp[G]-module M , we define the saturation index ι(M) to be the
quotient of M by the subgroup generated by all MH where H runs through all non-trivial cyclic
subgroups of G. Alternatively, it is the quotient of M by the sub-Zp[G]-module generated by all
MH where H runs through a set of representatives of all conjugacy classes of non-trivial cyclic
subgroups of G.

ι(M) = M∑
cyclic H⩽G MH

.

This index and its generalisations appear dominantly in the work of Bartel and de Smit [4, 2]. By
Artin’s induction theorem ι(M) is a finite Zp[G]-module for all non-cyclic groups G.

We call ι(M) the saturation index because of the following observation in the case of M being
the p-adic completion of E(K) for some elliptic curve. If we need to determine E(K) explicitly,
then we would start by a search for points in E(KH) for proper subgroups H as this is quicker than
searching in E(K) directly. These points then generate a submodule of E(K) of finite index and
there is an effective algorithm [37], called a p-saturation, to calculate the full M . This algorithm
effectively calculates ι(M), though usually only it size is of interest. Unfortunately, at this stage,
we have no means to relate the invariant ι(M) directly to arithmetic information of E that is easier
to calculate than M itself. We may use it to determine M once we have E(KH) for all non-trivial
cyclic H, without having to calculate the matrices representing the action of G on the generators
of E(K).

Note also that the functor ι is additive ι(M ⊕M ′) = ι(M)⊕ ι(M ′) but it does not behave well
in short exact sequences.

Proposition 24. Let G be a meta-cyclic group of order pm as in (4.2). Then ι(M) is trivial for
M isomorphic to A, B or Zp{i} for any i and

ι
(
A{i}

) ∼= ι
(
B{i}

) ∼= m−i⊕
k=1

Fp{k}

for any 0 < i < m.

This extends the calculation by Bartel in [2] to more general meta-cyclic groups.

Proof. If M = Zp{i} for any i then MN = M and therefore ι(M) = 0. Similarly ι(A) = 0 as
AH = A. Also ι(B) = 0 because the element 1 H ∈ Zp

[
G/H

]
generates B and it is fixed by the

action of the cyclic group H.
Let now m > i > 0 and M = A{i}. Since MN = 0, we only need to find MH . From sequence (4)

we find that A{i + 1}H is isomorphic to A{i}H . Hence by induction A{i}H = (ζ − 1)m−iA{i} and
ι
(
A{i}

)
=

⊕m−i
k=1 Fp{k}.

If we identify B{i} with the subset of (a, z) ∈ A{i} ⊕Zp{i} such that a ≡ z (mod ζ − 1), then
we find

(
B{i}

)N =
{

(0, z)
∣∣ z ∈ pZp

}
and

(
B{i}

)H =
{

(a, 0)
∣∣ a ∈ (ζ − 1)m−i

}
. It follows that

ι
(
B{i}

) ∼= ι
(
A{i}

)
.

The following can be read out directly from Table 1 below.

Proposition 25. The last entry in the list in Theorem 23 can be replaced by
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• dimFp
ι(M).

4.4 Summary
In Table 1 we summarise the information gathered about Zp[G]-lattices, in case G = Dp. We write
Z̆p for Zp{1}, as well as Ă = A{1}, and B̆ = B{1}, and F̆p = Fp{1}.

Table 1: Invariants of lattices for the dihedral group Dp

M Zp Z̆p A Ă B B̆

rk M 1 1 p− 1 p− 1 p p

rk MH 1 0 p−1
2

p−1
2

p+1
2

p−1
2

rk MN 1 1 0 0 1 1
rk MG 1 0 0 0 1 0

Ĥ0(N, M) Fp F̆p 0 0 0 0
H1(N, M) 0 0 Fp F̆p 0 0

s(M) −1 1 1 −1 0 0
dimFp

ι(M) 0 0 0 1 0 1

5 The group of local points in a cyclic extension
In this section, we determine the Zp[G]-structure of the group of points on an elliptic curve for
some local extension. The method in this section could be applied to an arbitrary extension whose
group is one we understand the Zp[G]-modules that could arise. However we will concentrate on
the simplest extension and it turns out that the answer is already quite involved.

Theorem 26. Let p > 2 be a prime and let K/Qp be the unramified extension of degree p. Let
E/Qp be an elliptic curve. Suppose that, if p = 3, the curve has not additive reduction of type IV
or IV∗. Unless the reduction is split multiplicative and the Tamagawa number cv is divisible by p,
we are in one of the following three cases:

|E(Qp)[p]| 1 p p
|E(K)[p]| 1 p p2

E(K) ⊗̂ Zp Zp[G]
{
Z/pZ

∣∣ Zp ⊕A
}

F2 ⊕ Zp[G]

If the reduction is split multiplicative and p | cv, then set j = ordp(cv) and |E(Qp)[p∞]| = pi.
Then we are in one of the following cases:

i = 0 j = i > 0 j > i > 0
E(K) ⊗̂ Zp Zp ⊕A Z/piZ ⊕ Zp[G]

{Z/piZ
∣∣ A

}
⊕ Zp

Proof. Let M ∼= E(K)⊗̂Zp. Since the formal logarithm induces a Qp[G]-isomorphism M⊗Qp → K,
we have M ⊗ Qp

∼= Qp[G]. Since K is unramified, the p-th roots of 1 cannot be contained in K
and therefore Mt = E(K)[p∞] is cyclic. Hence the classification in Theorem 19 applies.

From Lemma 7, we know that D = Ĥ0(G, M) is cyclic of order p if the reduction is split
multiplicative and p | cv and otherwise it is trivial.

Assume D is trivial. If the reduction is split multiplicative then p ∤ cv and as the Tate parameter
q of E has a valuation that is not a multiple of p, there cannot be any points of order p on E(Qp).
For other types of reduction, we know that both the formal group Ê(pZp) and the group of
components Φ(Fp) have no elements of order p, which means that E(Qp)[p∞] injects into Ẽ0

v (Fp).
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By the Hasse-Weil bound in the case of good reduction and by direct considerations in the case
of bad reduction, we deduce that E(Qp)[p∞] is either trivial or cyclic of order p. In the first case
Mt = E(K)[p∞] is also trivial and the only option for M is then Zp[G]. In the second case, Mt is
either Z/pZ or F2, which explains the other two entries in the first table.

We can now assume that the reduction is split multiplicative and p divides cv. So D is cyclic
of order p. Set j = ordp(cv) > 0 and i such that pi is the order of E(Qp)[p∞].

Since Mt injects into Φ(Fw)[p∞] ∼= Z/pjZ, we must have Mt
∼= Z/piZ as a Zp[G]-module. There-

fore, we must have j ⩾ i. If i = 0, then the classification limits us to only one option, namely
M ∼= Zp⊕A. If i > 0, then let P be a point of exact order pi on E(Qp) and consider the isogeny from
E to E′ whose kernel is generated by P . In terms of the Tate curve, this map K×/qZ → K×/q′Z

is induced from the identity map and (q′)pi = q. Now the order of the torsion subgroup of E′ is
no longer divisible by p as q′ is not a p-power in Qp. This implies that E′(K) ⊗̂ Zp is isomorphic
to Zp ⊕A or Zp[G] depending on whether the Tamagawa number c′

v of E′ is divisible by p or not.
If p ∤ c′

v, then j = i and the extension between Z/piZ and Zp[G] must split.
Instead if p | c′

v, then j > i. The only extensions of Z/piZ and Zp ⊕ A with D ∼= Z/pZ are{Z/piZ
∣∣ Zp

}
⊕ A or

{Z/piZ
∣∣ A

}
⊕ Zp. We can exclude the first case because the map from

MG = E(Qp) ⊗̂ Zp to E′(Qp) ⊗̂ Zp must be surjective.

The same proof should work if k = Qp is replaced by a finite extension of Qp with ramification
index less than p − 1. The case of reduction IV and IV∗ when p = 3 can be treated as well but
they are more complicated as illustrated by the last example in this section.

5.1 Examples
To cover all possible cases with split multiplicative reduction it is enough to look at Tate curves
whose parameters are, say,

q = ppj

· (1 + p)pi

=
(

ppj−i

· (1 + p)
)pi

with integers j ⩾ i ⩾ 0. This q is a pi-th power so there are pi-torsion points in E(Qp). Since 1+p
is not a p-th power, we get E(Qp)[p∞] = Z/piZ. Also vp(c) = vp(vp(q)) = j.

For the two additive cases, we can take the following two examples. First E : y2 + y = x3 over
Q3 has additive reduction of type II. There is a 3-torsion point (0, 0) in E(Q3). Hence E(K) ⊗̂Zp

must be
{Z/pZ

∣∣ Zp ⊕A
}

.
Secondly, E : y2 + y = x3 − 270 x− 1708 has additive reduction of type II∗ over Q3. This time

one can show that E(Q3) does not contain a point of order 3 directly by checking the roots of the
3-division polynomial. Alternatively on can use the map ∂ in the exact sequence

0 //E(Qp)[p] //Ẽ0(Fp)[p] ∂ //Ê(pZp)/pÊ(pZp)

For instance the point P = (1, 3 + 32 + 2 · 33 + · · · ) has non-trivial non-singular reduction. Then
Q = 3P = (3−2+2·32+· · · , 2·3−3+2·3−2+· · · ) belongs to Ê(pZp) but not to pÊ(pZp) = Ê(p2Zp).
Therefore ∂(P̃ ) = Q + pÊ(pZp) is non-trivial. It follows that E(Qp)[p] is trivial and E(K) ⊗̂Zp is
isomorphic to Zp[G].

Now to curves with good reduction. The curve y2 +x y+y = x3−171 x−874 has good ordinary,
anomalous reduction P̃ = (1, 0) over Q3. With the methods from the previous case one can show
that E(Qp)[p] is trivial in this case. Thus E(K) ⊗̂ Zp is a free.

Instead the curve E : y2 + x y + y = x3 + 4 x− 6 has also good ordinary, anomalous reduction
over Q3, but it contains a 3-torsion point (2, 2). It can be shown that this point does not become
divisible by 3 in K. Therefore E(K) ⊗̂ Zp must be isomorphic to

{Z/pZ
∣∣ Zp ⊕A

}
.

Finally, here an example when E(K)⊗̂Zp must be F2⊕Zp[G]. The curve E : y2+y = x3+x2+x
has a 3-torsion point T = (0, 0) and it has good reduction over Q3. The extension K can be obtained
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by adjoining t to Q3 with t3 + 2 t + 1 = 0. Then the point

S =
(
(t2 + 2 t + 2) + (2 t2 + t + 1) · 3 + (t2 + t + 2) · 32 + (2 t + 2) · 33 + · · · ,

(t2 + t + 1) + (t + 2) · 3 + t2 · 32 + (2 t2 + 2 t + 1) · 33 + · · ·
)

is such that 3 S = T .
Therefore we have found explicit examples for all possible ZpG-modules in Theorem 26. Instead

the modules
{Z/piZ

∣∣ Zp ⊕A
}

with i > 1 and the modules
{Z/piZ

∣∣ Zp

}
⊕A for i ⩾ 1 cannot occur,

neither can F2 ⊕ Zp ⊕A or Z/pZ ⊕ Zp ⊕A.
To illustrate that the situation is more complicated in the one cases not treated in Theorem 26,

we add one example. The curve

y2 + xy + 9 y = x3 − x2 + 9 x + 9

over Q3 has additive reduction of type IV with Tamagawa number cv = 3. This curve has a rational
9-torsion point T with x-coordinate 3 + 2 32 + 2 34 + 35 + 36 + 2 37 + 38 + 2 39 + O(310. It has bad
reduction, but 3T is a 3-torsion point with good reduction. It seems that E(K) ⊗̂Zp is isomorphic
to

{Z/9Z
∣∣ Z3

}
⊕A.

6 Descent for Mordell-Weil and Selmer groups
We now pass to studying global extensions and gather the tools to study how the Galois group of
a finite extension acts on the Mordell-Weil group and on the Selmer group.

Let k now be a number field and let K/k be a finite extension with Galois group G. Let E/k
be an elliptic curve and let p be an odd prime.

We write M = E(K)⊗̂Zp = E(K)⊗Zp, which we are going to study as a Zp[G]-module. Recall
that Mt is the torsion subgroup of M and Mf = M/Mt. We have MG = E(k)⊗Zp. Similarly the
G-fixed part of M ⊗Qp = E(K)⊗Qp is E(k)⊗Qp. Consider instead the limit lim−→E(K)/pnE(K)
which naturally identifies with E(K)⊗Qp/Zp

. The map comparing
(
M ⊗Qp/Zp

)G with E(k)⊗Qp/Zp

measures if any points P ∈ E(k) become divisible by p in E(K) when they were not in E(k):

Lemma 27. We have an exact sequence

0 //ker
(

H1(G, Mt)→ H1(G, M)
)

//E(k)⊗ Qp/Zp
//
(

E(K)⊗ Qp/Zp

)G
//H1(G, Mf ) //0.

Proof. First the definition of Mf yields the long exact sequence

0 //E(k)[p∞] //E(k)⊗ Zp
//Mf

G //H1(G, Mt) //H1(G, M).

Further we have an exact sequence

0 //MG
f

//E(k)⊗Qp
//
(

E(K)⊗ Qp/Zp

)G
//H1(G, Mf ) //0

deduced from the short exact sequence

0 //Mf
//E(K)⊗Qp

//E(K)⊗ Qp/Zp
//0 .

and an isomorphism
H1(

G, M ⊗ Qp/Zp

) ∼= H2(G, Mf ) (5)

which will be useful later. The kernel-cokernel sequence for the composition E(k)⊗̂Zp → E(k)⊗Qp

via MG
f produces the exact sequence in the lemma.
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In particular if M is torsion-free, then H1(G, M) is the cokernel of the injective map E(k) ⊗
Qp/Zp

→
(
E(K)⊗ Qp/Zp

)G.
We can compare M to the local group of points. Let v be a finite place of k and let w be a

place of K above v. Let Mw = E(Kw) ⊗̂Zp. If v ∤ p then Mw is finite; otherwise it is a Zp-module
of rank [Kw : Qp]. In Section 5 we have investigated Mw as a Zp

[
Gal(Kw/kv)

]
-module. Setting

Mv =
⊕

w|v Mw we get a Zp[G]-module.
By S we will denote a fixed choice of a finite set of places in k containing all places above p

and∞, such that E has good reduction outside S and such that K/k is unramified outside S. The
Galois group of the maximal extension of k which is unramified outside S is denoted by GS(k).

We define the p-primary Selmer group Sk as the subgroup of H1(
GS(k), E[p∞]

)
consisting

of elements whose restrictions at all places v ∈ S lie in the image of the local Kummer map
κv : E(kv) ⊗ Qp/Zp

→ H1(
kv, E[p∞]

)
. The compact p-adic Selmer group Sk is the subgroup of

H1(
GS(k), TpE

)
defined in the same way with respect to the local Kummer maps E(kv) ⊗̂ Zp →

H1(
kv, TpE

)
. The cokernel of the global Kummer map E(k) ⊗ Qp/Zp

→ Sk is the p-primary part
of the Tate-Shafarevich group X(E/k). We will simply denote it by Xk.

Assumption 1. Throughout this article we assume that the p-primary subgroup Xk of the Tate-
Shafarevich group is a finite group for all number fields k and all elliptic curves.

One can drop this assumption and work with the quotient of Xk by its maximal divisible
subgroup instead. It follows from this assumption that SK is simply M = E(K) ⊗ Zp and Sk is
MG.

Using the isomorphism (5), we obtain a commutative diagram

0 //
(

E(K)⊗ Qp/Zp

)G
// SG

K
//XG

K
// H2(

G, Mf

)
0 // E(k)⊗ Qp/Zp

//

OO

Sk
//

α

OO

Xk
//

η

OO

0

which describes the link of the exact sequence in Lemma 27 to the natural restriction maps α
on the Selmer group and η on the Tate-Shafarevich groups. Below we will determine the kernel
and cokernel of α. We denote the kernel of η by CK/k and call it the capitulation subgroup of
X(E/k)[p∞] with respect to the extension K/k. The snake lemma applied to this diagram provides
us with an exact sequence

ker(α) // CK/k
// H1(G, Mf )

// coker(α) // coker(η) // H2(G, Mf ).

(6)

Assumption 2. We assume that E(K) does not contain any non-trivial p-torsion elements.

Lemma 28. Under Assumption 2, we have the exact sequence

0 //CK/k
//H1(G, M) //coker(α) //coker(η) //H2(G, M).

Proof. The kernel of the first map in the sequence (6) is in fact the kernel of H1(G, Mt) →
H1(G, M) as we have seen in Lemma 27. By the assumption M is Zp-free, hence Mt is trivial and
Mf = M .

Our next aim is to determine the cokernel of the restriction map α between Sk and SG
K .

Global duality, in form of the exact sequence due to Cassels, see Section 1.7 in [41], allows us
to compare M with the local terms Mv. It yields the exact sequence

M //⊕
v∈S Mv

//H1(
GS(K), E[p∞]

)∨ //S∨
K

//0

19



of Zp[G]-modules. The kernel on the left is the fine (or strict) Mordell-Weil group RS,K . In many
circumstances this group is trivial; see for instance [47]. By global duality, as in Theorem 8.6.8
in [35], RS,K is dual to H2(

GS(K), E[p∞]
)
. We compare the G-fixed part of the dual of the above

exact sequence with the corresponding sequence over k to make the map α appear in the following
large commutative diagram. The top sequence is only a complex; at the terms where the complex
is not necessarily exact we use the symbol ◦ // .

0 // SG
K

// H1(
GS(K), E[p∞]

)G //⊕
v|S

(
M∨

v

)G
◦ //

(
M∨)G

◦ //
(
R∨

S,K

)G
◦ // 0

0 // Sk
//

α

OO

H1(
GS(k), E[p∞]

)
//

β

OO

⊕
v∈S

(
MG

v

)∨ //

γ

OO

(
MG

)∨ //

δ

OO

R∨
S,k

//

ε

OO

0

The map γ is then ⊕v∈Sγv where γv is the dual of the natural norm map; its kernel is dual to

Dv = coker
(

N:
⊕
w|v

E(Kw) ⊗̂ Zp → E(kv) ⊗̂ Zp

)
= Ĥ0

(
G,

⊕
w|v

E(Kw) ⊗̂ Zp

)
∼= Ĥ0(

Gw, Mw

)
.

(7)

for any chosen w above v. Here Gw = Gal(Kw/kv) is the decomposition group. The groups Dv

was studies in detail in the section 3.
The maps δ and ε are the dual of the norm maps

δ̂ :
(
E(K)⊗ Zp

)
G
→ E(k)⊗ Zp

and its restriction to the fine Mordell-Weil group. Therefore ker δ is dual to Ĥ0(G, M) and coker δ
is dual to Ĥ−1(G, M). The commutativity of the diagram follows from the functoriality of global
duality and the local duality of restriction and corestriction.

Our assumption 2, that E(K) has no non-trivial p-torsion points, implies that β is an isomorph-
ism by the inflation-restriction-transgression exact sequence, see Proposition 1.6.6 in [35].

We are in a situation where we have a morphism of complexes A• → B• with A• exact. Let
Ā• be the complex of kernels and B̄• the complex of cokernels. As a consequence of the long exact
sequences of cohomology of complexes in short exact sequences, we can deduce that there is a long
exact sequence

· · · //Hi+1(Ā•) //Hi(B•) //Hi(B̄•) //Hi+2(Ā•) // · · ·

In our case, since the first two terms of B• have trivial cohomology, we deduce that ker(α) = 0
and that

0 //coker(α) //ker γ //ker
(

ker δ → ker ε
)

// · · ·

is exact. The image at the end is a subquotient of
⊕

w∈SK

(
E(Kv) ⊗̂ Zp

)∨. In particular we
conclude the following.

Proposition 29. Under our assumptions, we have ker(α) = 0 and coker(α) is dual to the cokernel
of E(k)⊗ Zp → DK/k where DK/k =

⊕
v∈S Dv =

⊕
v∈S Ĥ0(

Gw, E(Kw) ⊗̂ Zp

)
.

We have calculated Dv in many circumstance in Section 3. In most situations, the above pro-
position can be used to determine coker(α) explicitly using only local information and information
about E over k.

Proposition 30. Suppose that no place above p is wildly ramified in K/k and suppose that the
ramification index ev is not divisible by p at all places where E has bad reduction. Then

DK/k
∼=

⊕
v∈Sb

Z/(cv, fv, p∞)⊕
⊕
v∈Sr

Ẽ(Fv)[p∞]/evẼ(Fv)[p∞]
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where Sb is the set of all places where E has bad reduction and Sr is the set of all places where p
divides the ramification index ev.

Proof. For all places with p ∤ ev, Proposition 13 shows that Dv is cyclic of order equal to
gcd(cv, fv, p∞). This is non-trivial only for places of bad reduction and they appear in the first
sum above.

If v is a place in Sr, then, by assumption, E has good reduction and v ∤ p. Therefore Proposi-
tion 15 applies and gives the second term.

Note also that the map E(k)→ E(kv)→ Dv is explicit and easy to calculate. As a consequence,
we can effectively determine the cokernel of α in most examples.

7 The Galois module structure of Mordell-Weil groups
Let E/k be an elliptic curve and let K/k be a Galois extension of number fields with group G. Let
p be an odd prime. Throughout this section, we continue to assume the Assumptions 1 and 2.

Recall that the aim is to understand in what cases we can determine the structure of M =
E(K) ⊗̂Zp as a Zp[G]-module, preferably with information that is easier to access than computing
M itself.

We first recall the results of [12], which can be extended to all situations when we have “perfect
control”, i.e., when

α : Sk → SG
K

is an isomorphism. Recall that coker(α) is dual to the cokernel of E(k) ⊗ Zp → DK/k, which is
effectively computable by Proposition 29.

Theorem 31 (Theorem 2.2 in [12]). Assume also that coker α is trivial. Fix a p-Sylow subgroup
H of G. Then M is a projective Zp[G]-module if and only if M ⊗ Qp is a free Qp[G/H]-module
and CK/KH is trivial for all subgroups H in H.

When the p-Sylow subgroup H is cyclic, we can use the results of Yakovlev [51] to determine M
as follows. Since H is cyclic, say of order pn, we have a tower of fields Fi such that [K : Fi] = pn−i

and F0 = KH.

Theorem 32 (Theorem 2.6 in [12]). Suppose that the p-Sylow subgroup H of G is cyclic. Assume
that coker(α) is trivial. Then M is determined up to isomorphism by the the ranks of E(Fi)
and the knowledge of the capitulation kernels as Zp

[
NG(H)

]
together with the restriction and

corestriction maps between them:

CK/F0
//CK/F1oo // · · ·oo //CK/Fs−1oo .

Since CK/Fi
∼= Ĥ−1(

K/Fi, M
)
≈ H1(

K/Fi, M
)

the diagram of restrictions and corestrictions
above is an example of a Yakovlev diagram. Specialising to the situation when the p-Sylow H of
G is cyclic of order p, the Yakovlev diagram simplifies then to a single group H1(

H, M) viewed
as a Fp

[
NG(H)/H

]
-module. It is well possible that the results in [30] also hold under the weaker

hypothesis that α is surjective.
Torzewski [44] generalises this to the case when α is not necessarily surjective (as in Theorem 23

for the dihedral case) but involving the regulator constants sΘ(M), too. This new ingredient can
be linked to arithmetic information as follows. Fix an invariant differential ω on E and write
uv = |ω/ωNéron|v for when it differs from the Néron differential ωNéron of E at the finite place
v. For any field F/k, we define C(E/F ) =

∏
v cv(E/F ) · uv to be the modified product over

all finite places v of F of the Tamagawa numbers cv. This quantity together with the real and
complex periods with respect ω should appear in the leading term of the Birch and Swinnerton-Dyer
conjecture for E/F . The following is a consequence of Theorem 2.3 in [21].

21



Theorem 33. Assume that no place of additive reduction ramifies in K/k. Let Θ =
∑

mi Hi be
a Brauer relation for G. For F = KHi write si = ordp(|XF |) + ordp

(
C(E/F )

)
. Then sΘ(M) =

−
∑

i misi.

Under our assumption, we can determine the parity of sΘ(M) from the Tamagawa numbers
only as the Tate-Shafarevich groups are of square order.

Corollary 34. Under our assumptions, sΘ(M) ≡
∑

i mi ordp

(
C(E/F Hi)

)
(mod 2) for any Brauer

relation Θ =
∑

i mi Hi.

The parity here will link directly to global root numbers. However in general case, we often
need the ranks rather than just their parity. In the particular cases that we turn our attention to,
the valuation of sΘ(M) and the rank over k will provide more information than the root numbers.

7.1 Cyclic extensions
Suppose first that G is a cyclic group of order p. Recall that we write DK/k for

⊕
v∈S Dv, which

is a Fp-vector space in our situation.

Corollary 35. Let S0
r be the set of all ramified places in k not lying above p and at which E has

good reduction.

dimFp DK/k ⩾ #
{

v
∣∣ v inert and p | cv

}
+

∑
v∈S0

r

dimFp Ẽ(Fv)[p].

If no place of bad reduction and no place above p ramifies, then we have equality.

Though the calculations extend easily to all cases such that E has good ordinary reduction at
all places above p that are ramified in K/k.

Proof. First the dimension of DK/k is larger than the sum of the dimensions of Dv for all places
excluding the ramified places above p and the ramified places at which E has bad reduction. For
the remaining v, we calculated Dv in Proposition 30 and we can simplify it a bit because G is
cyclic of order p.

Recall that, by Proposition 16, there are only 3 indecomposable Zp[G]-lattices Zp, A and Zp[G]
in this case. We note that M cannot be determined by rk E(K) and rk E(k) only, but they will
determine it together with the order of H1(G, M).

Here are a few statements that one can deduce easily from the fact that

Proposition 36. Let E/k be an elliptic curve and K/k a cyclic extension of degree p satisfying
Assumptions 1 and 2.

(i) If Xk and DK/k are trivial, then rk E(K) and rk E(k) determine M .
(ii) If rk E(k) = 0 and Xk is trivial, then rk E(K) ⩽ (p− 1) dimFp

DK/k.
(iii) If rk E(k) = 0 and Xk is trivial, but rk E(K) < (p− 1) dimFp

DK/k, then XK is not trivial.
(iv) If α is surjective, rk E(K) > rk E(k) = 1, and Xk trivial, then M ∼= Zp[G] and XK = 0.

Proof. For the first point, the hypothesis imply that coker(α) and CK/k are trivial. By Lemma 28,
this implies that H1(G, M) = 0 and hence M is a direct sum of copies of Zp and Zp[G], which can
be determined by the ranks alone.

In part (ii) and (iii), rk E(k) = 0 implies that M is a power of A. The power is equal to
dim H1(G, M) which is the dimension of ker

(
coker(α)→ coker(η)

)
. As the rank is zero over k, the

cokernel of α is dual to DK/k. If the resulting inequality is strict, then coker(η) is non-trivial and
hence so is XK .

For the final item, the surjectivity of α and the triviality of Xk imply again that H1(G, M) = 0.
As the rank grows but is equal to 1 over k, we must have M = Zp[G]. This now also implies that
H2(G, M) = 0. From Lemma 28 we learn that η is surjective. Since G is a p-group, the triviality
of XG

K implies that XK is trivial.

22



Proof of Theorem 2. The assumption that L(E, χ, 1) ̸= 0 implies by Kato’s result that rk E(K) =
rk E(k). Therefore M = Zr

p with r = rQ. By Corollary 35, the dimension of DK/Q is greater
or equal to u1 + u2. Therefore, Proposition 29 tells us that coker(α) has dimension at least
equal to u1 + u2 − r. Since H1(G, M) = 0, coker(α) injects into coker(η) by Lemma 28. Hence
dimXK ⩾ dimXG

K ⩾ dim coker(η) ⩾ u1 + u2− r. (By the way, we also get dimXG
K ⩽ u1 + u2 +

r + dimXk.)

The exact sequence relating the Mordell-Weil group M and the Tate-Shafarevich group XK to
the Selmer group SK is split as a sequence of abelian groups [25], but not necessarily as G-modules.
There is one important exception.

Lemma 37. Suppose M ∼= Zp[G]. Then

SK
∼=

(
E(K)⊗ Qp/Zp

)
⊕XK

as G-modules and we have an exact sequence

0 //Xk
//XG

K
//D∨

K/k
//0.

Proof. Note that there is an isomorphism Hom
(
E(K)⊗Qp/Zp

, Qp/Zp

)
= Hom

(
M,Zp

)
by the assump-

tion that E(K)[p] is trivial. If M is free, then so is the Pontryagin dual of E(K)⊗Qp/Zp
. Since the

quotient of S∨
K by X∨

K is now a projective Zp[G]-module, we must have S∨
K
∼= Hom

(
M,Zp

)
⊕X∨

K

whose Pontryagin dual is the initial statement. The exact sequence (6), together with H1(G, M) =
0 and H2(G, M) = 0, shows CK/k = 0 and that coker η = coker α. As the norm map MG → MG

is an isomorphism, the cokernel of α is dual to DK/k.

Theorem 38. Let E/k be an elliptic curve and p an odd prime. Suppose that rk E(k) = 0, that
Xk = 0 and that the image of the Galois representation Gal(k̄/k)→ GL

(
E[p]

)
contains SL2

(
E[p]

)
.

Then there is a positive proportion of cyclic extensions K/k of degree p, ordered by the norm of
the conductor, such that M = 0.

Note that we expect that a positive proportion of elliptic curves E/k should satisfy the hypo-
thesis in the theorem. It is important to emphasis that this results is weaker than Theorem 9.21
in [34] in the sense that we restrict to curves of rank 0 and prime degree, but more general in other
aspects.

Proof. By Proposition 36 (ii), we only need to show that DK/k is trivial for a positive proportion
of K. To avoid the conductor of K being divisible by bad primes is no problem for this. A positive
proportion of K have the property that all primes v with p | cv split in K/k. Since the Galois
group of K

(
E[p]

)
/k contains SL2(Fp) there is a positive proportion of places v of good reduction

such that |Ẽ(Fv)| is not divisible by p by Chebotarev’s density theorem. Therefore for a positive
proportion of extensions K/k, we can avoid that it is ramified at places with p | #Ẽ(Fv).

Proposition 39. Let E/k be an elliptic curve and p and odd prime. Suppose that there are more
than rk E(k) primes v such that p | cv. Then there is a positive proportion of cyclic extensions
K/k of degree p for which we have rk E(K) > rk E(k) or XK ̸= 0.

Proof. We will show that there is a positive proportion of K such that coker(α) is non-trivial. For
that matter we only need to make sure that all places v with p | cv are inert in K/k as then the
dimension of DK/k is larger than the rank of E(k) and hence coker(α) is non-trivial. This holds
for a positive proportion of K/k. Now, we have H1(G, M) ̸= 0 or coker(η) ̸= 0. In the first case
M contains copies of A and hence the rank of E(K) is larger than the rank of E(k). In the second
case, XG

K and hence XK is non-trivial.
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Let us specialise to the case when k = Q. Since the L-function L(E, χ, s) admits an analytic
continuation for all χ, it is easy to determine when the rank grows, that is when rk E(K) > rk E(k).
Note that we can calculate the value L(E, χ, 1) very quickly using modular symbols and if that value
is non-zero, then the rank does not grow. Under our assumption that XK is finite, L(E, χ, 1) = 0
implies that the rank grows. Rank growth is relatively rare, especially for p > 5, as expected by
the conjectures made in [17, 24]. Cases where the rank grows by more than p− 1 are hard to find,
but see Example G below for such a case.

Corollary 40. If p = 3 or p = 5, then a positive proportion of (E, K) where E/Q is an elliptic
curve, ordered by height, and K is a cyclic extension of degree p, ordered by conductor, satisfy
E(K) = 0.

Proof. This is a consequence of Theorem 38 and the results by Bhargawa and Shankar in [6, 5]
which show that a positive proportion of E/Q have trivial p-Selmer group over Q when p = 3 or
5. The restriction on the Galois representation is negligible.

For all practical purposes, we can consider the calculation of ords=1 L(E, χ, s), which leads
to a proven upper bound for rK = rk E(K), the calculation of rQ and XQ as easy. So is the
determination of DK/Q. As a consequence, in most cases we can calculate M effectively from our
methods without having to do any point search of descent for E over K.

7.1.1 Examples

All elliptic curves in this list of examples are given by their Cremona label as in [15] and provided
with a link to the lmfdb [28]. The computational results are obtained using SageMath [43]. The
p-primary parts of Tate-Shafarevich groups over Q are proven correct by the methods used in [42].

The conductor of a cyclic extensions K/Q of degree p is the smallest m such that K ⊂ Q(ζm).
If m is prime, then there is a unique such K in Q(ζm), and hence we only need to specify m to
give K.

For a character χ of K/Q, seen as a Dirichlet character modulo m, we define the algebraic
L-value

L(E, χ) =
∑

a mod m

χ̄(a)
[

a
m

]χ(−1) ∈ Q(χ) = Q(ζp)

where [·]± is the modular symbol attached to E, normalised as in [48] and computed as in [50].
Since L(E, χ) is a non-zero multiple of L(E, χ, 1), the vanishing of L(E, χ) indicates that the rank
of E(K) is larger than the rank of E(Q). Conversely, if L(E, χ) ̸= 0, then E(K) = E(Q) under
our assumption that E(Q)[p] = 0.

Example A) Let E be the elliptic curve with Cremona label 67a1 and let K be the cyclic field of
degree p = 7 and conductor 29. The curve has rank 0 over Q and coker α = D∨

K/Q has dimension
1 as the number of points in Ẽ(F29) is divisible by 7. Calculating L(E, χ) ̸= 0 for a non-trivial
character of K, proves that the rank over K is still 0. Therefore M = 0 in this case. However,
since H1(G, M) = 0, but coker α ̸= 0, we have shown that XK is non-trivial. In fact, the BSD
conjecture over K is equivalent to X(E/K) having 72 · 132 elements. In our example, the space
of XK fixed by G is 1-dimensional.
Example B) Similar to the previous example, we have a case with M = Zp, yet XK ̸= 0. Take
E to be the curve 37a1 of rank 1 over Q and K to be the quintic field of conductor 211 and p = 5.
Again D∨

K/Q is of dimension 1 as E(F211) is cyclic of order 52 · 32 However, the generator P of
E(Q) reduces to a point of order 45 modulo 211. This shows that coker α ̸= 0. This together with
L(E, χ) ̸= 0 allows us to conclude that coker η = XG

K has dimension at least 1. BSD says that
X(E/K) is of order 54.
Example C) The curve 681b3 has rank 0 over Q, but XQ ̸= 0 for p = 3. Consider the cubic
extension K of conductor 19. Since L(E, χ) = 0, the rank grows in this extension, which means
that M is a power of A. However coker α is trivial. This implies that the capitulation kernel CK/Q
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is non-trivial. A 2-descent reveals that E(K) has rank 2, which shows that M ∼= A. Therefore
only a 1-dimensional subspace of XQ capitulates in K/Q. Hence XK is still non-trivial; it is of
order 9 according to BSD.
Example D) Consider p = 5, the curve 21a1 over the quintic extension K of conductor 41. The
rank is 0 over Q, but L(E, χ) = 0 proves that the rank is positive over K. Since XQ is trivial,
but coker α has dimension 1, we see that M cannot contain more than one copy of A. Therefore
rk E(K) = 2. Since the cokernel of η must be trivial, we find that XG

K = 0 and hence that XK = 0
as G is a p-group. Conjecturally X(E/K) is trivial.

A similar argument works for p = 7, the curve 38b1 over the extension of conductor 71.
Example E) The curve 89a1 has rank 1 over Q. As the algebraic L-value L(E, χ) = 0 for the
degree 11 extension of conductor 23, i.e., K = Q(ζ23)+, the rank must grow. However α is
surjective and XQ = 0. Therefore H1(G, M) = 0, which implies that M = Zp[G] is free. We can
also conclude that XK = 0.

For rank 1 curves with rank growth, it is very frequent that M is free.
Example F) The curve 130a3 has rank 1 over Q and L(E, χ) = 0 for the cubic field K = Q(α)
of conductor 43 with α3 + α2 − 14 α + 8 = 0. The analytic rank tells us that rK = 3 and we
know that XQ is trivial. However, coker α has p = 3 elements. Hence M contains at most one
copy of A, but we cannot decide at this point whether M is Zp ⊕ A or Zp[G]. In this case, we
actually calculate the points in E(K). One finds that there is a point P ∈ E(K) with x-coordinate
1

16 (−48−132 α+33 α2). The usual saturation shows that Zp[G] P has index p in M , which already
tells us that M ∼= Zp⊕A. Alternatively, one can calculate the matrix of how a non-trivial element
σ ∈ G acts on the saturated group and calculate the cohomology group H1(G, M) directly.
Example G) The most interesting example is the curve 5692a1 with K the cubic extension of
conductor 9, which already appears in [49]. The curve has rank 2 over Q, generated by P1 = (0, 5)
and (2,−1). The group D2 is cyclic of order 3 and the image of the norm map identifies with the
points of good reduction as the reduction type is IV. As the Tamagawa number at the only other
bad prime is coprime to 3, the only other non-trivial Dv is for v = 3. Here the reduction is good
ordinary with 6 elements in the reduction Ẽ(F3). We are in the situation of Proposition 10. The
map Ẽ(F3)[3] → Ê(3Z3)/Ê(9Z3) can shown to be surjective, which implies that D3 is cyclic of
order 3 as it identifies with Ẽ(F3)/3Ẽ(F3).

Since P1−P2 has good reduction at 2 and the reduction at 3 is of order 2, the map E(Q)⊗̂Z3 →
DK/Q is not surjective. We conclude that coker α is of dimension 1. This only reveals that M
contains at most one copy of A. Since the rank of M can be determined to be 6, we can already
conclude that M must contain at least one factor of Z3[G].

To complete the calculation and prove that M ∼= Z3 ⊕ A ⊕ Z3[G] seems to require once more
to the calculation of M and the action of G explicitly on it. With the explicit basis in [49], this is
not difficult to do.

7.2 Dihedral group
We suppose now that G ∼= Dp is the dihedral group of order 2p. The p-Sylow subgroup is N
and pick one subgroup H of order 2. There is a unique non-trivial Brauer relation Θ = Θ2 =
1− 2 ·H −N + 2 ·G. Write F for the field fixed by N and L for the field fixed by our chosen H.

K
H

N
L

F

G/N
k

Recall the classification of indecomposable Zp[G]-lattices: Zp, Z̆p := Zp{1}, A, Ă := A{1}, B

and B̆ := B{1}. From Theorem 23 we know that the following will determine M = E(K) ⊗̂ Zp
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completely:
• M ⊗Q as a Q[G]-module;
• H1(N, M) as a Fp[G/N ]-module;
• s(M) = ordp(CΘ(M)).
The last entry in the list above can be replaced by dimFp

ι(M). However, note that these
invariants are not all easy to determine. The ranks could, at least conjecturally, be determined
using the order of vanishing of twisted L-functions. The cohomological term H1(N, M) appears
in the exact sequence (6). Finally, both s(M) and ι(M) seem hard to evaluate without actually
calculating M , except for the parity of s(M) by Corollary 34.

In the (frequent) case that the rank is small, we need less information to determine M .

Proposition 41. • If rk E(F ) = 0, then M is determined by H1(N, M) as a Fp[G/N ]-module.

• If rk E(F ) = 1, then M is determined by H1(N, M) as a Fp[G/N ]-module, rk E(k) and the
parity of s(M).

Proof. We use Table 1. If rF = 0, then M is a direct sum of copies of A and Ă. Since they have
distinct H1(N, M), that group is enough to determine M .

If rF = 1, then M is a direct sum of copies of A, Ă and one copy of either Zp, Z̆p, B or B̆.
Again H1(N, M) determines the number of A and Ă that appear. If rk = 1, then there is an extra
copy of either Zp or B. Since s(Zp) ≡ 1 and s(B) ≡ 0 (mod 2), the parity of s(M) suffices to
determine M , If rk = 0, the same argument works with Z̆p and B̆.

As F/k is a quadratic extension, there is a quadratic twist Ĕ/k of E associated to F/k. Since
p is odd, Ĕ also satisfies Assumption 2. Many invariants that we might have to calculate over F
can be calculated over k instead using Ĕ. First of all rF = rk E(F ) = rk E(k) + rk Ĕ(k). Since
p is odd, we also have XF = Xk ⊕ X̆k, where X̆k = X(Ĕ/k)[p∞]. Therefore, we also have
CK/F = CK/k ⊕ C̆K/k with C̆K/k the capitulation kernel for Ĕ.

Lemma 42. H1(N, M) as a G/N -module is determined by the abelian groups H1(G, M) and
H1(

G, M̆
)

where M̆ is Ĕ(K) ⊗̂ Zp = M ⊗ Z̆p.

Proof. The Fp-vector space H1(N, M) splits into a +1 eigenspace and a −1 eigenspace with respect
to the action by G/N . The +1 eigenspace is isomorphic to the G/N -invariants of H1(N, M),
which is isomorphic to H1(G, M) by the restriction map. Twisting by Z̆p, we obtain that the −1
eigenspace is H1(G, M̆).

Proposition 43. M = E(K) ⊗̂ Zp is completely determined by
• rk = rk E(k), r̆k = rk Ĕ(k) and rk E(L);
• H1(G, M) and H1(G, M̆)
• s(M) = ordp(CΘ(M)).

Proof. The structure of M ⊗ Q as a Qp[G] is determined by rk, rk E(F ) = rk + r̆k and rk E(L).
Together with the previous lemma, this theorem is now a reformulation of Theorem 23.

Proof of Theorem 1. The assumptions in Theorem 1, imply that H1(G, M) is trivial as Xk and
DK/k are trivial as there are no places with p | ev and all places with p | fv have p ∤ cv. Also
H1(G, M̆) is trivial for the same reasoning applied to Ĕ. This implies that neither A nor Ă can
appear in M . Then rk + r̆k ⩽ 1, implies that M is isomorphic to a single copy of of Zp, Z̆p, B or
B̆, unless rk = r̆k = 0, in which case M = 0. If rk = 1, it is either Zp or B, and if r̆k = 1, it is Z̆p

or B̆. The parity of s(M) distinguishes the two possibilities in both cases, and that parity can be
calculated using only local information for E over K.
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Lemma 44. Suppose that p > 3 and that no place of additive reduction ramifies in K/k. Let
v1 be the number of places in k such that E has split multiplicative reduction and such that K
contains a single ramified place above v. Let v2 be the number of places in k such that E has
non-split multiplicative reduction and there is a unique place above v with ramification index p.
Then s(M) ≡ v1 + v2 (mod 2). In particular, s(M) is even if there is no place of bad reduction
that ramifies in K/F .

Proof. By Corollary 34, we need to calculate the contribution at each bad place v in k to the p-adic
valuation of C(E/K)/C(E/F ).

For additive places the contribution is an even power of p: Since p > 3, the Tamagawa number
is not divisible by p, and since K/k is unramified at this place the quantity uv does no change.
Hence local term is up−1

v or 1 depending whether there are p places above each place in F or only
1.

For multiplicative places, this is calculated in the table in Section 3.1 in [3].

An interesting application connects our investigation to the discussion of the “minimalistic
conjecture” in [14]. Recall that we are still assuming that all Tate-Shafarevich groups have finite
p-primary parts.

Theorem 45. Let K/Q be a dihedral extension with G = Dp for a prime p > 3 such that p ∤ ep.
Suppose that a proportion of at least 66.25% of elliptic curves E/Q (when ordered by height)
satisfy X(E/F )[p] = 0. Then there is a positive proportion of elliptic curves E/Q, when ordered
by height, such that E(K) ⊗̂ Zp is one of the following five Zp[G]-lattice:

0, B, B̆, Zp ⊕ Z̆p, and B ⊕ B̆ ∼= Zp[G].

The rank of E(Q) and of the quadratic twist Ĕ(Q) determines the case, except for the last two
cases.

There are conjectures about the proportion of elliptic curves with p ∤ X(E/Q) and p ∤ X(E/F )
going back to Delaunay [18] and [39]. It is believed that this is a large majority of curves for all
p, but that a small positive proportion has non-trivial XF . We cannot conclude that the most
frequent Zp[G]-module structures among the curves with non-trivial XQ are the same as in the
above theorem, but this could be true. One would have to understand the frequency with which
non-trivial elements in Tate-Shafarevich groups capitulate in K.

When tensoring the displayed formula in the theorem by Cp, one falls onto the “minimalistic
conjecture”, except in the case that M ∼= B⊕ B̆ = Zp[G]. With our methods we cannot determine
that the case Zp⊕ Z̆p is more frequent than Zp[G]. Apart from that, the theorem is good evidence
for the minimalistic conjecture.

Proof. By [5] a positive proportion of elliptic curve have rank 0 or 1. More precisely, consider the
set of (I, J) corresponding to elliptic curve in{

E/Q
∣∣∣ (N, ∆K) = 1, ℓp ∤ ∆E for all primes ℓ, p ∤ #Ẽ(Fv) for all prime v ∈ Sr

}
where Sr is the set of all places v such that p | ev. This is a “large family” in the sense of [5].
Therefore more than 83.75% of such elliptic curves have rank either 0 or 1. Hence at least 67.5%
of all curves in the set have rank smaller than 2 and their twist corresponding to the quadratic
extension in K/Q also have rank smaller than 2. A positive proportion of curves in the above set will
now have rank either 0 or 1 for E and its twist and trivial XQ and X̆Q because 67.5+2·66.25 = 200.
We may exclude the elliptic curves with a rational p-torsion points without harming this.

Let E be a curve in that set. Since ℓp ∤ ∆, we see that cℓ cannot be divisible by p. Together
with the condition that no bad prime ramifies, that p ∤ ep and the condition p ∤ #Ẽ(Fv) for all
v ∈ Sr, we deduce that DK/Q = 0 by Proposition 30. Together with XQ = X̆Q = 0, we know now
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that H1(G, M) = 0. Therefore M is a direct sum Za
p⊕ Z̆b

p⊕Be⊕ B̆f with r = rk E(Q) = a + e ⩽ 1
and r̆ = rk Ĕ(Q) = b + f ⩽ 1.

By Lemma 44, the quantity a + b must be even as we are in the case that no prime of bad
reduction ramified in K/Q.

If r = r̆ = 0, then M must be 0. If r = 1, but r̆ = 0, then b = f = 0, which implies that a = 0
since a + b must be even, and hence e = 1. Similar if r = 0 and r̆ = 1, we get a = b = e = 0 and
f = 1.

Finally, if r = 1 and r̆ = 1, then a + e = 1 and b + f = 1 and a + b is even. This leads to two
possibilities, namely M ∼= Zp ⊕ Z̆p or M ∼= B ⊕ B̆ ∼= Zp[G].

The four cases can also be determined by root numbers if one admits the parity conjectures.
These root numbers can be calculated under our assumption (Theorem 2.15 in [14] as done in their
Example 4.11): If ∆F is the fundamental discriminant of F , then the root number of E twisted
by any of the irreducible 2-dimensional C[G]-modules is z = sign(∆F ) ·

(
∆F /N) where the second

factor is the Jacobi symbol. The root number for E twisted by the non-trivial quadratic character
is z times the root number of E/Q. The fact that the product of the three root numbers is 1 is
now equivalent to the result in Lemma 44 under the parity conjecture.

7.3 Examples
For the following examples, we will always take the same D3-extension. Let L be the field generated
by α with α3 + 2α − 2 = 0 and let K be its Galois closure. The quadratic field inside K is
F = Q

(√
−35

)
.

There is a unique ramified prime above 2 in K has ramification index 3. Above 5 and 7 there
are three primes with ramification index 2. The prime 3 is unramified with residue degree 3.

Let
M = Zp

a ⊕ Z̆b
p ⊕Ac ⊕ Ăd ⊕Be ⊕ B̆f

and we try to determine the unknown a, b, c, d, e, f from rQ = a + e, rF = a + e + b + f , rL =
a + e + p−1

2 (c + d + e + f), a + b− c− d ≡ ordp(C(E/K)/C(E/F )) (mod 2), H1(N, M) = Fc
p⊕ F̆d

p.

Example H) We take the curve 82a1 whose rank over Q is 1 and it is also 1 over F as the twist
Ĕ has rank 0. Therefore b = f = 0. For all places v ̸= 2, Proposition 13 implies that Dv = 0.
Let p = (2) be the prime above 2 in F . We can determine Dp for the extension K/F using
Proposition 9 as K/F is totally ramified at p and E has split multiplicative reduction at this place.
The quantity u turns out to be odd and hence Dp is cyclic of order 3. However the rational point
P = (0, 0) ∈ E(F ) reduces to a non-singular point that is not in the formal group. Therefore
coker(αK/F ) is trivial. It follows that α for K/Q is also surjective.

Since XQ and X̆Q are trivial, we conclude that c = d = 0. We are left with two pos-
sibilities, either Zp or B. However Corollary 34 can be used now to show that a is odd, since
C(E/K)/C(E/F ) = 3.

Therefore M ∼= Zp and we obtained this information with local information and information
about E and Ĕ over Q only. For this particular curve it is not much effort to verify that rL = 1
with a 2-descent, which confirms this result.
Example I) The next curve, we take is 14a3 which has rank 0 over Q, but rank 1 over F . Again
DK/Q is reduced to D2. Over F , the curve has split multiplicative reduction with Tamagawa
number 18. As in the above example Dp is cyclic of order 3, but this time the rational points
map trivially to Dp. Therefore coker(αK/F ) is cyclic of order 3. The same argument works for the
twisted curve Ĕ over Q, showing that coker(αK/F ) is isomorphic to F̆3 as a G/N -module. Since
the Tate-Shafarevich groups are trivial again, we know that H1(N, M) is either trivial or equal to
F̆3.

This implies that c = 0 and d ⩽ 1. The regulator constant yields b ̸≡ d (mod 2). We now have
two possibilities left d = 1 (and then a = c = e = f = 0 and f = 1) or d = 0 (and then b = 1
and a = c = e = f = 0); so either M ∼= Ă ⊕ B̆ or M ∼= Z̆p. The fact that the L-function of E
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twisted with the irreducible representation ρ does not vanish at s = 1 or, directly, a 2-descent over
L confirms that M ∼= Z̆p.

As a consequence, coker(αK/F ) having dimension 1 now implies that XK ̸= 0. We expect
X(E/K) to have 9 elements.
Example J) The curve 322b1 has rank 0 over F and hence a = b = e = f = 0. The regulator
constant tells us that c ̸≡ d (mod 2). Once again coker(αK/F ) = DK/F = F̆p as a G/N -module
very much like in the previous example as the reduction at 2 is once more non-split multiplicative.
Therefore d ⩽ 1 and c = 0. We conclude that M ∼= Ă without having to use any L-values or
2-descents.
Example K) The situation is very similar for the curve 158e1 has also rank 0 over F , but this
time coker(αK/F ) ∼= Fp as a G/N -module since the reduction at 2 is split multiplicative. The
argument as above will show that M ∼= A. The difference between the two cases is that here
E(L) ⊕ τE(L) will be equal to E(K) while in the previous example it has index p. This can be
checked by calculating the groups directly.
Example L) Finally, let us consider the curves 37a1 and the curve 57a1. Both have rank 1 over
Q and rank 2 over F and all Tate-Shafarevich groups in sight are trivial. For both curves the map
α is surjective, which means that H1(N, M) is trivial, and all bad places are unramified, which
implies that s(M) is even. Therefore we are in the situation in Theorem 45 where we had two
options that we could not distinguish. However determining the group E(L) in both cases, reveals
that for the curve 37a1, we have M = Zp ⊕ Z̆p, while for the curve 57a1 it is M = B ⊕ B̆.

Examples of M ∼= B or M ∼= B̆ can be found by Theorem 45 or explicitly in [13]. More details
for the above an verifications using explicit points on E(K) are done in [45].
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