Postgraduate notes 2006/07

A Proportionality Problem

(P. C. Fishburn, F. K. Hwang and H. Lee, 1986; D. R. Woodall, 1992.) Let $\mathcal{R} = (v_1, \ldots, v_n, v_1)$ be a ring of green and blue vertices. If $0 \leq l \leq r$, let

$$N_{l,r}(v_i) := \{v_{i-l}, v_{i-l+1}, \dots, v_{i-1}, v_{i+1}, \dots, v_{i+r}\}$$

(subscripts reduced modulo n, repetition allowed). For any set (or multiset) S, let G(S) denote the number of green vertices in S, and P(S) := G(S)/|S|. \mathcal{R} has property (l, r, p) if $G(\mathcal{R}) > 0$ and $P(N_{l,r}(v)) \geqslant p$ for each green vertex v in \mathcal{R} . What does this tell us about $P(\mathcal{R})$?

Example 1. If \mathcal{R} is periodic, l and r are multiples of the period, and $P(\mathcal{R}) = p$, then $P(N_{l,r}(v)) = p$ for every vertex in \mathcal{R} . Thus property (l, r, p) does not imply $P(\mathcal{R}) > p$ in general.

Example 2. A simple ring $\mathcal{R}(a,b)$ consists of a green vertices followed by b blue vertices. If $p \leq \frac{l}{r+l}$ then $\mathcal{R}(l+1,n-l-1)$ has property (l,r,p), but $P(\mathcal{R}) = \frac{l+1}{n}$ can be arbitrarily small, and so no conclusion can be drawn (unless p=0).

Example 3. If $\frac{2l}{r+l}) and <math>p(r+l) \in \mathbb{Z}$, define a := p(r+l) - l and b := r - l - a, so that $l < a < \frac{1}{2}(r-l) < b$. In $\mathcal{R}(a,b)$, since r-l=a+b= the period, $N_{l,r}(v) = N_{l,l}(v) \cup (1 \text{ period})$, so that $P(N_{l,r}(v)) \geqslant \frac{l+a}{r+l} = p$ if v is green. Thus $\mathcal{R}(a,b)$ has property (l,r,p), and

$$P(\mathcal{R}(a,b)) = \frac{a}{a+b} = \frac{p(r+l)-l}{r-l}.$$

Conjectures. Suppose $l \leq r$ and \mathcal{R} has property (l, r, p).

- 1. $P(\mathcal{R}) \geqslant p$ if $p > \frac{1}{2}$, or if $p = \frac{1}{2}$ and $l \neq r$.
- 2. $P(\mathcal{R}) \geqslant \frac{p(r+l)-l}{r-l}$ if $\frac{l}{r+l} .$
- 3. $P(\mathcal{R}) \geqslant \frac{r \sqrt{r^2 2p(r^2 l^2)}}{2(r l)}$ if $\frac{l}{r + l} .$

Note that all bounds $=\frac{1}{2}$ when $p=\frac{1}{2}$, and (2)>(3) iff $\frac{2l}{r+l}< p<\frac{1}{2}$. All three conjectures hold for simple rings.

Theorem 1. Conjecture 1 holds for simple rings.

Proof. Let $\mathcal{R} = \mathcal{R}(a, b)$ be a simple ring with property (l, r, p), where $l \leq r$, $p \geq \frac{1}{2}$, and $p > \frac{1}{2}$ if l = r. Let v_1, \ldots, v_b be blue and $v_{b+1}, \ldots, v_{b+a} = v_0$ be green. Let

$$r = n(a + b) + r',$$
 $l = m(a + b) + l',$

where $n \ge 0$, $m \ge 0$, $0 \le r' < a+b$, $0 \le l' < a+b$. If $b \le l' < a+b$ then $v = v_{l'+1}$ is green and $N_{l,r}(v)$ starts with b consecutive blue vertices, so that

$$P(\mathcal{R}) = \frac{a}{a+b} > P(N_{l,r}(v)) \geqslant p.$$

Thus we may suppose that $0 \leq l' < b$, and similarly $0 \leq r' < b$. Now at least one $v \in \{v_0, v_{b+1}\}$ has the property that $G(N_{l',r'}(v)) \leq \min\{r', l'\}$, so that

$$\frac{1}{2}(r+l) \leqslant p(r+l) \leqslant G(N_{l,r}(v)) \leqslant (n+m)a + \min\{r', l'\}$$

$$\leqslant (n+m)a + \frac{1}{2}(r'+l').$$

If n = m = 0, then r = r', l = l', and we have a contradiction since $\min\{r, l\} < \frac{1}{2}(r + l)$ unless r = l, when $\frac{1}{2} < p$. So n + m > 0 and

$$P(\mathcal{R}) = \frac{a}{a+b} = \frac{(n+m)a}{n(a+b) + m(a+b)}$$

$$\geqslant \frac{p(r+l) - \frac{1}{2}(r'+l')}{(r-r') + (l-l')} \geqslant \frac{p(r+l-r'-l')}{r+l-r'-l'} = p.$$
 //

Theorem 2. Conjecture 1 holds in the following cases.

- (a) l = 0 (even if $p < \frac{1}{2}$).
- (b) $l = r \text{ (and } p > \frac{1}{2}).$
- (c) $l = r 1 \text{ (and } p \ge \frac{1}{2}).$

Proof. (a) is obvious if p = 0. In *all* other cases, $p > \frac{l}{r+l}$, so $G(N_{0,r}(v)) > 0$ for every green vertex v. Let g_1 be any green vertex. Given g_i , let g_{i+1} be the green vertex in $N_{0,r}(g_i)$ furthest from g_i . Continue until the first repetition: $g_k = g_j$ for some j < k.

- (a) The intervals $(g_i, g_{i+1}]$ $(j \le i \le k-1)$ cover \mathcal{R} uniformly, and $P((g_i, g_{i+1}]) \ge P(N_{0,r}(g_i)) \ge p$ for each i, so that $P(\mathcal{R}) \ge p$.
- (b) and (c): Define multisets

$$A_{i} := (g_{i}, g_{i+1}] + [g_{i}, g_{i+1}),$$

$$B_{i} := N_{0,r}(g_{i}) + N_{l,0}(g_{i+1}),$$

$$A := \sum_{i=j}^{k-1} A_{i}, \qquad B := \sum_{i=j}^{k-1} B_{i} = \sum_{i=j}^{k-1} N_{l,r}(g_{i})$$

since $g_k = g_j$. A covers \mathcal{R} uniformly, so that $P(A) = P(\mathcal{R})$, and $P(B) \geqslant p$ by hypothesis. It remains to prove that $P(A) \geqslant P(B)$. Let $v_i^{+t} := v_{i+t}$.

- (b) Here l = r. For any i ($j \le i \le k 1$), suppose that $g_{i+1} = g_i^{+t}$ and let $s := r t \ge 0$, so that $g_{i+1}^{+s} = g_i^{+r}$. A_i is formed from B_i by deleting s blue vertices (in $[g_{i+1}^{+1}, g_{i+1}^{+s}]$) and s vertices of unknown colour (in $[g_i^{-s}, g_i^{-1}]$). This holds for every i. Since at most half the deleted vertices are green, and since $P(B) \ge p > \frac{1}{2}$, it follows that $P(A) \ge P(B)$ as required.
- (c) Now l = r 1. If s (as in (b)) = 0, then A_i is formed from B_i by adding one green vertex (g_i) . Otherwise, A_i is formed from B_i by deleting s blue vertices and s 1 vertices of unknown colour. Since s 1 < s, the required conclusion follows as before. //

Exercise. $P(\mathcal{R}) \geqslant p$ if and only if, for each green vertex v in \mathcal{R} , $\exists r(v) > 0$ s.t. $P(N_{0,r(v)}(v)) \geqslant p$.

Theorem 3. (B. J. Tarlow, 1998.) Conjecture 1 holds if $l \leq 3$.

Proof. W.l.o.g. $p = \frac{g}{r+l}$ for some $g \in \mathbb{N}$, g > l. It suffices to prove that, for each green vertex v in \mathcal{R} , $\exists l(v) > 0$ s.t. $P(N_{l(v),0}(v)) \geqslant p$. Given v, relabel \mathcal{R} so that $v = v_{r+1}$.

If v_0 is green, then $P([v_{-l}, v_r]) > p$; so assume v_0 is blue.

If v_1 is green, then $P([v_{-l+1}, v_r]) \ge p$; so assume v_1 is blue.

Choose s,t>0 minimal such that v_s,v_{-t} are green. Let there be $n_{\rm G}$ green vertices in $[v_2,v_r]$ (or, equivalently, in $[v_s,v_r]$). Then $g\leqslant G(N_{l,r}(v_{-t}))\leqslant l+n_{\rm G}$, and so $n_{\rm G}\geqslant g-l$.

Suppose $n_G = g - l$. If $s \leqslant l$ then $N_{l,r}(v_s)$ contains s blue vertices v_0, \ldots, v_{s-1} and the s vertices v_{r+1}, \ldots, v_{r+s} , and so $G(N_{l,r}(v_s)) \leqslant (l-s) + (g-l-1) + s = g-1$, a contradiction. Thus $s \geqslant l+1$, and so $P([v_{l+1}, v_r]) = \frac{g-l}{r-l} \geqslant \frac{g}{r+l} = p$ since $\frac{1}{2} \leqslant p$.

Thus we may assume that $n_{\rm G} \geqslant g-l+1 \geqslant g-\frac{1}{2}l-\frac{1}{2}$, since $l \leqslant 3$. But then $P([v_2,v_r]) \geqslant \frac{g-\frac{1}{2}l-\frac{1}{2}}{r-1} \geqslant \frac{g}{r+l} = p$. //

Conjecture 1 has been proved also when l = 4 and l = r - 2, and (by Ben Tarlow) for 'rings of order 4'.

Exercise. If $p > \frac{l}{r+l}$ and \mathcal{R} has property (l, r, p), then $P(\mathcal{R}) \geqslant \frac{p(r+l)-l}{r}$.