[A1] The geometry of anabelioids, Publ. Res. Inst. Math. Sci. 40 (2004), 819–881


[A2] Semi-graphs of anabelioids, Publ. Res. Inst. Math. Sci. 42 (2006), 221–322


[AEC] Arithmetic elliptic curves in general position, Math. J. Okayama Univ. 52 (2010), 1–28


[B] Bogomolov's proof of the geometric version of the Szpiro conjecture from the point of view of inter-universal Teichmüller theory, preprint 2015


[ET] The étale theta function and its frobenioid-theoretic manifestations, Publ. Res. Inst. Math. Sci. 45 (2009), 227–349


[F-I] The geometry of frobenioids I: The general theory, Kyushu J. Math. 62(2008), 293–400


[F-II] The geometry of frobenioids II: Poly-Frobenioids, Kyushu J. Math. 62 (2008), 401–460


[HA-I] A survey of the Hodge–Arakelov theory of elliptic curves I, in Proc. of Symp. Pure Math. 70, AMS (2002), 533–569


[HA-II] A survey of the Hodge–Arakelov theory of elliptic curves II, Adv. Stud. Pure Math. 36, Math. Soc. Japan (2002), 81–114


[IUTch-I] Inter-universal Teichmüller theory I: Constructions of Hodge theaters, preprint 2012–2016


[IUTch-II] Inter-universal Teichmüller theory II: Hodge-Arakelov-theoretic evaluation, preprint 2012–2016


[IUTch-III] Inter-universal Teichmüller theory III: Canonical splittings of the log-theta-lattice, preprint 2012–2016


[IUTch-IV] Inter-universal Teichmüller theory IV: Log-volume computations and set-theoretic foundations, preprint 2012–2016


[NB] Noncritical Belyi maps, Math. J. Okayama Univ. 46 (2004), 105–113


[TAAG-I] Topics in absolute anabelian geometry I: Generalities, J. Math. Sci. Univ. Tokyo 19 (2012), 139–242


[TAAG-II] Topics in absolute anabelian geometry II: Decomposition groups and endomorphisms, J. Math. Sci. Univ. Tokyo 20 (2013), 171–269 


[TAAG-III] Topics in absolute anabelian geometry III: Global reconstruction algorithms, J. Math. Sci. Univ. Tokyo 22 (2015), 939-1156