Introduction to R

Ian Dryden
University of Nottingham

Introduction to R

What is R?

Most practical statistical analysis is carried out using a computer. R is a very widely used
statistical language with a huge range of contributed packages. These notes are available
at:

http://www.maths.nottingham.ac.uk/"ild/teaching/IntroR/introR3.pdf

Starting R

R is a command line based language, so you will need to type in the commands with any
options and arguments.

When R starts a command window is opened. It is here that you type in the commands.
R can be downloaded from

http://cran.r-project.org/

Packages can be installed using the menu option ‘install packages’.

[In Linux: in order to start R on a Linux network just type R, and you can install packages
using install.packages ()]

Some basics

Let us start by typing in some data
x <- ¢(1,5,3,7,6,2,3,6,8,9)

Here the c() means it’s a column vector, and the <- sign is an assignment (equivalent
to =) The above command will put the vector of data (1,5,3,7,6,2,3,6,8,9)7 into the
variable named ‘x’. You can see what is in ‘X’ by just typing

X

Now let us create a vector of length 60 consisting all of zeroes.

y <— rep(0,times=60)

And then we can look at it by just typing ‘y’

Yy

Note that the numbers in square brackets indicate which element of the vector comes next.

Let’s now consider simulating 10000 observations from a standard normal N (0, 1) distri-
bution.

x <= rnorm(10000)
and we can look at some summary statistics for the data

summary (x)
mean (x)

sd (x)

var (x)
median (x)

We can view a graphical display

hist (x)
hist (x,nclass=100)
boxplot (x)

We can look at a gqgnorm (normal probability plot)
ggnorm (x)
which should be a nice straight line here.
Adding comments: if we type
#
in a line then everything after that point is treated as a comment
comments like this are ignored in R

If we want to simulate 10000 observations from a N (u = 2,02 = 9) distribution then the
command is

y <- rnorm (10000, 2, 3) # NB standard deviation is the third argument
We’ll look at this command in more detail. Type
help (rnorm)

to obtain details of the command. You’ll notice the help lists details of some other com-
mands that involve the normal distribution (dnorm, pnorm, gnorm, as well as rnorm), and
it gives the full details of the arguments for the command rnorm in the form

rnorm(n, mean=0, sd=1)

When we issued the above command rnorm (10000, 2, 3) we were specifying that
n = 10000 (sample size), mean=2, sd=3. We could have used the long-winded version of
the command

rnorm(n=10000, mean=2, sd=3)
which is the same as rnorm (10000, 2, 3)

When we issued the first simulation command rnorm (10000) we didn’t specify what
the mean and sd were, so R uses the default values of 0 and 1, which can be found using
help(rnorm), or by typing the name of the command without brackets

rnorm

The most important command of all is he1p (commandname)

Simple graphics

We might want to plot our simulated values in y versus those in x.
The command is
plot (x,vy)

[Note the = comes first before the y]. There are numerous options for the plots that can
be used, e.g. specifying the axes limits

plot (x,vy,xlim=c(-4,4),ylim=c(-15,15))

Let’s add the point (0,1) to the plot, which is coloured red (col=2), and given a different
plotting symbol (pch = 2, is a triangle)

points (0,1, col=2,pch=2)

All the different graphical parameters are found by looking at help(par), and there are a
lot of them!!

If you wish to remove variables from memory then use rm, e.g.
rm(x)

To list what variables you have in the memory then type

1s ()

There is a huge list of commands in R, and in this session just a few can be explored.

Reading in Data

Most people find reading in the data in R a bit of a challenge at first. Consider the calcium
data on the web page

http://www.maths.nottingham.ac.uk/ "i1ld/teaching/IntroR/water.dat

which contains two columns of data on English and Welsh towns: annual mortality rate
per 100,000 males averaged over the years 1958-1964 in each town and the calcium con-
centration (in parts per million) in the drinking water supply for each town. There are
many ways to read this dataset in, but perhaps the simplest is read.table(). First of all
download the data and save it on your disk.

You need to specify the full path of the file.

z <- read.table ("PATHONYOURCOMPUTER/water.dat")
Or alternatively you can type

z <- read.table(file.choose())

which will open a ‘select file...” dialogue box.

Note the directory signs are forwards / rather than the usual backwards in Windows. This
will put the data into a dataframe of the same size of the data (here 61 x 2)

To look at the data just type
Z

and you will see it has rows labelled 1-61, columns labelled V1,V2. A dataframe is just a
matrix with some names labelling the columns. We can change the names if we want

names (z) <- c("mortality","hardness")
and then see what the dataframe looks like

Z

We can now plot mortality against hardness using
plot (zShardness, zSmortality)

We can fit a regression line using

out <- Im(z$mortality ~ zShardness)

and the results, including the fitted line, tests for existence of regression etc. are put into
the R object called ‘out’. To get a summary of the results type

summary (out)

Is there evidence for existence of regression here? There are many other useful things you
can do with the output, e.g. add the fitted regression line to the plot

abline (out)
Another way to read data is through the scan command
x <— scan("C:/YourDirectory/water.dat")

which scans in the data line by line and puts it all in a single column.

X
But now you’ll need to re-arrange the data to put it into a matrix.

y <- matrix(x, 2, 61)
y <= t(y)

which puts the data into a 2 x 61 matrix first (you must do it this way round) and then we
take the transpose of y to get a 61 x 2 matrix, which can be seen by typing

y

Probability Plots

A useful plot is a Q-Q plot, where the ordered data (‘Sample quantiles’) plotted against
the expected ‘Theoretical’ quantiles. The most common type of plot is a normal QQ plot.

Consider simulating some data from a Student’s t distribution with 9 degrees of freedom.
xj-rt(1000,d{=9)

We can then consider a normal ggplot of the data:

qgnorm(x)

or a Student’s t QQ plot:

plot(sort(x),qt(ppoints(x),9)))

Matrices

Let us look at some more matrix based commands

data(iris)
X <— 1iris

(assigns Fisher’s Iris data into x, which is a standard dataset in R).
y <- x[, 1:4]

extracts the first four columns from the dataset. Note that we can add matrices A+B but
if we multiply matrices we need to use the special symbol A

Example:

X

where t(X) is the transpose of X.

To get the 4 x 4 sample covariance matrix we can use

S <- var (y)
S

and the correlation matrix is

R <= cor (y)
R

We can find the eigenvalues and eigenvectors of S as follows
eigen (S, symmetric=TRUE)

Note that the output of this command is a list, which has two parts
Svalues

(the eigenvalues)

and

Svectors (the eigenvectors)

List

We can create a list as follows:
ans <- list (x=0,y=0,z="")
where the list contains
Sx (real), Sy (real)
and
Sz |
(character strings)
So, I can make an assignment

ans$x <- ¢(1,2,3,4,5)
ansSy <- c(4,3,2,1)
ans$z <- c("cat", "dog")

and the list and can be seen by typing
ans

Lists can be very useful in providing the output of functions.

Functions

A function is a series of commands that can be called by using a simple name and argu-
ments. Consider the following function:

testfun<-function(n=100) {
x<—-rnorm(n)

xsumsg<—sum (X**2)
xsum<-—-sum (x)

name<— "Normal"

par (mfrow=c(1,2))
out<-1list (sum=0, sumsg=0, name="")
hist (x)

hist (x**2)

outSsum <—- xsum
out$sumsg <- xsumsqg
outSname <- name

out

}

In order to see the details of the stored function, just type the function name
testprog
Now run the function for n=200 and put the answer in temp

temp<-testfun (200)
temp

Now run the function for the default value of n (100 here) and put the answer in temp2

temp<-testfun ()
temp?2

Loops

Loops are very useful things for repeating calculations The format is as follows for s
simple loop for squaring the numbers 1-100 and printing out the values:

for (i in 1:100) {
print (i%x2)
}

If statements

You may need to check a logical statement with an IF statment. This loop does the same
things but only for integers that are divisible by 3:

for (i in 1:100) {

if (i/3==trunc(i/3)) {
print (i%%2)

}

}

Another useful thing is the WHILE loop, where a statement is carried out repeatedly while
the condition is TRUE. If the condition is FALSE then the command is not carried out,
and the program then exits the WHILE loop.

sum<-1

while (sum <= 100) {
print (i*x2)
sum<-sum+1

}
print ("finished!")

Finishing and saving your work

To quit a session of R then type

a()

You’ll be asked if you want to save the ‘workspace image’. In general I would say ‘no’
to this question, unless you have been doing some very heavy numerical calculations that
will take a long time to repeat. If you say ‘yes’ then next time you start R the variables
will all be restored. This is fine for small jobs but when you start doing lots of different
jobs it can be confusing to have unecessary variables lying around.

If you wish to save your work then I would recommend writing the commands in a text
file as you go along (e.g. using wordpad or notepad) and then copying and pasting them
into the R window (or using the source command - see below).

