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Preface

These notes originated from a set of lectures on basic results in Nevanlinna theory and their application
to ordinary differential equations in the complex domain, given at the Christian-Albrechts-Universitat
zu Kiel in December 1998. Over the years additional topics have been added, such as some elements
of potential theory which are of use in value distribution theory, including the important technique of
harmonic measure. Analytic continuation and singularities of the inverse function are also discussed, and
the various themes are brought together in the Denjoy-Carleman-Ahlfors theorem and a recent theorem
of Bergweiler and Eremenko concerning asymptotic values of entire and meromorphic functions.

The aim has been to develop in a single set of notes some of the key concepts and methods of
function theory, in a form suitable for a postgraduate student starting out in the area. The notes have
drawn on many sources, and these are indicated in the course of the development.

| would like to thank several people for drawing my attention to numerous obscurities and typos in
earlier versions of these notes. These include my PhD students James Hinchliffe, Guy Kendall, Eleanor
Lingham, Abdullah Alotaibi, Rob Trickey, Dan Nicks, Matt Buck and Asim Asiri, as well as Professor
Christian Berg of the University of Copenhagen, who used parts of these notes in a graduate lecture
course.
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Chapter 1

Some topics from real analysis

This chapter contains a number of topics from real analysis. They have nothing in particular in common
except that they all play a useful role in various aspects of function theory.

1.1 Convex functions

The property of convexity plays an important role in function theory because a number of key quantities
associated with entire, meromorphic and subharmonic functions turn out to be convex functions of log .
A good reference for this section is Chapter 5 of Royden's book [63], which along with Rudin's classic
text [64] will be the main source for measure theoretic results used in these notes.

The real-valued function f is convex on the open interval I = (p,q), —00 < p < q < o0, if

b_xﬂw+i:

fz) <

< af(b) for p<a<z<b<yq.
b—a a

This says that the graph of f over the closed interval [a,b] lies on or below the straight line from
(a, f(a)) to (b, f(b)). Rearranging, we find that

fla) = fl@) _ 1) = f(a) _ F() = (@)

C —
(@,a) T —a b—a b—ux

for a<x <b. (1.1)

Keeping a fixed in (1.1) we get C(z,a) < C(b,a) for a <  <b. So C(x,a) is non-decreasing on (a, q)
and the right derivative
fr(a) = lim C(x,a) < C(b,a)

r—a+

exists, with f,(a) < oo for every a € I. Next, keeping b fixed in (1.1) we find that C(b,z) is non-
decreasing on (p,b) and the left derivative

fr(b) = hlil— C(z,b) = lim C(b,z) > C(b,a)

r—b—

exists and satisfies f (b) > —oo for all b € I. Moreover, (1.1) gives C(z,a) < C(b,z) fora < z < b
and so fr(a) < f1.(b) for a < b. Now let a — z—,b — x+ in (1.1), which gives

fr(@) < fr(=).

So
fr(a) < frla) < f(b) < fr(b) for a <b.

Thus both left and right derivatives are real-valued non-decreasing functions, and f is continuous on I.

1



2 CHAPTER 1. SOME TOPICS FROM REAL ANALYSIS

Fix n € N. If
fr(@) < fr(z) —1/n (1.2)
then for y > x we have f](z) < f7(y) —1/n. Hence on any closed interval [a,b] C I there are finitely
many points z satisfying (1.2), because if x1, ..., 2, are such points with a < 1 < x93 < ... < x;, < b
then
“ -1
fr (b Z fr(xs) = fr(zj-1)) > = .
7=2

Thus there exists a countable set .J such that on the complement I\ J we have f; = ff. It follows
that f is differentiable on I\ J, and f’ is non-decreasing on I\ J.

1.2 The growth of real functions

1.2.1 O and o notation

Let s(r), g(r) be functions defined on [a, c0), with s(r) complex-valued and g(r) real and positive. We
say that s(r) = O(g(r)) as r — oo if there exist constants K, L such that |s(r)| < Kg(r) for all
r > L. Thus, for example, (r?2 + 3)sinr = O(r?) as r — oo. We write s(r) = o(g(r)) as r — oo if
s(r)/g(r) — 0: for example logr = o(r).

We can also use this notation when 7 tends to a finite limit, for example, 72 + 3r = O(r) as r — 0+,
and for sequences, such as 2" = o(n!) as n — oo.

1.2.2 lim sup and lim inf
Let s(r) be a real-valued function defined on [a,c0). For each r > a, define
T, ={s(t) : t > r}.
Obviously T;. C T, if r > u > a. Next define, for each r > aq,
p(r) =ps(r) =inf T, q(r) = qs(r) = supT,.

Here we use the convention that if a set is not bounded above then its sup is +00, while if a set is not
bounded below then its inf is —oo. We obviously now have

p(r) < s(r) < q(r). (1.3)

Also p(r) is a non-decreasing function, and ¢(r) is a non-increasing function.
We define the “limsup” and “liminf" of s(r) by

7 =limsups(r) = lim ¢(r), p=Iliminfs(r)= lim p(r).

r—00 r—00 r—00 r—o0
Obviously < 7, and we obtain the following properties of 7 and p.
(i) The limit lim,_,o s(r) exists, with value L (possibly +00), if and only if 7= pu = L.

Proof. Suppose s(r) has limit L. Assume first that —oo < y < L. Then for large t we have s(t) > y.
So q(r) > p(r) >y for all large , and so 7 > p > y. Similarly, if y > L we get y > 7 > p.
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Conversely, suppose that 7 = = L. Then p(r) and ¢(r) tend to L as r — oo and, by (1.3), so
does s(r).

(ii) Suppose h < 7. Then for all large r we have h < ¢(r) and so we can find ¢ > r with s(¢) > h.
Hence there exists a sequence 7, — 0o with s(ry,) > h.

(iii) Suppose H > 7. Then s(r) < ¢(r) < H for all large r.
Obviously properties (ii) and (iii) determine 7 uniquely.

(iv) If h < p then s(r) > h for all large r. If H > u there exists a sequence 7, — oo with s(r,,) < H.
These are proved in the same way as (ii), (iii), or using:

(v) We have
limsup(—s(r)) = — liminf s(r).

This is easy, since q_s(r) = —ps(r) etc.

1.2.3 The order of a function

Let s(r) be a non-negative real-valued function defined on [a,00). The order of s(r) is

, log™ s(r)
ps = limsup ———=,
r—00 10g7“
in which
log™ 2 = max{log z,0}. (1.4)

If ps < K < oo then for all large enough r we have log™ s(r) < K logr and so s(r) < r’.

1.2.4 Lemma

Suppose that s(r), S(r) are non-negative real-valued functions defined on [a,c0) and that there exist
A,B,C,D > 1 such that
S(r) < As(Br)(logr)¢

forr > D. Then ps < ps.
Proof. Assume p, < K < oo, since if p; = oo there is nothing to prove. For large r we then

have
log™ S(r) <logt™ A +1log™ s(Br) + Cloglogr < K log Br + o(logr)

and so ps < K.

1.2.5 Borel’s lemma

Let A > 1. Let the function T : [rg,00) — [1,00) be continuous from the right and non-decreasing.
Then
T(r+1/T(r)) < AT(r) (1.5)

for all r > rq outside a set E of linear measure at most ﬁ.
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Proof. Let ry be the infimum of those r > 7 (if any) for which (1.5) is false, and set 7} = 71 +1/T'(r1).
Continue this as follows: if 71,...,r, have been defined, put r}, = r,, + 1/T(r;,,) and let r, ;1 be the
infimum of ~ > 7/, for which (1.5) fails.
If n > 1 and 7, exists then, by the definition of 7, as an infimum, there exists a sequence s; — r,+
such that (1.5) fails, i.e.
T(sj+1/(T(s;)) > AT (s;).

Since T'(r) is non-decreasing and continuous from the right, while s; — r,,+, this gives
T(sj+1/T(rn)) = T(sj +1/(T(s5)) > AT(s;), T(r,) =T(rn+1/T(rn)) = AT (rn).

If, in addition, 7,41 exists then T'(r, 1) > T(r],) > AT (ry,).

We identify three cases. The first is that 1 does not exist, in which case F is empty and there is
nothing more to prove. The second is that rq,...,r, exist, but (1.5) holds for all » > r/. In this case,
E is contained in the union of the intervals [r,,, 7] (m =1,...,n) since, by the definition of the r,,,
(1.5) holds for 7/, < r < rp41. Thus

n n A
/ r < Z — ) = mZ:;T(rm)_l < mz::lAl_mT(rl)_l < 11

The final case is that in which the sequence 7, is infinite. In this case r, — 0o, for otherwise
T — 1% € (rg,00), 1 <71 <rpgr, T T

and
1/T(r*) <1/T(rp) =7l — 1y — 0,

which is impossible. As in the second case we get

/ mi — ) < i AT (r) T < Tf l

m=1

1.3 Some results on certain integrals

1.3.1 The Riemann-Stieltjes integral

See Apostol’s book [3, Ch. 7] for details of the Riemann-Stieltjes integral. Let f and h be real-valued
functions on the interval I = [a,b]. Let P = {to,t1,...,t,} be a partition of [a,b]. This means that
a=ty <ty <...<ty,=">;thet; are then called vertices of P. By a Riemann-Stieltjes sum, we mean

S(P, f, h) Zf 5k)( — h(tg-1)),

in which t;_1 < sx <. The case h(z) = x gives the standard Riemann sums of ordinary integration.
We say that the Riemann-Stieltjes integral

[ rwantz)

exists and equals L € R if the following is true. To each £ > 0 corresponds a partition Py of I such
that |S(P, f,h) — L| < € for every refinement P of Py (this means that each vertex of P, is a vertex of
P), regardless of how the s are chosen.
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In particular, the integral exists if f is continuous and h is monotone [3, p.159]. Further, if

[ rwntz)

exists then so does )
| o)

and they satisfy the integration by parts formula [3, p.144]

b b
/ f(fﬂ)dh(w)=f(b)h(b)—f(a)h(a)—/ h(z)df (). (1.6)

The following lemma concerning the interplay between sums and Riemann-Stieltjes integrals is useful in
Nevanlinna theory.

1.3.2 Lemma

Let —co < a =1ty <ty,...<tym =0b<oo. Let the real-valued functions f and h be such that:
(i) f is continuous on [a,b];
(ii) h(x) is non-decreasing on [a,b] and constant on each interval [t;_1,t;), j =1,...,m.

Then
b

fdh =T =" f(t;)(h(t;) = h(t;-1)).
a j=1

Proof. Let ¢ > 0 and choose § > 0 such that §(h(b) — h(a)) < e. Next, choose n > 0 such
that |f(x) — f(y)| < d fora <x <y <b, y—x <n, which is possible since f is uniformly continuous
on [a,b]. Fix a partition Py of [a,b] such that (a) each ¢; is a vertex of Py and (b) the distance between
successive vertices of Py is less than 7.

Now let P be any refinement of Py. Then properties (a) and (b) holds with Py replaced by P. For
j=1,...,m let z; be the greatest vertex of P in [a,t;). Then t;_; < xz; < t;. By property (ii), any
Riemann-Stieltjes sum using the partition P has the form

S(P, foh) =Y f(si)(h(ty) = h(xz)) = D f(s5)(h(t;) = hltj-1)),

m m
J=1 Jj=1

where z; < s; < t;, because all other subintervals contribute nothing to S(P, f, h). But then, since h
is non-decreasing,

|S(P, f,h) = I <> [ £(s5) = FEDI(Rlts) = h(tj-1)) < 6 Y _(A(t;) = h(tj-1)) = 6(h(b) — h(a)) < &.
j=1 j=1

1.3.3 Lemma

Let g(r) be a non-negative measurable function on [0,00), with [ g(t)dt < oo for every finite r > 0.
Let h be the non-decreasing function
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Let f be real-valued and continuous on [a,o0). Then for each real r > a the Riemann-Stieltjes integral

/ F()dh(t
/ " Fgt)ar

Proof. Let r > a and € > 0 and take § > 0 with

5/ t)dt < e.

Pick n > 0 so that |f(x) — f(y)] < d fora <z <y <r, y—x <n. Fix a partition Py of [a,r] such
that the distance between successive vertices of Py is less than 1. Let P be a refinement of Fy, with
vertices a = tg < t; < ... <t, =7r. Let ty_1 < sp < tg. The corresponding Riemann-Stieltjes sum
S(P, f,h) is given by

S(P, f,h) Zf sk)( h(tk-1) Zf Sk / g(t)dt.

te—1

and the Lebesgue integral

are equal.

Hence

s ) [ roaterin = Z / Flsw) — F0)g(t)de

te—1

/ dg(t)dt < e.

If h >0 on [0,27] and h and log h are integrable,
2

1 1 2m
— log h(t)dt < log </ h(t)dt> .
2T 0 2 0

has modulus at most

1.3.4 Lemma

This says that the average of logh is not more than the log of the average of h. To prove the
lemma we set
1 21
m = / h(t)dt, g(t) = h(t) —m > —m.
2 0

Then
1 2T

o g(t)dt =m—m =0.
Also
h=m(1+g/m), logh(t)=logm +log(1+ g(t)/m) <logm + g(t)/m,
using the fact that log(1 + z) < z for z > —1, which holds since p(z) = log(1 + x) — 2 has p'(z) < 0
for >0 and p/(z) > 0 for =1 < 2 < 0.

We now get
27

1 2
— 1 <l — =1 .
5 og h(t)dt <logm + 277/0 (g(t)/m)dt =logm

This proves the lemma, which is a special case of Jensen's inequality.
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1.4 The density of sets

Let F be a measurable subset of [0,00). The following quantities give some idea of how large and
widely spread the set F is [13, 38]. First, we set xg(t) to be 1 if ¢ is in E, and 0 otherwise, and x is
then a measurable function. We define the upper and lower linear density of E by

— xE(t)dt xE(t)dt
Dp = dens(E) = limsup M, dp = dens(FE) = liminf m.

r—00 r 700 r

Obviously 0 < dp < Dg <1, and if E has finite measure then Dg = 0. It is also easy to see that
DE:1—dF, dE:1—DF, where F:[0,00)\E.
Next we define the upper and lower logarithmic densities, by

- r 1) at T £)dt
LDpg = logdens(F) = limsup m, ldg = logdens(F) = liminf m
300 log r —_— T—00 log r

Again, it is obvious that 0 < ldg < LDg < 1.

1.4.1 Example

Let r, = e ,n > 1, and let E be the union of the intervals [rn,ery]. Then dg = 0,Dp > 0,
ldp = LDg = 0.

Proof. Let s,, = er,,. Then
Sn Sn
/ XE(t)dtZ/ dt = (e —1)r, = (1 —1/€)sp,
0 Tn
and so Dg > 1 — 1/e. However,

Tn Sn—1
| et < [ o < s = o),
0 0

which gives dg = 0.
Suppose now that r is large, with r, < r < r,y1. Then

r dt & [ dt = [ dt
/IXE(t)tS;/rj XE(t)t:jz;/rj — =n=loglogr, <loglogr.

So LDE = 0.

1.4.2 Theorem

Let E be a measurable subset of [0,00). Then 0 < dp <ldp < LDp < Dg.

Proof. We only need to prove that LD < Dp, because with F' = [0,00) \ E we get
dp=1—Dr <1—-LDp=Idg.

There is nothing to prove if Dy =1 so assume that Dg < K < 1. Then

h(r) = /;XE(t)dt < /0 ve(t)dt < Kr
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for all large . So there exists C' > 0 with h(r) < C+ Kr for all r > 1. Lemma 1.3.3 and the integration
by parts formula (1.6) for Riemann-Stieltjes integrals now give, for large 7,

r K
C+K+/ %%—Tdthlogr%—O(l).
r 1

which is at most

Thus LDg < K.

1.5 Upper semi-continuity

Let X be a metric space. A function u : X — [—00,00) is called upper semi-continuous if the following
is true: for every real ¢ the set {z € X : u(z) < t} is open. Obviously if X = R™ then every upper
semi-continuous function u is (Borel) measurable.

1.5.1 Theorem

Let X be a metric space, with metric d, and suppose that u : X — [—oo, M| is upper semi-continuous
for some M € R. Then there exist continuous functions u, : X — R with uqy > ug > uz > ... > u,
such that u,(z) — u pointwise on X.

Proof. This proof is from [61]. If u = —oo just take u,, = —n. Now assume that u # —oo and
forx € X and n € N put
() = sup{u(y) — nd(w,y) : y € X}.
Then clearly
up () € (—oo, M].
To prove that w, is continuous we must estimate wu,,(z) — uy,(z'), so assume without loss of generality

that u,(z) > uy,(2'). Take § > 0. Then the definition of u,, gives y with u(y) —nd(x,y) > u,(x) — .
Then

U (@) = 8 — up(2’) < uly) — nd(z,y) — (u(y) — nd(z’,y)) = nd(2', y) — nd(z,y) < nd(z,2").

Since § may be chosen arbitrarily small it follows that u,(z) — u,(2') < nd(z,2’), and so each w,, is
continuous. Clearly uj; > ug > ..., and choosing y = x shows that u,, > u. Note that we have not

yet used the fact that w is upper semi-continuous.
To show that wu,(x) — wu(zx), take t € R with u(z) < ¢, and using the fact that w is upper
semi-continuous take r > 0 such that

sup{u(y) : y € D(z,r)} <t
Now
up(z) < max{sup{u(y) : y € D(z,r)}, sup{u(y) : y € X} — nr} < max{t, M — nr}.

We thus have u,(x) <t for large n.

Exercise: if w(0) = 1 and u(xz) = 0 for all real x # 0, determine uy,(z) for each z. Do the same
for v = —u (which is not upper semi-continuous).
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1.5.2 Lemma

Let the function u be upper semi-continuous on a domain containing the compact subset K of C. Then
u has a maximum on K.

Proof. Let S be the supremum of u(z) on K, and take z, € K such that u(z,) — S. We may
assume that z,, converges, and the limit w is in K since K is closed and bounded. But then u(w) > S,
because if u(w) <t < S then we get u(z) < t near w and hence u(z,) < t for all large n. We also
have u(w) < S, by the definition of S, and so u(w) = S.



Chapter 2

Entire functions

2.1 The growth of entire functions

2.1.1 Notation

For zg € C and r > 0 the open Euclidean disc and circle of centre 2y and radius 7 will be denoted by
D(zp,r) ={z€C:|z—2| <r}, S(z0,7)={2€C:|z—2z|=r},

respectively. If zyp € C* = CU {oo} then Dgy(2p,) is the spherical disc

Dy(z0,7) = {2z € C* : q(z, 20) < r}.

2.1.2 The maximum modulus

Let f be entire (i.e. an analytic function from the complex plane into itself). Let » > 0 and define
M(r, f) = max{[f(z)| : [2] = 7}, (2.1)
By the maximum principle, we have

M(r, f) = max{[f(2)| : [2] <7},

from which it follows immediately that M(r, f) is non-decreasing. Note also that if 0 < r < s and
M(r, f) = M (s, f) we can choose z with |z| = 7 and |f(2)| = M (r, f). Thus |f(w)| < |f(z)] for all
w in D(0,s) and so f is constant, again by the maximum principle, since |f| has a local maximum.
Hence M (r, f) is strictly increasing if f is non-constant.

For an entire function f, we now define the order (of growth) p of f by

. logJr log+ M(r, f
p = plf) = lim sup 8108 M(J)
r—00 ogr

in which log™ z is defined by (1.4).

Example 1:

Let f(2) = an2"+...+ag be a polynomial in z. For |z| > 1 we have [f(z)| < c[z|",c = > 1 |aj|. Thus
log M(r, f) < nlogr+loge < (n+1)logr for r > 1+¢, and so log™ log™ M(r, f) < loglogr + O(1)
as r — oo, and p = 0.

10
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Example 2:
Let f(z) = exp(z™), with n a positive integer. Then log M(r, f) =" and p = n.

Example 3:
Let f(2) = exp(exp(z)). Then log M (r, f) = ¢€" and p = co.
2.2  Wiman-Valiron theory

The Wiman-Valiron theory is concerned with determining the local behaviour of an entire function
from its power series. The main references for this subject are [36], from which this chapter will draw
extensively, and [71]. First, if

P(z) =apnz" +...+ao, an#0,

is a polynomial of positive degree n, and if z and z are large, then we have

P(z) ~ <ZZO>HP(ZO) and Z((;) ~ g

If P is replaced by a non-polynomial entire function f then it is clear from Picard’'s theorem that no
such asymptotic relation can hold for all large z and zg, but the aim of the Wiman-Valiron theory is to
obtain comparable estimates when z is close to zp and |f(zo)] is close to M(|zo|, f). Let

Fz) = et (2.2)
k=0

be a transcendental entire function (here “transcendental” means “not a rational function”). Thus
ay, # 0 for infinitely many k.

2.2.1 The maximum term

We define the maximum term p(r, f) as follows. For each r > 0 let

w(r) = p(r, f) = max{|ap|r* : £ =0,1,2,...}. (2.3)

This u(r, f) is well-defined, because for fixed r the terms |ag|r* tend to 0 as k — oo. Obviously
w(0) = |ag|. Since f is non-constant there exists k > 0 with az, # 0 and so we have pu(r) > |ag|r® > 0
for r > 0, as well as

lim p(r, f) = oc.

r—00

The first step is an initial comparison between the growth rates of M (r, f) and u(r, f).

2.2.2 Lemma

For r > 0 we have
p(r, f) < M(r, f) < 2p(2r, f). (2.4)
Further, the orders of the functions log™ M (r, f) and log™ u(r, f) are equal, these being defined by

: log™ log™ M(r, f) : log™ log™ u(r, f)
pf = limsup ,  pu = limsup .

r—00 log r r—00 10g r
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Proof. The first inequality of (2.4) comes from Cauchy's integral formula, since for k£ > 0 we have

fMO)| _ |1 / ) 4 M(r,f) _ M(r,f)
27 |z|:r ZkJrl

|ak| = ‘ Kl ) Pkl = rk .

The second inequality is proved as follows. For k > 0 we have

la(2r)" < p2r, ), lalr® < 27Fp(2r, f),

<

1
—(27r
2m

and so
o0 o0
M(r,f) <Y lawl® <D 27 u(2r, f) = 2u(2r, f).
k=0 k=0
The last assertion of the lemma now follows from (2.4) and Lemma 1.2.4.

2.2.3 Lemma

w(r, f) is continuous and non-decreasing on [0,00), and there exists R > 0 such that u(r) is strictly
increasing on [R, c0).

Proof. By the definition (2.3) of x and Lemma 2.2.2 we have 1(0) = |ag| < p(r) < M(r, f) — |ao| as
r — 0+, and so p(r) is continuous as 7 — 04. Now choose m > 0 with a,, # 0. If 7o > 0 then there
exists ko > m such that |ag|(270)* < |am|ri® for k > ko. So for 7o < r < 2rg we have

pu(r) = lam|r™ = |am|rg’
and so
u(r) = max{|ag|r® : 0 < k < ko}.

So on [rg, 2rg] our wu(r) is the maximum of finitely many continuous functions and so continuous.
If 0 <r < s < oo take n such that u(r) = |a,|r™. Then

(u(s) = lan|s" > lan|r"™ = p(r), (2.5)

so u(r) is non-decreasing. Now take R > 0, so large that |a,,|R™ > |ag| for some m > 0 with a,, # 0.
Then for R < r < s < 0o we have |a,,|r™ > |ag| and so p(r) = |a,|r™ for some n > 0 with a, # 0,
which gives strict inequality in (2.5).

2.2.4 The central index

For » > 0 and p(r) as above, we define the central index v(r) = v(r, f) (also called N (7)) to be the
largest k for which |ag|r¥ = u(r, f). Note that if ag = 0 then v/(0) is not defined, whereas if ag # 0
then v(0) = 0.

Observe further that if » > 0 then pu(r) > 0, and that if k # n with aga, # 0 then |ag|r* = |a,|r"
for exactly one positive value of . Thus there are only countably many values of r for which there does
not exist a unique n with |a,|r™ = u(r).

2.2.5 Example

For f(z) = €* and f(z) = sinz, determine u(r) and v(r) (hint for e*: consider those r for which
la|r* = |ag1|r**1). Use Stirling’s formula to compare M (r, f) with u(r).
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2.2.6 Lemma

The central index v(r) is non-decreasing on (0, 00), and v(r) — oo as r — oco. Also, v(r) is continuous
from the right, i.e., for each s > 0,

Tl_i>r£1+ v(r) =v(s).

Proof. Suppose first that 0 < r < s and v(r) = N. If N = 0 then obviously v(s) > v(r). Now
suppose that N > M € {0,1,2,...}. Then we have

s\ s\
fantr™ = faalr, fanls™ = lanlr™ (2)7 > Jav i (2) 7 > Jayls™,

and so v(s) > N.

Now let P > 0 and choose k > P be such that a; # 0. Then if m < k we have |a,|r™ < |ag|r"
for all large r, and so v(r) > k > P for all large r. This says precisely that v(r) tends to co.

Now we prove that v(r) is continuous from the right. Let s > 0 and put N = v(s). Take kg > N
such that |ay|(25)* < u(s) for k > ko (this is possible since the terms |az|(2s)* tend to 0). Then

p(s) < plr, f) = max{lag|r* : 0 < k < ko}

for s < r < 2s. But N is the largest k for which |ay|s* = u(s), so that |ag|s* < u(s) for k > N. By
continuity there exists § with 0 < § < s such that

Jalr® < lan|s™ = u(s)

for s <r < s+6§and for N < k < kg. By the choice of kg, we now have |ay|r¥ < |an|r" for
s <r<s+J andforall k > N. Hence v(r) = N for s <r < s+ 4. A similar argument shows that
v(r) is continuous as r — 0+ if ag # 0.

2.2.7 Lemma

The unbounded integer-valued function v(r) has the following property. There exists a strictly increasing
sequence r, — oo, with rg = 0, such that v(r) is constant on (rg,r1) and on [ry,,Tp41), for eachn > 1.
Also if 0 < s < r then

"v(t)dt
log u(r) = log p(s) + / (t) . (2.6)
For large r we have
log™® u(r) < v(r)logr + O(1) (2.7)
and
v(r)log2 <log™ u(2r), v(r)logr <log™ u(r?). (2.8)

The orders of growth of log™ u(r) and v(r) are the same i.e.

logT log™ log™t
i sup 1281087 AT) o 1087 ()
r—00 log r r—00 log r

Proof. We just set 9 = 0, and let 7,,, n > 1, be the points in (0,00) at which v(r) is discontinuous.
Here we note that if » > 0 and v(r) = N, the function v cannot have more than N discontinuities in
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(0,7). Since v(r) is continuous from the right and integer-valued, it must be constant on (rp,71) and
[Tmrn—&-l)-
Now suppose that v(r) = N for 7, < r < 7,+1. Then on this interval we have p(r) = |ay|r"Y and

o) (
dlog u(r)

———= =N. 2.10

dlogr ( )

Since pu(r) is continuous we get

bl/
log u(b) — log p(a) = / (tt) dt

for r, < a < b <r,y1. Adding these gives (2.6).
To prove (2.7) and (2.8), choose s > 1, so large that p(s) > 1. Then for r > s we have, since v(t)
is non-decreasing,

" dt
log p(r) < log p(s) + V(r)/ + Slogp(s) +v(r)logr,

which gives (2.7). We also have

2r v 2r
log 11(2r) 2/ W)dt 1/(7")/ %: v(r)log2

and
2

log pu(r?) > /T OdE /T %: v(r)logr,

This proves (2.8), the second inequality of which gives

1/2
log pu(r) > v(r 7)o
log r 2

as r — oo. Finally, (2.9) follows from (2.7), (2.8) and Lemma 1.2.4.

2.2.8 Lemma

Let e > 0. Then
N(r) = v(r) < (log u(r))' = < (log M(r, f))'*¢ (2.11)

for all r > 1 outside a set E of finite logarithmic measure, i.e.

/ dt
— < 0.
[Loo)nE ¢

Proof. Choose s > 1 with u(s) > 1 and let F' be the set of > s for which (2.11) fails. Then, for
R > s, integration of (2.10) gives

dt BON@d 1 1 B 1
/[1,R}OF ¢ S/s t(logp(t))+s ¢ ((logu(S))E (10gu(R))€>'

Letting R — oo then shows that F' has finite logarithmic measure, and so has E, since E'\ F' is bounded.
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2.2.9 The comparison sequences

Let (o) and (pp) be sequences such that

Qn—1

for n>1. (2.12)

Qg
ap >0, 0<py < —, < pp <
aq (879 Ap41

Note that suitable sequences («,) and (p,) will be constructed subsequently.

2.2.10 Lemma

Let f be a transcendental entire function with ag # 0 in (2.2), and assume that the sequence (p,,) is
bounded above in §2.2.9. A real number r > 0 will be called normal for f with respect to the sequences
(an) and (py) if there exists an integer N > 0 with

N on(pn)"

~n(pn)N

Then there exists an exceptional set Fy of finite logarithmic measure such that every r > 1 withr € Ey
is normal, and satisfies (2.13) with N = N(r).

for all n > 0. (2.13)

|an|r™ < lan|r

Proof. It follows from (2.12) that

I < ()N forn, N >0, n#N. (2.14)
an
For if n < N then o o o
N— _
— = .. L < gt v < ()N
aN  Opil an
while n > N gives
O, ON41 o, 1 1 1
= < — < —-
ay  ayn Qn-1 PN Pn-1_ (pN)"

This proves (2.14), which now implies in particular that if (2.13) holds then
|an|r™ < lan|r™  forn # N

and so N = N(r) = v(r).

We assert that there exists a non-decreasing sequence (s,) with limit co and with the following
properties: (i) we have sg = 0; (ii) if s, < Sp41 then N(r) =n on [sy, Sp11). To see this, observe first
that V(0) = 0 (because ag # 0) and that N(r) is non-decreasing and continuous from the right, and
integer-valued. So let

O=po<p1 <...

be the values taken by N(r), and let ¢, = min{¢t > 0 : N(¢) = px}, which exists because N(r) is

continuous from the right. So we set sp =0 and then s; = ... =5, =1, and 5,411 = ... = 5p, = 2
and so on.
Now we claim that
a
2 < for n > 0. (2.15)
ao S1...8n

We prove (2.15) by induction. For 0 < ¢ < s; we have N(t) = 0 and so |a1|t < |ag|, which gives (2.15)
forn =1 on letting t — s;—. Now let n > 1 and let m be the largest integer such that s,,, < s,. Then
on [Sm, Sn) we have

N(r)=m and |ap|r" < |am|r™.
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Let r — s,—. If m =0 then 51 = ... = s, and we have

lan]| < laol _ lao]

($p)™  S1...5p

as required. On the other hand if m > 0 then we may assume by the induction hypothesis that (2.15)
holds with n replaced by m and we get
|ao] 1 |ao|

< m—-n < = .
]an] < |am|($n) = S1...5m (Sn)"_m S1...5n

This proves (2.15).
It follows from (2.12) that, for n > 1,
O _ o a1

= - > —. (2.16)
g Qp—1 Q) Pn---P1

Combining (2.15) and (2.16) then gives, for n > 1,

1/n 1/n
< <‘“°|p1...p"> . (2.17)

Qg S1 Sn

Qn

Qp

Now we use the fact that (p,,) is assumed to be bounded above, from which it follows that if T > 1

then s, > Tpy, for all m > M, say. This in turn gives, by (2.17),

an | (laolpr e\ 12
~\ag s1 smu T=M)/n = /T

Qp

for all large enough n. Hence
1/n

Qn
= O7

(679

lim
n—oo

and so if we set

Qn
— 2.18
2 (218)

F(z)= iAnz", A, =
n=0

then F' is an entire function.
The point now is to deduce properties of f from those of F. Suppose that p > 0 and that
M =v(p, F). Then for all n # M we have, by (2.14) and (2.18),

[anl(poas)" anAnp" (par)" oy, n—M
- =\ow L. 2.1
lan| (ppan)™ — anrAnip™ (pa)™ — \an (pa) < (2.19)

This implies that N(r) = v(r, f) = M for r = ppps, and also that 7 is normal for f (with M taking
the role of N in (2.13)).

Since Ag # 0 we can define a sequence (S,,) for the function F', exactly as we defined (s;,) for f.
If we now have v(p, F) = n on (Sy, Sp+1) then we have v(r, f) = n on I, = (Sppn, Snt1pn), and
every r in the interval I, is normal for f. We also have S,,11pn < Snti1pn+1, by (2.12). Hence all
non-normal r for f lie in the union of the intervals [S,t1pn, Snt1pn+1], €ach of which has logarithmic
measure

log Pn+1‘
Pn

Since (p,,) is bounded above, these logarithmic measures have finite sum, and so the lemma is proved.
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2.2.11 Construction of the sequences (a,) and (p,)

Choose o € (1,2), and set
t
alt) = /0 B(s) ds, (2.20)

where .
B(s)=—1 (0<s<1), 5(5):—5—0 (1<s<o0). (2.21)

Then a(t) is a negative, strictly decreasing function on (0, c0), with a finite limit as ¢ — co. Set

Oy, = €xp (/On a(t) dt) , pn =exp(—a(n)). (2.22)

Since «(t) is bounded below on (0, 00), the sequence (p,,) is bounded above. It is obvious that «;, > 0.
To check the remaining conditions of (2.12) we note that, for n > 1,

n " " 1
log :/ loz(t)dt>/ la(n)dtza(n)zlogf,

Qp—1

and also that, this time for n > 0,

1 n+1
log— = a(n) > / a(t) dt =log Antl
Pn n Qn

This shows that sequences with the required properties do exist.

2.2.12 Lemma
The construction of §2.2.11 gives, forn, N >0, and k =n — N # 0,

]{72
o < (“a0 e ) 22

Proof. For n # N we have, on integrating by parts,

M — exp < / " alt) dt> exp(—a(N)(n — N))

N

= exp ( /Nn (a(t)—a(N))dt)

= exp (/]:(n—t)ﬁ(t)dt>.

If n > N then, since —3(t) is positive and non-increasing,

n (n _ N)2 k2

_/N(n—t)ﬁ(t)dtz—ﬁ(n)/]v(”_t)dt: one  2(N + |k|)°

On the other hand, if n < N then, again since —f3(¢) is positive and non-increasing,

N (N —n)? L2

n N
_/N(n—t)ﬁ(t)dtZ/n (t—n)(—ﬁ(t))dtZ—ﬁ(N)/n =)t = N a4 k)
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2.2.13 Lemma

Let 1 < o <2 and let f(z) =Y 3o, arz” be a transcendental entire function with central index N (r)
and maximum term u(r). Then for all large r outside a set of finite logarithmic measure we have, with
N = N(r),

|an-i|r ¥+

k2
<o (s ) (224

Proof. Obviously there is nothing to prove if Kk = 0. Suppose first that ag # 0. Then we take the
sequences (ay,) and (py,) and the set of non-normal r has finite logarithmic measure. Moreover if r is
normal then combining (2.13) with (2.23) gives, with n = N + k and k # 0,

an(p )n k2
gy < 0o (g ) (22

Now suppose that ag = 0. Then we may write f(z) = 2zPg(z) for some p > 0, where g(z) =
S g ckzt is entire and g(0) = ¢y # 0. It is then easy to see that ¢, = a,1p and pu(r) = rPu(r, g),
while N(r) = v(r,g) + p. Hence, for all large r outside a set of finite logarithmic measure, writing
v =v(r,g) and using (2.25) with f replaced by g gives

|an|r™ < p(r)

N+k vtk 2 2
lanlr™ ™ = ley k™™ < exp <_ : > < exp (_ : ) .
u(r) u(r, g) 2(v + k) 2(N + [k[)7
2.2.14 Comparison between v(r, f) and v(r, )

It is convenient to consider g(2) = zf'(z) = .7, kaxz*, and obviously v(r,g) = v(r, f') + 1. Now
fix € > 0, and suppose that r is large and lies outside the exceptional set £ of Lemma 2.2.13, and set
N =v(r, f). Then for n < N we have

nlay|r"™ < Nlay,|r™ < N\aN]rN

and so v(r,g) > N = v(r,f). Now take n = N + k with k > eN. Then N +k < k(1 + 1/¢) and
Lemma 2.2.13 gives

k?2

n|an|7“” S (N + k‘)|a/N‘7’N exXp <—2(]\7_'_|k|)0

) <k exp(—02k2_”)N]aN|rN,

where the positive constants ¢; and co are independent of r. If N is large then so is k, and thus
nlan|r™ < (1/2)N|ax|rY for n > (14 &)N, which forces v(r, g) < (1 +¢)N.
We conclude that

v(r, f') ~v(r, f) asr— oo with r & E, where [, dt/t < cc. (2.26)

2.2.15 Lemma

Let a > 0. Then
N(rexp(N(r)™®)) < (1 +a)N(r) (2.27)

for all r > 1 outside a set of finite logarithmic measure.
Proof. Choose R > 1 with N(R) > 1 and set

s=logr, M(s)=N(r)*=N(e*)"
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for s > S = log R. Then M(s) is non-decreasing and continuous from the right, and M(s) > 1 for
s> 5. Choose A > 1 with AY/® < 1+ . The Borel lemma 1.2.5 gives

N(rexp(N(r)™))* = M(log(rexp(N(r)™))) = M(s+ 1/M(s)) < AM(s) = AN(r)®
for s > S outside a set Fjy of finite measure. The corresponding exceptional set of r is just

ng{es:seEO}

/ dr:/ ds < oo.
F T Eo

2.2.16 Estimates for sums of terms in the power series

and satisfies

Let 1 <o < 2andlet 0 < 27 < 2. Let ¢ be a non-negative integer, and let f(z) = > 2, a2 be a
transcendental entire function with maximum term p(r) and central index N(r). We will estimate

ST e

[n=N(r)|=N(r)T

for p close to 7.

In order to do this, let 7 lie outside the exceptional sets of Lemmas 2.2.13 and 2.2.15, taking o = 1/4
in the latter. Note that the union E* of these exceptional sets has finite logarithmic measure (and does
not depend on ¢). Write

N=N(), polp) = lanlp", (2.28)

where
|log(p/r)| < N7T. (2.29)

We use c¢1, ¢a, . .. to denote positive constants which do not depend on r or p (although in general they
will depend on f, o, 7 and ¢q). Write

pr=rexp(N(r)"/*), M=N(p), N<MZ< (230)
in which the last inequality follows from Lemma 2.2.15.

Then for r large enough, not in E*, and n > 2N we have, by (2.28), (2.29) and (2.30), the inequality
n— M >n—5N/4> cin and the estimates

lanlp”  lanlp™  lanlp™ lan]p™
po(p) — lanlp™  lanlp™ Jan|pN
o anle? oY Jand|r™ o\ M-N
~ lamlp}! </)1> lan|r™ <;)
< ()T O
B P1 r T r
< exp((M —n)N~* + (n— N)|log(p/r)])
< exp(—clnN_1/4 +nN"T) < exp(—can_1/4), (2.31)

using the fact that 7 > 1/2. Thus we have

S nanlp < polp) Y 0l t=exp(—eaN~HV) < 1, (2.32)
n>2N n>2N
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for p satisfying (2.29).
Now, since N is large,

o onitt < Y nitt = i N + k)atk = ¢V i(l + N/k)Tk%F < 2tNNq§:kqtk.
k=1

n>2N n>N k=1 k=1

But repeated differentiation of the geometric series shows that the power series Y 72, k%t* may be

written as a linear combination of ) )

1—t7TT (1= t)etl

with constant coefficients, independent of r and p. Since 0 < t < 1 this gives

1

1 exp(caN~1/4) < NV
1—t  exp(caN—1/4) —1

and

tN N
S onan < (f“_w < cstV NN (aHD/A,
n>2N

On recalling (2.32) we therefore have, for r & E* large enough,
> nflanlp” < po(p)est™ NINUH/A = ¢510(p) exp(—caN** + cglog N)

n>2N
< po(p) exp(—crN*/%). (2.33)
We consider next those n satisfying
0<n=N+p<2N, |[p|>N".

For these n and for p satisfying (2.29) we have, by Lemma 2.2.13 and the fact that 27 > o gives
oc—17<T,

glanlp™ g rp\P lan|r"
n,uT(p) - " (;) an|rV
< N ()" exp(—p2/2(N + [p])7)
< (2N)%exp(|p|N~T — p?/2(2N)7)
= (2N)%exp(|p|[N"7(N7"7 — cs|p|))
< (2N)%exp(|p|N~ ((NT)—CslpD)
< (2N)%exp(|p|N~7(o(lpl) — cs|p]))
< (2N)?exp(—cop®N~7)
< (2N)7exp(—coN?""7) = (2N)% exp(—coN*>°),

where 2¢ = 27 — 0 > 0. Hence we get, for r & E* large, and for p satisfying (2.29),

Z nqM < (2N)7 L exp(—cgN%)
n<2N,[n—N|>NT
= exp(—cgN% + ¢iglog N) < exp(—N3/2), (2.34)

Combining (2.33) with (2.34) then gives the following fundamental lemma.
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2.2.17 Lemma

Let 1 < o <27 < 2. Then there exists 6 > 0 with the following property. Let f(z) = 7, aiz® be a
transcendental entire function and let ¢ be a non-negative integer. Then for all r > 1 outside a set F
of finite logarithmic measure we have, with the notation

N = V(Tv f)? MO(p) = |aN‘pNv (235)

the estimate
ST n%anlp” < polp)exp(—N?) for |log(p/r)| < N7 (2.36)
n—N[>N7

We also obtain another comparison between the maximum modulus and the maximum term. It
follows using Lemma 2.2.8 that, for r outside a perhaps larger set of finite logarithmic measure,

> nfanlr™ < po(r) = pu(r, f), N =N(r) < (logu(r, f))?
[n—N|>N7

and so

plr, ) < M(r, f) <Y laglr® < 3N()u(r, f) < 3u(r, £)(log p(r, f))?. (2.37)
k=0

2.2.18 A lemma concerning polynomials
Let A\, § and e be positive real numbers, and let j € {0,1}. Let
P(z) =amz™ + ...+ o

be a polynomial of degree at most m. Then for R > r > 0 we have

. m—j
() <o (MY (B
PO ()| < e (T ) <r M(r, P) (2.38)
for |z| < R. Further, if m® > e2/(6A) and |z| =7 > 0 and |P(z0)| > AM(r, P), then
r
|P(2) — P(20)| < 0|P(20)| for |z— zo| < e (2.39)
Proof. We first prove (2.38) for j = 0. Let
P m
M= M(r,P), Q(z)= (Zrlr — e, 4
z

Then Q(z) is analytic for r < |z] < oo, with Q(00) = r™ay,. We also have |Q(z)| < M on |z| =, and
so the maximum principle implies that |Q(2)| < M for |z| > r. In particular, M (R, P) < (R/r)™M,
which gives (2.38) for j = 0, using the maximum principle again.

Next, we consider the case j = 1. Let |z| < R, and put h = R/m. Then (2.38) for 7 = 0 and

Cauchy's integral formula lead to
1 P
POl = o [ P
2mi |lu—z|=h (u - Z)

1 1
< Emax{\P(uﬂ tlu—z|=h} < EM(R—Fh,P)
_ M @Benn ME(1
- h rm h rm m

- () =)
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since 1+ 1/m < e'/™. This proves (2.38) for j = 1.
To prove (2.39) let S = 7(1+m~17%). Then for z as in (2.39) we have

P'(2)] < M(S, P') < M(r, Pe (2) <S>m_1 _ W (1 N m}ﬁ)m‘l . W

r

Hence we obtain, for such z,

z 2mM (r, P M(r, P 2|p
[P < L SR < SHOD) SR gy
%0 mliTe r me Ame

[P(2) = P(20)| =

by the lower bound on m.

2.2.19 The main estimates at points near to the maximum modulus

Let f(z) = > po,arz” be a transcendental entire function, let 1 < 0 < 27 < 2 and let § and the
exceptional set E7, which has finite logarithmic measure, be as in Lemma 2.2.17. Choose A € (0,1/2]
and let € be small and positive. In addition let 7 < v < 1.

Let » ¢ Fq be large and set

N=v(rf). k=[N, polp) = lanlp", (2.40)

where [x] denotes the greatest integer not exceeding x. Then Lemma 2.2.17 implies that

Z nlan|p™ < po(p) exp(—N?) (2.41)
In—N|>k

for
[log(p/r)] < N. (2.42)

Note that for p satisfying (2.42) we have

—y _ P\
[klog(p/r)] < NT7 =0(1), (£)"~1, (2.43)
as r — oo with r € FEj.
Write
N+k
)= Y an2"+¢(2) = 2N FP(2) + ¢(2), (2.44)
n=N-—k

where P is a polynomial of degree at most m = 2k. The aim will be to show that, for appropriate choice
of z, the remainder term ¢(z) is relatively small and the polynomial P(z) does not vary too much, so
that f(z) is essentially controlled by the monomial 2=, To this end we apply Lemma 2.2.18 to P
and P/, with

R=rexp(N7),

to get
M(R,P) < <Ij)mM(r, P) < M(r,P)exp(2N™"7) ~ M(r, P),
M(R,P) < e (if“) (f)m_lM(r, P) < mMT(T’P). (2.45)
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For |z| = p satisfying (2.42), the estimate (2.41) and the relation (2.44) imply that

f(2) = 2"7EP(2) + o(po(p)) = 2N P(2) + o(M(p, [)), (2.46)
from which it follows easily that
M(r, f) ~ N kM (r, P). (2.47)
Now choose 7z with
20l =7, [f(20)] = 2AM(r, f). (2.48)
Then (2.46) gives
f(z0) ~ 2 "P(20),  |f(z0)] ~ ¥ *|P ()], (2.49)
and hence, using (2.47),
|[P(20)] ~ "N f(20)| = 2Xr* N M (r, f) > AM (r, P). (2.50)

For |z| = p satisfying (2.42) we may now write, using the first relation of (2.46), as well as (2.43) and
(2.49),

f(z)

N = 2 *P(2) 4+ o(|lan|) = 27FP(2) + o(r "N M(r, f))
= 27"P(2) +o(r V| f(20)]) = 27" P(2) + o(r*|P(20)])
= 27 ¥(P(2) + o(|P(2)])). (2.51)

For p satisfying (2.42) we deduce, using (2.43) and (2.45), that

M(p. f) < p"H(M(p, P) +o(|P(20))) = (1 +0(1))p" ~*M(r, P)

p\ N—Fk o\ N
~ (&) M~ (B) M), (2.52)
Next, consider z satisfying
|log(z/z0)] < N77. (2.53)
For such z we have
k
z _ T
Iklog(2/20)| = o(1), <%>va fmnl= 0N =0 (D). (259

since ¢ is small. Thus for z satisfying (2.53) we have P(z) ~ P(zp) by Lemma 2.2.18 and so (2.49),
(2.51) and (2.54) give

L\ Nk AN
FO ~ PG~ (2) s~ (2) s (2.55)
20 20
which is the main estimate of the Wiman-Valiron theory.
In particular, if we choose zy such that |zg| = r and |f(z0)| = M (r, f) then for z satisfying (2.53)
and |z| = p we get

7= @) () e, )

,
and so (2.52) now becomes, for p satisfying (2.42),

M(p, f) ~ <B)NM(7", f). (2.56)

r
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The next step is to estimate f/(z). For |z| = p as in (2.42), the function ¢(z) of (2.44) satisfies, by
(2.41),

G =| 3 nagen g“‘)(me’;p(‘m). (2.57)

Differentiating (2.44) thus gives, for |z| = p satisfying (2.42),

f'(z) = (N=k):VF1P() + 2V FP(2) + ¢ (2)
= (N—Kk)2N1P) + 2N PP (2) 4+ olp Han]|p™)

and hence, using (2.45) and (2.50),

f;(zvz) = (N- k)z_k 1P(z)+z‘kP’(z)+o(p‘1r‘NM<7%f>)

_ (N k)2 F71P(2) + 27 P/ (2) + o(p~ ' | P(20)])
= 2N = k)P(2) + 2P'(2) + ol | P(20)])]

“FL(N — E)P(2) + O(kM(r, P))]

k

(
= 2 (N = K)P(2) + Ok P(20)])]. (2.58)

In particular, we obtain an upper bound for M (p, ') as follows. For |z| = p satisfying (2.42), applying
(2.43) and (2.45) again, as well as (2.47) and (2.58), gives, since k = o(N),

N N
M(p, f') < (1 +0())NpY M (r, P) ~ NpN 2 Nr(r ) = (2) 7 M, f). (2:59)
p \r
Next, we estimate f’(z) for z satisfying (2.53). Again we have P(z) ~ P(z) and so (2.55) and
(2.58) lead to

N
P ~ NP ~ 0 ~ S (2 S0 (2.60)

Again, if we choose 2y such that |zg| = r and |f(z0)] = M(r, f) then we obtain a lower bound for
M (p, f') and (2.59) becomes, for |z| = p satisfying (2.42), using (2.56),

Mip. £~ 2 (2) MG 1) ~ (. 5). (261)

It follows from (2.61) that the method may be extended to handle a finite number of higher deriva-
tives as follows. Since z( satisfies (2.48), we obtain, using (2.60) and (2.61),

7ol 2 (= o(0)) () 2AM(r.£) 2 (22 = o) ).

If 7 <+’ <~ then, provided r lies outside a set of finite logarithmic measure, we have v(r, f’) ~ N by
(2.26) and
) vlnf) N
f'(2) T T
for | log(z/20)| < v(r, )~ and hence for | log(z/z)| < N~7. Similarly, for these r and for p satisfying
(2.42) we get M (p, f"") ~ (N/p)M (p, f'), and the whole process may be repeated a finite number of
times.
Thus we have proved:
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2.2.20 The main theorem of the Wiman-Valiron theory

Let f(z) = > 32, arz" be a transcendental entire function, and let 1/2 < v <1 and 0 < < 1. Let
q be a positive integer. Then there exists a set Es C [1oo), of finite logarithmic measure, such that, if
|z0| =7 € [1,00) \ E2 and |f(20)| > &M(r, f) then

fO(z) N7

o) ~ for |log(z/z0)| < N77

andj=1,...,q, where N = v(r, f). Furthermore, for |log(p/r)| < N~7 we have

z

fu>~<>Nf@w and

20

Mo £ ~ S (o ). Mp. )~ (£) M(r 1
forj=1,...,q.

The condition on « is essentially best-possible. The Weierstrass o-function has zeros at the points
m + nw, where w is a fixed non-real complex number and m and n are any integers. This function has
order 2, and therefore so has N (7). Now on the region |log(z/z0)| < N~7 we may write

z=20¢ [([<NT, |z =z0| = |20] [ = 1] ~ |z0] [¢],
and so this region has diameter roughly » N (r)~7. If it were possible to take v < 1/2 then this diameter
would be large, and our Wiman-Valiron region would contain a disc of centre zy and large radius
compared to 1 + |w|. But such a disc must contain a zero of the o-function.
2.3 Exercises
1. Let f be a transcendental entire function. Prove that
max{Re f(z) : |z| =7} ~ M(r, f)
as r — oo outside a set of finite logarithmic measure.
2. Prove that every non-constant solution of
(4) I S
Yy 4z —2"y=0
has order 2 (every solution is entire: see the chapter on differential equations).

3. Let P and @ be non-constant polynomials. Prove that the differential equation
2yy" — (y)* + P(2)y + Q) = 0

has no transcendental entire solutions.

2.4 Coefficients and the order of growth

Let g(z) = > .7 bn2" be a transcendental entire function. We may then prove that the order of g is

., where ¢ = liminf M

p=—= 3
o n—oo  nlogn
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with the convention that 1/0 = co.

(i) To prove that p < 1/0 assume WLOG that ¢ > 3 > 0. Hence
—log|bn| > Brlogn, |ba| <n P,

for all sufficiently large n.
Let r be large. Evidently if n® > r then n is large and

|bp|r™ < PP < 1.
Hence

< b, |r™.
p(r) < nrélr%l |7

But we can assume WLOG that |b,| <1 for all n (why?) and so
= exp(rl/ﬁ log ),

which gives p < 1/3. Fill in the details.

(i) To prove that p > 1/0 assume WLOG that p < 7 < oco. Let n be large and 7 = n!/7. Then
r is large and
[bn|r™ < pu(r) < exp(r7) = €"

which gives
1 1
log |by| <n—nlogr=n— noBn _ —(1 +0(1))n 08T
T T
and so loe b )
— Og‘ n| > 7_0(1)
nlogn T

as n — oo. Again fill in the details.



Chapter 3

Nevanlinna theory

3.1 Introduction

The standard reference for this is Hayman's text [33], but this chapter will borrow several ideas from
the excellent book by Jank and Volkmann [48].

A meromorphic function is one analytic function divided by another i.e. f = g/h, where g and h
are analytic, and h # 0. A good example is f(z) = tan z, which has poles (i.e. f(z) = o) wherever
cosz = 0.

The multiplicity (or order) is defined as follows. Suppose ¢ is analytic at a, with g(a) = 0. If g # 0,
then the Taylor series of g about a has a first non-zero coefficient, say
mtl a; = g(J)-‘(a)’ am # 0.

4!
We say that g has a zero of multiplicity m at a. If g(a) # 0, we can think of this as a zero of multiplicity
0. Now consider g/h. If

9(2) = am(z — )" + am41(z — a)

g(z)=am(z—a)"+ ..., h(z)=by(z—a)"+...,
as z — a, with a,;;b, # 0, then
10 =15 =G () = - PG, H ) =

near a. Here H is analytic at a. If m > n then f(a) = 0 (zero of multiplicity m — n). If m < n then
f(a) = 0o (pole of multiplicity n — m).

Example: show that
z
f(z) = 2

sin” z
has a simple pole at 0 and double poles at z = km, k € Z \ {0}.

We have seen that the non-decreasing function log™ M (r, f) measures the growth of an entire function
f. The central idea of Nevanlinna theory is to develop an analogue for meromorphic functions, and to
this end Nevanlinna introduced his characteristic function T'(r, f).

3.2 Nevanlinna theory: the first steps
We begin with:

27
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3.2.1 Poisson’s formula for the logarithm

Let 0 < R < ooandlet E ={z € C: |z| < R}. Let g be meromorphic on a domain containing
E, with no zeros or poles in D(0, R). Let the distinct zeros and poles of g on the circle S(0,R) be
C1,---,Gq. Then an analytic branch U of log g may be defined on a simply connected domain containing
E\{C,...,¢(} and, for |a| < R,

o 2 _ql2
Ula) = 1/0 U(Rew)Re._"dgz). (3.1)

Proof. The first assertion is true since there exists R’ > R such that g is meromorphic in D(0, R')
with no zeros or poles in R < |z] < R'. Now let |a] < R. Let § be small and positive and let 'y be
the circle S(0, R) described once counter-clockwise, except that each (; (if there are any) is avoided
by instead describing clockwise an arc w; of the circle S((j,6). The resulting curve I's5 then goes once
counter-clockwise around a, since § is small. Set

V(w) = U(w) (RQ"') .

R? —aw
Then V is analytic on and inside I's and so Cauchy's integral formula gives

U(a) = V(a):%m, g Z(—wc)zdw

1 w R? —|a|?*\ dw
= — U -—. 3.2
27 Jr, (w) (w—a) <R2—aw> iw (32)

But there exist non-zero constants a; and integers m; such that

g(w) ~aj(w—¢;)™ and U(w) = E+m;log +0(1) as w—(,weDO,R).

1
lw — ¢l

In particular the argument of g(w) remains bounded as w — ; in D(0, R), and

Ulw) = O <log ;)

on wj, for small §. Hence the contribution to the integral in (3.2) from each circular arc w; tends to 0
as § — 0, so that writing w = Re’® gives

S
a2

3o ()

DIERICE R

and (3.1) follows.
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3.2.2 The Poisson-Jensen formula

Let R be finite and positive and let f be meromorphic and not identically zero in |z| < R. Let the zeros
and poles of fin 0 < |z| < R be ay,...,a, and by, ..., b, respectively, in each case with repetition
according to multiplicity. Assume that near the origin f(z) is given by

f(z) =cz¥(1+0(1)) as z—0,

with d an integer and ¢ a non-zero constant: this says that cz? is the first term of the Laurent series of
f valid in some annulus 0 < |z| < sg. Then

ot ﬁ (=) () 53

is meromorphic on |z| < R, and analytic and non-zero in |z| < R. Moreover, |g(z)] = |f(2)| on
|z| = R. Taking real parts in the Poisson formula 3.2.1 gives, for u = log |g| and z = re®® with 6 real
and 0 <r < R, )
) 1 T . R2 — 2
0\ __ ip
= — R 3.4
u(re™) 27r/0 u(Re )R2 + 172 —2Rrcos(0 — ¢) - (34)

But for |[w| = R we have u(w) = log |g(w)| = log | f(w)], and using (3.3) this gives the Poisson-Jensen
formula: if z =re® |z| < R and f(z) # 0,00 then

RZ o 7"2
R2 + 12 — 2Rrcos(6 — ¢)

. R(z—b
—Zlog‘(jk) .
R? — bz

k=1

do +dlog|z/R| —+

2T
log /()] = 5= [ o £(Re")

+ Em: log ‘R(Z ) (3.5)

2 _ A=
R a;z

=1

Here the a; and by, are the zeros and poles of f in 0 < |z| < R. In particular, letting z — 0 we have
Jensen's formula

1 g2
log |c| = 27r/0 log | f(Re™)|dp + Zlo Zlog —dlog R. (3.6)

Of course, ¢ = f(0) if f(0) # 0, cc.

3.2.3 The Nevanlinna functionals

We retain the notation used in the Poisson-Jensen formula. Let n(r) = n(r, f) denote the number of
poles of f in |z| < r, counting multiplicity, and let u(t) = n(t) — n(0). Then, using Lemma 1.3.2 and
the integration by parts formula (1.6) for Riemann-Stieltjes integrals we obtain

- R R R R R R dt
kZ:llog‘bk’:/O logtdu(t):—/o (n(t)—n(O))d(logt> :/0 (n(t) —n() T (37

Here the first formula follows by writing the sum as a Riemann-Stieltjes integral as in Lemma 1.3.2.
Alternatively, we can prove by elementary means that

n R
S log ’b]i' _ /0 (n(t) — n(O))%. (3.8)
k=1
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Indeed, if f has p poles on |z| = p these contribute p to n(t) —n(0) for p <t < R and so plog R/p to
the integral and this gives us (3.8).
Now write

R
N(RS) = [ nlt.£) = n(0.1)F + (0. lox R (39
and

1 2w .
miB,f) =5 [ logt (R do, (3.10)
2T 0
where log™ z is defined by (1.4) and satisfies
1
logz =logt z —logt =, x>0. (3.11)
x
Using (3.7), (3.9), (3.10) and (3.11), Jensen's formula (3.6) becomes

Here m(R, f) is called the proximity function (Schmiegungsfunktion) and N (R, f) the (integrated)
counting function (Anzahlfunktion). The Nevanlinna characteristic is

T(R, f) =m(R, f)+ N(R, [), (3.13)
and the Jensen formula (3.12) can now be written

logle| =T(R, f) —T(R,1/f). (3.14)

3.2.4 Examples

(i) Let F(z) = P(2)/Q(z) be a rational function, in which P and @ are polynomials, of degrees p, ¢
respectively, and with Q # 0. We can assume that P and @ have no common zeros. Then Q(z) =0
has q roots, counting multiplicities, and so

N(r,F)=qlogr+ O(1)
for large . Also, as z — oo we have F(z) = dzP~%(1 + o(1)) for some constant d # 0, and so
log |F(2)] = (p — q)log|z[ + O(1), 2z — o0,

from which
m(r, F) = max{(p — q),0}logr + O(1), r — oo.

This gives
T(r,F) = max{p,q}logr + O(1), r — oo.

(ii) Let f(z) = €*. Show that T'(r, f) = m(r, f) = r/m for r > 0.
(iii) Show that
log® | cos z| = |Im 2| + O(1),

by considering separately the cases where |Im z| is or is not at least 100. Deduce that

T(r,cosz) =2r/m+ O(1)
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as 7 — 00. lllustrate Jensen's formula by estimating m(r,sec z) and N(r,sec z).

(iv) Let f be meromorphic in the plane and, with & a positive integer, define g(z) = f(2*). Prove that

n(r,g) = kn(r*, ), N(r,g) = N(*, ), m(r,9) =m(r*, f), T(r,g)=T(0",f).
Show also that T'(r, f¥) = KT(r, f) and that, if a is a non-zero constant and f(0) # oo, then

T(r, f(az)) = T(|alr, f).

(v) Show that if P(z) = az* +. .. is a polynomial of degree k then T'(r,e”) ~ |a|r*/m as r — oo (hint:
consider first the case P(z) = z¥).

3.2.5 Properties of the characteristic
Suppose that f, f1, fo are meromorphic and non-constant. Then
T(R, fif2) <T(R, f1) + T(R, f2), T(R,fi+ f2) ST (R, f1) + T(R, f2) + log 2. (3.15)
These follow easily from the inequalities
log™ oy <logtz +logTy, logT(z+y) <logt(2max{z,y}) <log™x+log™y+log2, x,y>0,

and the fact that a pole of fify or fi 4+ f2 can only arise at a pole of fi or fa, and has multiplicity not
greater than the sum of the multiplicities for fi and fs.

3.2.6 Comparing 7'(r, f) and log M(r, f)

Let f be analyticin |[z| < R. If 0 <7 < R then

T(R, f) < log™ M(R, f), MMMﬂsG?T

)T(R, f)-

The first inequality is obvious, since log™ | f(2)| < log™ M (R, f) on |z| = R. To prove the second, we
take z with |z| = 7 and |f(2)| = M (r, f), and we apply the Poisson-Jensen formula, using the fact that
the contribution from the zeros of f is non-positive, and the inequality

R*4+712—2Rrcost>(R—r)?, R>r>0, teR.

-7

This relation shows that for entire functions T'(r, f) and log™ M (r, f) are comparable.

3.2.7 A useful inequality

If 0 <r < R then
R

NR ) = [ lt.0) =m0 )5 +n(0.5)log R

J
R
> [t = n(0.£)F +n(0.)log R
R dt

[ ) = n0.$)F + 00, ) log 7
= (00 £) = (0, ) log L +n(0, ) log B

= n(r,f) log§ + n(0, f)logr.
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3.2.8 Lemma

Let f be meromorphic in C, and not a rational function. Then

T(r, f)
log r

— 00

asr — oQ.

Proof. Note that we saw in Examples 3.2.4, ((i) that if f is a rational function then T'(r, f) = O(logr)
as r — oo.

Suppose then that f is meromorphic and non-constant in the plane, and that T'(r,,, f) = O(logry,)
through some sequence r,, — co. Now the inequality 3.2.7 gives, with 72 = r,, and r,, large,

Clogr > T(r?, f) > N(1?, f) > n(r, f) logr

so f has finitely many poles. Hence there exists a polynomial P such that ¢ = Pf is entire, and
T(rpn,g) = O(logry,). Hence §3.2.6 gives

log M (sn,g9) < 3T (2sp,9) < Crlogry,, s, =r1n/2,
so there exists an integer M > 0 such that |g(2)| < (s,)™ on the circles |z| = s, — oo. Thus Cauchy's
integral formula shows us that ¢/ is bounded and so constant, and g is a polynomial.

3.2.9 An alternative proof of Jensen’s formula

Let the function f be meromorphic in |z| < R and for simplicity assume that f(0) # 0,00. For
0<r<R set

2

Here I(0) = log |f(0)| and it is not hard to see that I(r) is continuous. Now suppose that f has neither
zeros nor poles on the circle |z| = s € (0, R). Then setting 7 = log |z| and writing log f locally as a
function of 7 + i gives

iy L o dlog |f| i 1 n darg f , 49 _
SI(S)_QW/O 5 (se )d0_277/0 50 (se")df =n(s,1/f) —n(s, f).

27
I(r) = 1/ log | f(re®| df.
0

Dividing by s and integrating from 0 to r then yields

m(r, f) —m(r,1/f) = 1(r) = 1(0) + N(r,1/f) = N(r, f) = log | f(0)] + N(r,1/f) = N(r, f).

3.3 Nevanlinna’s first fundamental theorem

3.3.1 First fundamental theorem

For non-constant meromorphic f and a € C we have
m(R,1/(f —a))+ N(R,1/(f —a)) =T(R, f) + O(1). (3.16)
For if a is a finite complex number we have by (3.15), as R — oo,

T(R,f—a) <T(R,f/)+0(1), T(R f)<T(R,f—a)+0(1)
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andso T(R, f) =T(R, f —a) + O(1).

This is an equidistribution theorem: if f is meromorphic and non-constant in C then by Example
3.2.4 (i) and Lemma 3.2.8 the characteristic T'(R, f) tends to infinity as R tends to infinity. Hence
either f takes the value a very often (so that NV is large) or f is close to a on part of the circle |z| = R.
A good example is f(z) = e*. Then m(r, f) = m(r,1/f) = r/m, while N(r,1/f) = N(r, f) = 0.
Also m(r,1/(f — 1)) is small, but f has a lot of 1-points.
For brevity we write

m(r,1/(f —a)) = m(r,a, f) = m(r,a), N(r,1/(f —a))= N(r,a,f)= N(r,a). (3.17)
Also m(r, f) = m(r,o0), N(r, f) = N(r, 00).

3.3.2 More examples

(i) Show that if T' is a Mdbius transformation and g = T'(f) then
T(r,g) =T(r, f) +0(1), r— oo.

Deduce that T(r,tan z) = (2r/7) + O(1) (Hint: write tan z in terms of €2%).
[llustrate the first fundamental theorem by looking at m/(r, tan z), N(r,tan z), N(r,1/ tan z).

(ii) Show that f(z) = €% — e* has, as 7 — o0,

N(r,o0) = N(r, f)=0,

m(r,o0) = mir, f) ~m(r,e¥) = =,
N(r,0) = N(r0,e—1) =" +0(1),
m(r,0) ~ m(r,e ?) = %,

m(r,a) = O(1), N(r,a):irl—l—O(l), (a € C\ {0}).

3.3.3 An application of the first fundamental theorem: a lemma of Clunie
Let f be transcendental meromorphic and let g be entire. Then
T(r,g) =0o(T(r,fog)) as 71— .

Proof. Choose a € C such that « is not a critical value of h = fog and f has infinitely many a-points
w1, ws, . ... Fix N € N and choose C,§ > 0 such that

|lw—w;| <6 implies that |[f(w)—a| <Clw—wj;| (j=1,...,N).
This gives
N

j=1

and
N

ZN(’F’ w]ag) S N(’I",CL, h)
7j=1
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Adding and applying the first fundamental theorem yields
N
Y T(r,wj,9) <T(r,a,h) +0(1), NT(r,g) <T(r,h)+O(1),
j=1

so that T'(r,g) = o(T'(r, f 0 g)).

3.4 Cartan’s formula and the growth of the characteristic function

3.4.1 Cartan’s formula

We saw earlier that if f is entire then log™ M(r, f) is a non-decreasing function, and the aim of this
section is to show that T'(r, f) is non-decreasing.

Let f be non-constant and meromorphic in |z| < R, with f(0) finite. Let € (0, R) and assume
that the number of points on |z| = r at which |f(z)| = 1 is finite (in particular, this will always be true
unless f is a rational function: see Lemma 3.9.1). Now Jensen's formula applied to the function a — z
gives

1 2m )
— / log |a — e**|ds = log™ |a| (3.18)
2w 0

for a complex number a. Thus

1 27 : 1 2 27 ; i
m(r, f) = 277/0 log™ | f(re)|dt = 4772/0 /0 log | f(re™) — e'*|dsdt. (3.19)

Let

¢(57 t) = log ‘f(reit) - eis" ¢+(57 t) = max{¢(s> t)7 0}7 o (S> t) = maX{_¢(sa t)> 0}'

Then ¢ = ¢ — ¢—. Also, the Fubini-Tonelli theorem gives

27 27 2 2
I :/ ¢+(8,t)dsdt:/ ¢t (s,t)dtds
o Jo o Jo

and
2T 2T 2T 2T
f2=/ ¢‘(s,t)dsdt:/ ¢~ (s,t)dtds.
0 0 0 0

But, by (3.15),
2m )
0<; < / 2r(log™ | f(re™)| + log 2)dt < 47 (m(r, f) + log2).
0

Thus I is finite. Also Jensen's formula gives, since m(r, g) < T(r,g) and f(0) — €% # 0 for almost all

S,
2m 1
I, < 277/ m|r,—— | ds
0 f—e

27
< [ (e - ) < log 7(0) - ¥)ds
0
< AT (r, f) + 4n%log 2 — 47 log™ | £(0)] < oo,



3.4. CARTAN’S FORMULA AND THE GROWTH OF THE CHARACTERISTIC FUNCTION35

using (3.15) and (3.18) again. Thus (3.19) and Jensen's formula give

mr, f) = — / o 02w¢+(s,t)—¢(s,t)dsdt

472

2 27
= 4 — / log | f(re) — e'*|dtds
7T

1 27r

= % N(r, e *) = N(r, f) +1og|f(0) — e*|ds

and so
27

m(r, f) =log™ | £(0)] + % ; N(r,e"®)ds — N(r, f). (3.20)

We thus obtain Cartan’s formula: for f(0) finite we have

2w
Tr ) = log* [f0)| + 5= [ Nlr.e*)as (3.21)

for  in (0, R). To obtain an analogue of (3.21) when f(0) = co we just apply (3.20) to 1/f.

We proceed to differentiate (3.21). Let 7 be such that the equation |f(z)| = 1 has finitely many
solutions z on |z| = p, for all p close to  (this is true for all but at most one r in (0, R)). Let 0 < s < .
Then there exists a constant C; such that, for all p close to r we have

2w

T(p, f) =C1 + i N(pa eit) - N(S, eit)dt
27 0

2w
T(p, f)=C1+ / / n(r, e

Since the integrand is non-negative we can reverse the order of integration to get

2
T(r, f 01+/ / 7”6 dtf

1 2
o

and so

But we saw above that
n(s,e)dt
is continuous at r, and so

dT 1 /2
dr T or

which is the differentiated Cartan formula.
In particular T'(r, f) is an increasing convex function of logr i.e.

n(r,e)dt,

satisfies

<P(a)§2:2;—|—]3(b)(s_z) a<s<b.

This is because P’(t) is non-decreasing, so that

P(s)~ P(a) _ 1 /SP’(t)dté

s—a (s —a)

/b P,(t)dt - M

1
(b—s) b—s
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3.4.2 The order of a meromorphic function

If f is meromorphic on C we define the order p(f) and lower order pu(f) by
o logt T(r, f) e logt T(r f)
p(f) = limsup ~Togr u(f) = hgggolfv-
We now have two definitions for the order of growth of an entire function h. However, since §3.2.6 gives
T(r,h) <log™ M(r,h) < 3T(2r,h),

Lemma 1.2.4 tells us that both give the same value p.

3.5 The logarithmic derivative

The key to Nevanlinna's methods is an estimate for m(r, f'/f) when f is meromorphic. This leads to
the second fundamental theorem, which is a strong generalization of Picard’s theorem, and to a host of
further results. The treatment here will follow the approach of Jank and Volkmann [48].

The Poisson formula (3.4) may be differentiated to give a formula for the derivative ¢’'/g of logg.
Here we write u(z) = log |g(z)| as the real part of

I ion RE® + 2

Hence log g — I is constant on |z| < R. Writing f’/f in terms of ¢’ /g and using the fact that |f| = |¢]
on |z| = R we obtain, for |z| =7 < R,

FE) g6 (T 1 >_< be 1 ) d
f<z>‘g<z>+j;<R2—ajz+z—aj 2w ten) e

and so ) ) .
f'(z 1 /7r b 2Ret
f(z) 27 Jo og |/ (Re )‘(Re“ﬁ—z)? ¢ +
. aj 1 - br 1 d
+ —+ - — + + 2 3.22
;(f@_ajz z—aj> ;<R2_bkz Z—bk> P ( )
Now for |z| =7 < R and |A| < R we have
1 A 1 Z(z—A)
- = I+ —— . 3.23
Z—A+R2_AZ Z—A<+R2—Az) ( )

Since |A| < R and since
R(z—A)
w = —-——————=
R? — Az
has modulus 1 when |z| = R, the term in parentheses in (3.23) has modulus at most 2. Using

|log x| = logt z + log™ —

we now get, for |z| =7 < R,

f'(2) |d]
e < (m(R, f) + m(R, 1/f) S +2 Z( _A|> , (3.24)

with the sum over all zeros and poles A of f in 0 < |C| < R, repeated according to muItipIicity.
This formula can be used to give pointwise estimates for f'/f (see §3.7). We will show that it leads
to a very strong estimate for m(r, f'/f).
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3.5.1 Estimates for the proximity function of a logarithmic derivative

Let f be non-constant and meromorphic in |z| < R, and let 0 < r < R, such that f has no zeros or
poles on |z| =r. Set S = (R+7)/2. Assume for now that f(0) # 0, 00, and replace R by S in (3.24),
to give

1+

| <1 = opers pemsun |+ 2 (2) + ()

Here each sum is over all zeros and poles A of f in 0 < || < S, repeated according to multiplicity.
Using the formula

(s0) "y o
k=1 k=1

which is proved simply by squaring both sides, then yields

(17

But, in view of the fact that log™ 2 < log(1 + z) for z > 0, (3.25) gives

1/2 29 1/2 1
) gI(z,S):1+[M(m(s,f)+m(5,l/f))] +2Zm. (3.25)

, 1 /-277 f/(Teit) 9 2 "
< — 1 1 . dt < — log I(re*, S) dt. 3.26
w71 < 5 [ 1og (145 ) < - [Thog et (3.26)
Now Lemma 1.3.4 and (3.26) lead to
/ 1 o it
m(r, f'/f) <2logX, X = o I(re™, S)dt. (3.27)
T Jo

Recalling (3.25) delivers next

25 + 1 V2 |
(S —1)2 27°(S, f) + log O +2) I, Ia= o ; Ire—A|71/2dt. (3.28)

To estimate 14, we write

X<t

1 2

Iy=1""2Jp, Jp=o | |e" =Dt D=Afr (3.29)
™ Jo

To obtain an upper bound for Jp, there is no loss of generality in assuming that D is real and positive.
Thus

1 2 1 2m
Jp = — (1+ D? —2Dcost) Y*dt = (1 + D?)~V/*— / (1 —wcost) Ydt,
2T 0 27 0
in which
2D <1
“Ti1rpr=
This gives

Lo —1/4 I —1/4
Jp < — (1 —wucost) dt < — (1 —|cost|) dt =,
2 0 2 0

in which v is some fixed positive number, independent of r, R and f.
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Thus (3.28) and (3.29) combine to deliver

72S 0+L v r~12~(n n
X§1+[(S_r)2 (2T(s,f)+1g \f(O)I)} + 2012y (n(S, f) + n(S,1/f)). (3.30)

But the inequality from §3.2.7 gives

N(R, f) >n(S, f) logE.

S
Since R R—S (R-S)/S R-S
logS:log<1+ 5 )Z 1+(R—S)/S: R
we get
n(S, ) +n(S1/1) < =S (TR, f) +1og" [1/£(0)).

Thus (3.27) and (3.30) and the inequality

n n
log™ Zxk <log™(nmax{z;}) < logn + log™ (max{z;}) < logn + ZlogJr T, x>0,
k=1 k=1

imply that there are positive absolute constants C; such that

m(r,f'/f) < Ci+Cylog" T(R, f)+ Cslog" log* Wlo), +

1
+C4log™ R4 Cslog™ - + Cglog™ (3.31)

R—17r’

An analogous formula when f(0) = 0, cc is easy to obtain. If f(z) = cz%(1 + o(1)) as z — 0, we
write f(z) = cz?h(z) so that h(0) = 1. Now we need only use the fact that

file) _d e | fE)]_|ME)

fz) "z i) [ fR)| T h()

d

z

+

<

and
T(r,h) < T(r,f) 4+ T(r,1/cz?) < T(r, f) + dlogr + O(1).

3.5.2 The lemma of the logarithmic derivative

Let f be non-constant and meromorphic in the plane. Then there are positive constants C; such that
we have

m(r, f'/f) < Cylogr + Cylog T(r, f) (3.32)

as r tends to oo outside a set of finite measure.

To prove this, choose R =+ 1/T(r) in (3.31), and apply the Borel lemma 1.2.5.

Note that this estimate is only needed for transcendental f. If f is a rational function then
1'(2)/f(z) = 0as z — oo som(r, f'/f) =0 for large r.

If f has finite order we have m(r, f'/f) = O(log rT'(2r, f)) = O(logr) with no exceptional set (just
take R = 2r).

We write S(r, f) for any term which is O(log™ (rT'(r, f))) outside some set E* of finite measure.
Note that if f is not a rational function then S(r, f) = o(T'(r, f)) as r — oo with r & E*.
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3.5.3 Theorem
We have T(r, f') < T(r, f) + N(r, f) + S(r, f).
Here N(r, f) counts poles of f, but without regard to multiplicity. The proof is easy. We have
N(r.f) < N, )+ N, f), m(r.f') < mlr, f) +m(r, f'/ ).
In particular, if f has finite order, then
T(r, f") <2T(r, f) + O(logr). (3.33)
3.5.4 Lemma

If f is non-constant and meromorphic in the plane, then p(f") < p(f).

If p(f) = oo, this is obvious. If p(f) < oo, then we just use Lemma 1.2.4 and (3.33). In fact,
the two orders are the same, but it is much harder to prove that p(f) < p(f').

3.6 The second fundamental theorem

Let f be again non-constant and meromorphic in the plane, and let a1,...,a, be ¢ distinct finite
complex numbers. Let
q
1
H=>" . (3.34)
=

Take a small positive ¢, so small that |w —a;| < ¢ implies that |w—ay| > e for j # k. If |f(2) —a;| <e
we then have

1 qg—1
e < HE) + T
)~y :
and so )
logt ———— <log™" [H(2)| + O(1),
|f(2) — aj
while if | f(2) — aj| > € then obviously
1 1
logm ———— < log —.
|f(2) — a;] £

Since the sets E; = {z : |f(2) — a;| < €} are pairwise disjoint it follows that

q
1 1
; < — logt? —— 4 log —
mir.a;.f) < Z[zw/[o,m;j 8 F(re®) —ay] 0108

j=1 7j=1

A
|-

/ log™ |H (re?)| d¢ + O(1)
[O,QK]QE]'

r, H) +O(1) = m(r, fH/f') + O(1)
"H) +m(r,1/f) + O(1)
/) + S ),

IAINA TN
3
===
=
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since f'H is a sum of logarithmic derivatives and T'(r, f — a;j) < T'(r, f) + O(1). Here
m(r,1/f") T(r,1/f) = N(r,1/f)

T(r,f')—N(r,1/f)+O(1) (by Jensen's formula)

m(r, [') + N(r, f') = N(r,1/f') + O(1).

Moreover,
m(r, f') = m(r, f- /) <mlr, f) +m(r, f'/ )
< m(r,f) +S(T7f>
Also, since N (r, f) counts each pole exactly once, we have

N(r,f) = N(r,f)+N(r,f)
= 2N(r, f) = [N(r, f) = N(r, f)].

Thus
m(r. )+ m(ra;, ) < m(rf)+mr1/f) + S f)
j=1
< 2m(r, f)+ N(r, f') = N(r,1/f) + S(r, f)
< 2m(7‘,f) +2N(va) - [N(?",f) —N(T,f)] _N(T71/f,) +S(T>f)
= 2T(r, f)+ S(r, f) — Ny(r, f), (3.35)
in which

Ni(r, f) = N(r.f) = N(r, f) + N(r,1/f') > 0.

This term Ny (r, f) counts the multiple points of f in the following sense. The function f is one-one on
some neighbourhood of zy if and only if either f(z) is finite and f’(29) # 0, or zy is a simple pole of f.
Indeed, if f(z) has an a-point (a finite or infinite) of multiplicity p at zo then by Rouché’s theorem all
values w which are sufficiently close to a are taken p times near to zg. Thus 2y is a multiple point of
order p — 1, and contributes p — 1 to ny(r, f).

3.6.1 Statement of the second fundamental theorem

From (3.35) and the fact that m(r, f) > 0 we obtain the second fundamental theorem: given any s
distinct values b; in C* (one of them is allowed to be co here), we have

> m(rbj, f) < 2T(r, f) = Na(r, f) + S(r, f). (3.36)

j=1

Adding the terms N (r, b;, f) to both sides of (3.36) we get, by the first fundamental theorem,

(s =2)T(r, f) <Y N(r,bj, f) = Na(r, f) + 5(r, ).

j=1

But if f has a bj-point at a, of multiplicity p, then a contributes p to n(r,b;, f) and p — 1 to ny(r, f).
Thus we get

(s =2)T(r, f) < Y N(r,bs, ) + 5(r f).

i=1
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Picard’s theorem is an immediate corollary. If f is transcendental and meromorphic in the plane and
takes three values b; each only finitely often, then N(r,b;, f) = O(logr) for these b;. Since S(r, f) =
o(T(r, f)) as r tends to infinity outside a set E of finite measure, we deduce that T'(r, f) = O(logr)
for r not in E, a contradiction. This proves the “great” Picard theorem. It remains only to prove that
if f omits three values then f is constant (this is the “little” theorem). However, this is easy: if f is a
non-constant rational function f = P/Q with P,Q polynomials having no common zero, then Q = 0
gives f = oo, while the equation P(z) = bQ(z) has solutions in C, for all but at most one finite b.

3.6.2 The defect relation

Nevanlinna defined, for a € C*, the deficiency

o em(ra, f) . N(r,a, f)
§(a, f) = 117?_1>101gf T f) 1— hfgsogp T ) (3.37)

as a measure of the extent to which the value a is taken rarely. The equality in (3.37) follows from the
first fundamental theorem. From (3.37), we have 0 < d(a, f) < 1. Also (3.36) gives the defect relation

> ba f) <2 (3.38)
acC*

3.6.3 Examples

(i) If a is an omitted value of f then d(a, f) = 1. Thus the defect relation (3.38) implies Picard’s

theorem.

(i) A meromorphic function f can take a value a infinitely often, but still have d(a, f) = 1. For
example, ,
f(z) =¢* tanz

has 0(0, f) = d(o0, f) =1, since

[\

2 r

T(r,tanz) = O(r), T(r,e*)=— <T(r,f)+T(r, cotz).

s
(iii) Determine the Nevanlinna deficiencies of €2* — ¢* (see Examples 3.3.2).

(iv) Here we give an example of an entire function f having two finite deficient values, each with
deficiency % and so sum of all deficiencies equal to 2. Set

f(z):/ et dt, I:/ et dt.
0 0

Here the integral I is over [0,00), and in fact equals %\/7? although all we require here is that I # 0.
Suppose first that |arg z| < w/4. Then Cauchy's theorem gives

flz)y=1 —/ e~ dt,

in which ~, follows the (shorter) circular arc from z to r = |z|, followed by the straight line from r to

infinity. On 7, we have
2 2
—t | ef|t| cos(2argt) ~ |

722|

le e
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We write

and integrate by parts. This gives

and so, as r = |z| — o0,

42 - 1 2
dt| < 1 ——|dt| | < .
[ v <1 (o + [ ggmlan) <1

Thus
1 /4 T2
m(r,l/(f—[))Z/ r?cos20df = —.
27 _7.(/4 2
Since Taylor's theorem gives f(z) = —f(—z) we also have

742
m(r1/(f+1) 2 -

We now estimate T'(r, f) = m(r, f). For |arg z| < 7/4 or |arg(—=z)| < 7/4 we have f(z) = O(1). On
the other hand if 7/4 < arg 2z < 3m/4 we have |e=*"| < |e™* | on the straight line from 0 to 2, and so
|f(2)] < |ze*"|. Thus

1 3r/4 2
T(r, f) < O(logr) + / (=12 cos260)df = —.
T w/4 ™

Exercise: generalize this to g(z) = [ e~"dt, using the fact that g(ze?m1) = 2mi/ag( ).

3.7 Pointwise estimates for logarithmic derivatives

3.7.1 Definition

By an R-set we mean a countable union U of discs D(z;,r;) such that z; — oo as j — oo and
ZT‘j < 00.

3.7.2 Lemma

Let U be an R-set. Let E be the set of r > 0 for which the circle |z| = r meets at least one disc of U,
and let H be the set of 6 € [0, 27| such that the ray arg z = 6 meets infinitely many discs of U.
Then E has finite Lebesgue measure, and H has zero Lebesgue measure.

Proof. The first assertion is easy, since the set of » > 0 for which the circle |z| = r meets D(z;,r;) has
measure at most 2r;.

Now suppose that jg is large, and j > jo. Then z; is large, and r; is small, and the disc D(z;, ;)
subtends at the origin an angle at most c¢r;/|z;|, with ¢ a positive constant independent of j and jo.
So the measure of H is at most

(o.9]
chj/|zj| —0 as jy— oo.
J=jo
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3.7.3 Lemma

Let f be a transcendental meromorphic function of order p < L < M < co. Let z; be the zeros and
poles of f in |z| > 2, repeated according to multiplicity. Then the union U of the discs D(z;,|z;|~)
is an R-set, and

['(2)/ f(2)] = of|=[F)
for all z with |z| large and z ¢ U. Also,
> gl M = o M) (3.39)
|2j1>r/2

asr — 00,
Note that if f is a rational function, not identically zero, then f'(2)/f(z) = O(1/|z]) as z — oc.

Proof. Let m(t) be the number of z; in |z| < t. Then m(t) < n(t, f) + n(t,1/f). For large t
we have

T(t, f) = o(t")
and so
N(2t, f)+ N(2t,1/f) = o(t")
for large t. Lemma 3.2.7 now gives

m(t) < n(t, f) +n(t,1/f) < o(t") (3.40)

for t large.
We prove (3.39) first, which will then show that U is an R-set. For large  and R > r we set
s =r/4 and we have

2 2R
Yoyl M < / =M d(m(t)—m(s)) = (m(QR)—m(s))(QR)M+M/ (m(t)—m(s))t—MLat,
/25|25 |<R s .
using integration by parts. Using (3.40) this gives
2R oh
2. Il <m@R)RR)M + M/ m(t)t M dt < o(RE~M) + M/ ot~ M1)gt.
r/2<|zi|<R s s
Letting R — oo we get
Z |25~ < M/ o(tF M1 gt = o(s¥M) = o(rF—M),
r/2<]z;] s

which proves (3.39).
To estimate f'/f, take z ¢ U with |z| = r large, and use (3.24), with R = 2r. Since

m(2r, f) +m(2r,1/f) <2T(2r, f) + O(1)
we get

P/ )] <ol +23 ,_1A|

with the sum over all zeros and poles A of f in 0 < || < 2r. Now if [A| < r/2 then |z —A| > /2. On
the other hand, if r/2 < |A| < 2r then A is one of the z; and so |z — A| > |A|= > (2r)~™. Hence

(/] olr™) + (n(2r, £) + n(2r, 1/ £)(2r)M = o(rE+M),
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3.7.4 Lemma

Let f be a transcendental meromorphic function of finite order p < L < M, and let n be a positive
integer. Then we can find an R-set U of discs D(z;,|2;|~*), such that for |z| large and z ¢ U we have

FO I (2) ) F ()] = of|2FHM) (3.41)
for0 <m<n-—1.
Proof. By Lemma 3.5.4, each derivative f(™) has order at most p. So for each m we form an R-

set U; of discs D(zjm, |2jm|™™) such that for |z| large and 2 outside U,, we have (3.41). Now just
note that the union U of these finitely many R-sets is an R-set.

By writing f"/f = (f"/f")(f'/f) etc., we also have
10 (2)/ f(2)] = o|2["F M)

for |z| large, with z not in U.

3.8 Product representations

Taylor's theorem tells us that an entire function f has a power series representation f(z) = > 7 2™
here we show that functions meromorphic in C can be represented as products.

3.8.1 The exponent of convergence

Let (a,,) be a sequence of non-zero complex numbers, tending to infinity. For r > 0 let n(r) be the
number of a,, in |z| <, and set
" dt
N(r) = n(t)—.
0 t

The exponent of convergence of the sequence (ay,) is then defined as

log N(r) logn(r) .

A = limsup = limsup (3.42)
r—00 IOgT r—00 10g7"
The equality in (3.42) follows easily from Lemma 1.2.4 and the inequalities, for large r,
2r dt
N(r) <n(r)logr+O(1), N(2r)> / n('r)? > n(r)log 2.
T
If ¢ > 0 then, assuming without loss of generality that all the a, are non-zero,
T T
S Janl 7 = / F9dn(t) = n(r)r + g / n(t)t=1-Ldt. (3.43)
0 0

Jan|<r

3.8.2 Lemma

The exponent of convergence A is the infimum of ¢ > 0 such that ) |a,|~? converges.

Proof. Suppose first that A < p < ¢ < co. Then n(t) < t? for all large positive ¢, and so

n(r)r—9 + q/ n(t)t~ 7 tdt
0
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tends to a finite limit as » — oo, which implies using (3.43) that ) |a,|™? converges. Conversely,
suppose that Y |a,| %7 =S < co. Then for r > 0 we have n(r) < Sr? by (3.43) and so A < q.

It is now clear that ) |a,| ™ converges for A < pu < oo and diverges for 0 < pu < .

3.8.3 Weierstrass products

Define
P
E(Z7O):(1_Z)7 E(z,p):(l—z)exp Zi , PEN,
— J
7=1
(the Weierstrass primary factors). Then for |z| < 1 we have
log E(2,p)| = | — 1 (p+ 1) — | < 2P 4 222 e < 2P (3.44)

Next, for |z| > 1 and p > 1 we have

p
log | E(z,p)| < log(1+ |2]) + || + ...+ i’

and so, for any p,
log|E(z,p)| <log(1l+ |z|) +pl2fF, [2[ > 1. (3.45)

Applying the maximum principle gives

log |E(z,p)| < A(p) =p+1og2, [z| <1 (3.46)

3.8.4 Lemma

Let (a,) be a non-zero sequence tending to infinity, and let q, > O be integers such that for every

positive v we have
r qn+1
> () < 0. (3.47)

|an]
Then
F(z) = H E(z/an,qn)

converges, and is an entire function with zero sequence (a).
Proof. Fix K > 0. Then for |z| < K we have, by (3.44) and (3.47),
Z |log E(z/an, qn)| < Z 2| K /a,| " < oco.
lan|>2K lan|>2K

Hence

Z log E(z/am Qn)

lan|>2K

converges absolutely and uniformly on |z| < K, and

F(z) =exp Z log E(z/an, qn) H E(z/an,qn)

lan|>2K lan|<2K

is analytic on D(0, K).
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3.8.5 Theorem

Suppose that the non-zero sequence (ay,) has finite exponent of convergence A, and let q be the least
integer such that > |a,| 97! converges. Then the product

F(z) = [[ B(z/an.q)
converges in C, and has order \. Further, we have log M (r, F) = o(r?*!) as r — oc.

Proof. We obviously have A < ¢ + 1, by definition of A, and the fact that > |a,|™" converges for
every u > A gives ¢ + 1 < A+ 1. We note next that replacing ¢ by ¢ + 1 in (3.43) and letting r — oo
leads to

/ n(t)t~ 7 2dt < oo (3.48)
0
and so
2R 2R
n(R)/ t7972dt < / n(t)t~972dt = o(1),
R R
which gives

n(R) = o(R1™), R — oc. (3.49)

The product F'(z) converges since (3.47) is satisfied for every r > 0, with ¢, = ¢, and it is obvious that
F has order at least A, by Jensen’s formula. Now suppose that

qg<s<q+1, hm@:O. (3.50)

r—oo 1S

In particular, (3.50) is satisfied by s = ¢ + 1, by (3.49). Let |z| = r be large. Then

log|F(2)] < ) log|E(z/an,q)|-

Splitting the sum into those over (i) |a,| < r, (ii) r < |a,| < 2r and (iii) 2r < |ay| respectively, and
using (3.44), (3.45) and (3.46), we obtain

log ’F(2)| <S1+ S+ 53,

in which

Si="3" (log(1+r/lanl) + a(r/las])?).

lan|<r
Sa= Y. Alg) < A(gn(2r) = o(r’)
r<l|an|<2r
by (3.50), and
S3= > 2lr/a,|".

|an|>2r

Now

r

S1= /T(log(l +7/t) + q(r/t))dn(t) = n(r)(log2 + q) + / (r/t(t+7) + ¢/t n(t)dt
0 0

and so )
St <n(r)(log2+q) + N(r) + q2rq/ n(t)/t4dt.
0
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Hence (3.50) gives
S1 <o(r®) +O0(r?) + q2rq/ o(t*"1 )dt = o(r®),
0
using the fact that s — ¢ — 1 > —1. Next, integration by parts and (3.49) give

S3 :/ 2(r/t) " dn(t) < 2(q + 1)rq+1/ n(t)t~12dt. (3.51)
2r 2r
Thus
Sz =o(r®) :

to see this, if s = ¢ + 1 we use (3.48), which tells us that the integral from 2r to oo tends to 0,
while if ¢ < s < g+ 1, then we use (3.50) and substitute n(tf) = o(t°) into the integral. Hence
log M (r, F') = o(r®), and so F' has order at most s. It follows that F' has order at most A: this is
obvious if A = ¢+ 1, while if ¢ < A < g+ 1 we take s with A < s < g+ 1.

For any function f # 0 meromorphic in C, we now define A(f) to be the exponent of convergence
of the zero sequence of f. Obviously this is the same as the order of N(r,1/f), and by Jensen’s formula
is not greater than the order of f. Similarly A(1/f) is the exponent of convergence of the zeros of 1/ f
and so poles of f.

3.8.6 Hadamard representation theorem

Let f £ 0 be meromorphic in C. Then there exist entire functions F, F, h and an integer m such that
p(F1) = A(f) and p(Fb) = A(1/f) and f(z) = 2™ LE ).

Proof. Let (a,) be the sequence of zeros of f in 0 < |z| < oo, and let (b,) be the sequence of
poles of f in 0 < |z| < oo, in both cases repeated according to multiplicity. Then there exist entire
functions F, Fy, of orders A(f), A(1/f) respectively, such that the zero sequence of F} is (a,), and that
of Fy is (b,) (if either of these sequences is finite then F} is a finite product, while if the sequence is
empty we put F; = 1). We then choose an integer m so that f(2)z " Fy(2)Fi(2)~! = g(2) is analytic
and non-zero at 0, and it follows that g is analytic and non-zero in the plane, since all singularities of g
and 1/g have been removed. Thus we may write g = " with h entire.

3.9 Appendix: lemmas underlying the Cartan formula

Cartan’s formula was derived in §3.4.1, and the following lemmas serve to show that certain quantities
are in fact measurable functions.

3.9.1 Lemma

Let 0 < r < R and let f be a function non-constant and meromorphic on D(0, R). Assume that the
circle |z| = r contains infinitely many points z with |f(z)| = 1. Then f is a rational function.

Proof. Let S = {s € R : |f(re®®)] = 1} and let T be the set of ¢ in R such that ¢ is a limit
point of S.

Suppose that to € T. Then we can find t,, — tg,n — oo, with t,, real, t, # to and |f(re'n)| = 1.
Obviously | f(re'0)| = 1, by continuity. For z near rei’, put

g(z) =log f(z), u=ilogz, h(u)=g(z) = log f(e™™).
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Let ug = —tg + ¢logr. Taylor's theorem allows us to write

h(u) = an(u—ug)",
n=0

with the power series absolutely convergent on an open disc D centred at ug. Let
o
H(u) =) Re(an)(u — ug)",
n=0

so that H is analytic on D. Setting u, = —t, + ilogr we see that u, — ug is real and H(u,) =
Re(h(uy,)) = log|f(re')| = 0, and so H(u) = 0 on D, by the identity theorem. So if s is real and
close to tg then H(—s +ilogr) = Re(h(—s+ilogr)) = 0.

It follows that if t € T then there exists §; > 0 such that |f(re®)| =1 fort — §; < s <t + &, and
so T' is open.

Now suppose that v is real, but not in T. Then v is not a limit point of .S, and so there exists p, > 0
such that |f(re®)| # 1 for v —p, < s <vand v < s < v+ p,. So no t in the interval (v — py,, v + py)
is a limit point of S, and so R\ T is open.

But R is connected, and 7" is non-empty, since S N [0, 27| is infinite by hypothesis, so that S has a
limit point in the compact set [0, 27]. Thus we see that R =T,

We have now proved that |f(z)| = 1 on the circle |z| = r. Let a, be the zeros of f in |z| <r, and
b, the poles of f in |z| < r, in both cases repeated according to multiplicity. For |a| < r we have

r(z —a)

’Ua(z)’ =1, ‘Z‘ =T, Ua(z) - 2

r2 —az’

in which U, is a Mdbius transformation with a zero at a and a pole at 72/a (except that U,(2) = z/r
if a =0). Let

F(2) = £(2) [] Vs, () T Un, (2).
W v

Then F' is meromorphic in D(0, R) and analytic and non-zero in D(0,7), with |F(z)] =1 on |z| = r.
By the maximum principle applied to F' and 1/F, we see that |F(z)| = 1 for |z| < r. Hence log F'(z)
has constant real part on D(0,r) and is constant there, by the Cauchy-Riemann equations. Thus F'is
constant and f is a rational function, given by

fz) = Cl;[ (m) 1:[ <T(Z_b”)>1 (3.52)

r2 — b,z

in which C'is a constant of modulus 1, and the products are over all zeros a,, and poles b, in |z| <7, in
each case with repetition according to multiplicity. Notice that the zeros and poles of fin 0 < |z| <7
determine the poles and zeros of f in |z| > r.

3.9.2 Lemma

Suppose that f is meromorphic in D(0,R) and that |f(z)| = 1 on |z| = r1 and |z| = ra, where
0 <ry <ryg < R. Then f is constant.

Proof. Of all those zeros of f (if any) lying in 0 < |z| < 72, let a be the nearest to the origin.
Applying formula (3.52) with 7 = 7y, we see that f(c) = co,c = 73/a. But, according to formula
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(3.52) with = 71, the function f cannot have a pole at any ¢ with |[¢| > |r?/a|. This contradiction
shows that there cannot be any such a, and so f has no zeros, and by the same argument no poles, in
0 < |z| < 2. Again by (3.52), f has no zeros or poles in |z| > ry either. So f(z) = Dz™ for some
constant D and integer n, and the fact that |f(z)| =1 on |z| = r; and |z| = r2 forces n = 0.

3.9.3 Lemma

Let 0 <r < R and let f be meromorphic and non-constant in D(0, R). Then there exists C' > 0 such
that, for all real t, '
n(r,e) <C, n(r,a) =n(r,1/(f - a)).

Proof. Take r,s,S with r < s < S < R. Choose zy with |f(z)| # 0,1,00 and with zy so close
to 0 that the circle |z| = r lies in D(zg, s), and such that the circle |z — 29| = S lies in D(0, R). Let
g(z) = f(z0 + z). Then g is meromorphic on some disc D(0,T"), with 7" > S, and Lemma 3.2.7 gives,
for real t,

n(r, 1/(f — ) < n(s,1/(g — €1)) < DN(S,1/(g — ¢")), D = (log§/s)"".
Now we just note that (again with ¢ a real constant)
N(S,1/(g —€")) <T(S,1/(g — ")) = T(S, g — ") —log|g(0) — €.
This equals
T(S,g — ") —log|f(z0) — €| < T(S,g) + T(S,e") +log2+d=T(S,g) +log2 +d=Ci,

with d and C} constants, independent of ¢, using the fact that | f(z0) — €| > ||f(20)| — 1|.

3.9.4 Lemma

Let 0 < r < R and let f be non-constant and meromorphic on D(0, R). Then h(t) = n(r,e") and
H(t) = N(r,e") are measurable functions on R.

Proof. The following argument (communicated to the author by Christian Berg) shows that for fixed
r the function n(r,e) is measurable in t. Rouché's theorem implies that n_(s,a) is lower semi-
continuous in a, where n_(s,a) denotes the number of solutions of f(z) = a in |z] < s. Hence
n(r,a) = lims_,,+ n_(s,a) is measurable.

Now consider N(r,a) for a € C. Take all zeros z1,..., 2y, for f —a in |z] < r. Assume for now
that all of these zeros are simple and that f(0) # a.

Now take a small positive § and let a,, — a through a sequence. Then for large n there does not
exist C, with |¢,| < 7 and |¢, — zj| > 6 for all j and such that f(¢,) = a,, since otherwise we may
assume that (,, — ¢ which gives f({) = a, a contradiction. So for large n there is a root z;, of
f(2) = ay, near to z;, and there are no other roots of f(z) = a, in |2] < r. Hence, as n — oo,

r

m
— 10g+ ﬁ = N('I", CL).
Z 2
j=1 J

m
N(r,an) = z:logJr ol
j=1 J,m

This shows that, for fixed 7, the function N (r,a) is continuous off a finite set, and therefore measurable.
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3.9.5 Lemma

Let f be non-constant and meromorphic on D(0, R). For 0 < s < R define

2w
1/)(8):/0 n(s,e)dt.

Suppose that 0 < r < R and that there are only finitely many z with |z| = r and |f(z)| = 1. Then 9
is continuous at r.

Proof. Take S with 7 < S < R and take C as in Lemma 3.9.3, such that n(S,e) < C for all
real t. Let z; = re'i,1 < j < n, with t; real, be the finitely many points on |z| = 7 at which
|f(2)] = 1. There is no loss of generality in assuming that 0 < t; < ... < t, < 2m, since replacing
f(2) by f(ze'?), for some real @, does not change v. Let ¢ > 0 and let § be small and positive, in
particular so small that 2ndC < e.

Now suppose that ¢ € [0,2n], with ¢ not one of the t;. Then f(z) # € on |2| = r and so
f(z) # €' for |z| close to r. Thus we can find p; > 0 and oy > 0 such that |f(z) — €| > oy for
r—pt < |z| <7+ pe. Thisin turn gives us 7; > 0 such that if p is real with [p—t| < 7, then f(z) # €'
forr —py < |z| <r+ pq.

This defines py > 0, > 0 for t € [0,27] \ {t1,...,t,}. For t =t;, we just set p, = n; = .

Now the intervals (t — 1, t + 7¢) cover the compact set [0,27], and so we can find a finite set J
such that [0, 2] is a subset of the union (J,c ;(t —n¢, t+1¢). Let p be the minimum of all the p;,t € J.
By reducing p if necessary, we can assume that 0 <r—p <r+p<S.

Now if p is in [0,27] but not in any of the intervals (t; — d,t; + ¢), then p is in the interval
(t —ne,t +m), for some t € J\ {t1,...,t,} and so, by definition of 1; and p, we have f(z) # e for
r—p<|z| <7+ p. Hence n(s,e?) =n(r,e®) forr—p<s<r+p.

We now see that for r — p < s <7+ p we have

P(s)—(r)=1= / n(s, ey — n(r, e)dt,

E

in which

E=[0.27]n | | Jt; = 6.t; +0)

—-

7=1
Since |n(s, ) — n(r,e®)| < n(S,e) < C, we get

[ih(s) —p(r)] < I| < 2n6C <&, [s—r|<p.



Chapter 4

Applications to differential equations

4.1 Some basic facts about linear differential equations

4.1.1 Existence-uniqueness theorem

Let k > 1, let D be a simply connected domain in C, and let ag(z),...,ax—1(z) be analytic in D. Let

zo € D and let cg, ...,cp_1 € C. Then there exists a unique solution f of the equation
k-1
j=0

such that f is analytic in D and f9)(z) = ¢, 0<j<k—-1.

Proof. Once we have an analytic solution f, the uniqueness is obvious. Given two such solutions
f1, fa, we have (fi — f2)9(z9) =0 for all j >0, and so fi — fo = 0 on D, by the identity theorem.

The proof of existence can be deduced as follows from the counterpart Theorem 5.5.1 for matrix
DEs in the next chapter. We first write the equation (4.1) in vector form using

c=(co,-- 1), w=(wo,...,wp_1)", w;=w (4.2)

and

k—1
/ / k
wh = wi,...,wy_, =w ):—Zajwj. (4.3)
7=0

Here T' denotes the transpose, so that ¢ and w are column vectors. The equation (4.1) becomes a
vector DE
w' = a(z)w (4.4)

in which a(z) is a k by k£ matrix with entries 1 immediately above the main diagonal, and with last row
—ag(z),...,—ag_1(2), and all other entries 0. Now choose a non-singular constant matrix B whose first
column is ¢. Then Theorem 5.5.1 gives a holomorphic solution z(z) on D of the equation 2/ = a(z)x
which satisfies z(z9) = B, and the first column of z(z) is the required solution w of (4.4).

In the case of a general domain D, we can sometimes cover D with finitely many simply connected
domains. However, it may not be possible to obtain solutions analytic in all of D. For example, 1/z is
analytic in D = C\ {0}. On any simply connected subdomain of D we can define w = log z, and w
satisfies w” + (1/z)w’ = 0, but w is not analytic on D.

o1
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4.1.2 Oscillation theory on the real line

Suppose that u is a real-valued solution of
u" + A(z)u = 0,

where A is a continuous real-valued function on an open interval I in R. Then the zeros of w in I are
isolated and do not coincide with zeros of «’. For if ¢ € I and u(t) = «/(t) = 0 then u = 0 by the (real)
existence-uniqueness theorem, and this will be the case if u has distinct zeros ¢;, — ¢, by continuity and
Rolle’s theorem.

Given such a solution u of a homogeneous linear differential equation on an unbounded interval, an
obvious and important question is whether u tends to infinity (e.g. €® on (0,00)) or decays to 0 (e.g.
e~ ® on (0,00)) or is oscillatory (e.g. sinz on (0,00)). There are a lot of criteria for oscillation, and
one which is easy to prove and quite useful is:

4.1.3 Sturm’s comparison theorem

Suppose that G1, Gy are continuous real-valued functions on an open interval I in R, and that on I the
functions u, v are real-valued, not identically zero, and satisfy

W+ Gru=0, V" +Gy =0.

Suppose that x1,xo € I with x1 < x2 and u(x1) = u(x2) = 0 and u(xz) # 0 on (x1,x2), and that
Ga(x) > Gi(x) on [z1,x2]. Then either (i) v has a zero in (x1,x2) or (ii) on [x1,x2] the function
G — Gy vanishes identically and v is a constant multiple of w.

Proof. Suppose that v has no zero in (z1,22): then it may be assumed that u(z) and v(x) are
positive on (z1,z2), and that u/(z1) > 0,4/(z2) < 0. This delivers

(w'v —uw)(x9) = (u'v)(z2) <0, (Wv—uw)(z1)= (u'v)(z1) >0, (4.5)

and so

0 > (Wv—u)(z)— (v —u)(z) = /I2 (Ga(x) — G1(x))u(x)v(x) dx > 0.

> .
Thus it must be the case that Go(z) = G1(z) on [z1,z3], so that u'v —uv’ is constant there, and hence
identically zero by (4.5).

In the complex domain, there are comparatively few such results. A good reference is [45, Ch. 8],
but most result are negative, leading to zero-free regions, lower bounds for the distance between zeros
etc. However, since the solutions of (4.1) are analytic when the coefficients are, we can use the value
distribution theory for meromorphic functions developed by Nevanlinna.

4.2 Nevanlinna theory and differential equations
In this section we describe some applications of Nevanlinna theory to the equation
w” + A(z)w = 0, (4.6)

in which A is an entire function. By the existence-uniqueness theorem, all solutions are entire functions.
The first result goes back to Wittich.
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4.2.1 Theorem

Let f be a non-trivial (i.e. not identically zero) solution of (4.6), with A # 0 entire. Then
(i) We have
T(r, A) = S(r. f). (4.7)

(ii) If f has finite order then A is a polynomial.
(iii) If c is a finite, non-zero complex number then

m(ﬁ 1/(f - C)) = S(ﬁ f)7 (48)
so that in particular §(c, f) = 0.
Proof. To prove (i), we just write —A = f”/f = (f"/f)(f'/f) so that the lemma of the logarithmic

derivative gives

T(r,A) =m(r,A) < S(r. f) + S(r, f') = S(r, f).

Also (ii) follows in the same way. Later we will see that the converse of (ii) is true.
Now that we have (i), we establish (iii) by writing

1 B 1 f// f//
f—c‘Ac<f_f—c>'

However 6(0, f) = 1 is possible. Indeed,

w” = (¢" +(¢))w =0

has the zero-free solution f = e9. Consequently, in order to discuss zeros of solutions of (4.6), it is
normally necessary to consider two linearly independent solutions.
Let f1, fo be solutions of (4.6), and let W be the Wronskian determinant

W =W(f1, f2) = f1fs — f1[2

Then W’ =0 and W = c is a constant. It is easy to see that ¢ = 0 if and only if f; and f5 are linearly
dependent. We say that f; and fy are normalized LI solutions if W (f1, fo) = 1.

4.2.2 A result of Bank (Crelle’s Journal, 1972)

The result of (iii) in §4.2.1 generalizes as follows. Suppose that f is a transcendental meromorphic
function in the plane and satisfies a k’th order differential equation

P
0= ajfmos (fyma ... (fE)ymea, (4.9)
j=1

with meromorphic coefficients a;, which are not all identically zero and satisfy T'(r,a;) = S(r, f). Let
n be the degree of the equation (the largest of those sums mg ; + ... + my ; for which a; # 0), and
set F'= f'/f. Then for each positive integer k, we can write

¥ = Qu(F)f,

in which Q¢ (F') is a polynomial in F' and its derivatives, with constant coefficients. This is easily proved
by induction, using
f'=Ff, ["=(F+F)f
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and
FED = (Qu(F)) f + Qu(F)FF.

Grouping together all terms of the same degree, we can write the equation (4.9) in the form
n
0="> flLy(z F), (4.10)
q=0

in which each L, is a polynomial in F" and its derivatives, with coefficients b satisfying T'(r, b) = S(r, f).
There are now two cases.

Case 1: We have L, = 0 for every g.
In this case for each ¢ the equation 0 = Ly(z, F') gives a homogeneous differential equation satis-
fied by f.

Case 2: Suppose s+ 1 is the greatest ¢ for which L, # 0. Then we divide the equation (4.10) through
by f®Ls41 to get an equation

S
F=> 1My, My =—Ly/Lsy,

k=0
where
T(r, M) <O(T(r,F))+ S(r, f).
Hence i
m(r, f) <> m(r, My) + O(1) < O(T(r, F)) + S(r, f)
k=0
and .
N(r,f) < N(r,My) <O(T(r,F))+ S(r, f).
k=0
This gives B B
T(r,f) <O(T(r,F))+ S(r, f) < ON(r, f) + N(r,1/f)) + S(r, f). (4.11)

We illustrate this with two examples. First, if A # 0 is an entire function and ¢ is a non-zero
complex number then (4.6) may be written as

w” + A(w — ¢) = —Ac.

Hence if f is a non-trivial solution of (4.6) we have a non-homogeneous differential equation in g = f—c¢
with coefficients which are small functions compared to g, and so we get

T(r,f) <T(r,g)+O(1) < O(N(r,1/g)) + S(r,g) = O(N(r,1/(f — ¢))) + S(r, ).
Next, suppose that f is a transcendental meromorphic solution in the plane of
aff" +bf? +ecf? + Af" +Bf +Cf+D =0,
with a,b, ¢, A, B, C, D rational functions. With F' = f'/f we get

fPLa+ fL1 + Lo =0,
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in which
Ly=a(F + F) +bF*+¢, Li=AF +F)+BF+C, Ly=D.

If all the L, are identically zero, we get three homogeneous equations, namely
af f"+bf%+cf*=0, Af'+Bf +Cf=0, D=0,

which in principle may be easier to solve. If some Ly fails to vanish identically, we can estimate T(r, f)
in terms of N(r, f) and N(r,1/f) using (4.11). In particular, if

N(r, f)+ N(r,1/f) = S(r,f)

then we must have Lo = L1 = Ly = 0.

4.2.3 The Schwarzian

For meromorphic U define

" "\ 2
S(U) = {U, =} = % -2 ([[J]) . (4.12)

Note that if U has a simple pole at a then there is a constant ¢ # 0 such that
U'z) =cz—a)2+0(1), U"(2)=—2c(z—a)+0(1), U"(z)=6c(z—a)+0(1), z—a.

Hence the only poles of S are at zeros of U’ and multiple poles of U, i.e. at multiple points of U.
If U is the quotient f1/f2 of LI solutions of (4.6), then we have U’ = cf2_2 for some non-zero
constant ¢, and an easy calculation gives

S(U) = 24. (4.13)

Also U’ # 0 and, since fy has only simple zeros, U is locally one-one.

Conversely, suppose that F' is meromorphic without multiple points on a simply connected domain
D. Then (4.13) defines a function A analytic on D, and it is easy to check that fo = (U’)~'/2 is an
analytic solution of (4.6) in D. If we choose a second solution f; of (4.6) such that W(f1, f2) = —1
then U’ = (f1/f2)" and U is the quotient of linearly independent solutions of (4.6).

The Schwarzian derivative plays an important role in conformal mapping. Suppose that U is mero-
morphic and locally one-one in the unit disc D(0,1). If U is one-one in D then

(1—[2)?S(U) <6

there. In the other direction,
(1—[2)?S(U)] <2

is sufficient to imply that U is one-one. Both constants are sharp and the results are due to Nehari.
The first uses coefficient inequalities and the second can be proved using differential equations or
quasiconformal maps. Note that if U = f1/f2 is one-one on D then each of f; and f5 has at most one
zero in D.
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4.2.4 The Bank-Laine product

This approach was introduced by Bank and Laine [8]. It is convenient first to note that if h and E are

related by
M 1(E ¢
W <E * E> ’

where ¢ = £1 is a constant, then a straightforward calculation shows that

1 ((E')? -2E"E -1
h 4 E? '

Now let f, g be LI solutions of (4.6), normalized so that W (f,g) = f¢' — gf' =1, and set

f U1
v-1 p- v__2 4.14
. M,U z (4.14)
Then
E_yd 1 4 S
E f ¢ E g f

Solving thus gives
ff E'-1 ¢ FE+1

= L = 4.15
f 2E 7 ¢ 2F ( )
and so the identity above, with h = f, yields the Bank-Laine equation
(E")? -2E"E — 1
4A = foz . (4.16)
Multiplying out by E? and differentiating, we also have
E" +4AFE +2A'E = 0. (4.17)

Note that (4.17) appears in [47], but (4.16) does not seem to have been used before Bank and Laine.

The product F is a Bank-Laine function: this means an entire function E such that £ = 0 implies
E’ = +1. Conversely, suppose that F is a Bank-Laine function. Then A as defined by (4.16) is entire,
since the numerator has at least a double zero at any zero of E. Choose w with F(w) # 0 and define f
and g near w by (4.15). Then f and g are solutions of (4.6) near w and so are entire functions. Since
the Wronskian of f and g is then a constant, which has to be non-zero, and since (4.15) is unaffected
if f and g are multiplied by a constant, it may be assumed that W (f,g) = 1. But then (4.15) gives

=

1 4 f 1
g f fg

Thus we obtain:

4.2.5 Theorem (Bank-Laine 1982-3)

An entire function E is a Bank-Laine function if and only if E is the product of linearly independent
normalized solutions of an equation (4.6) with A entire.
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4.2.6 The advantages of the product

Let f1, fo be normalized LI solutions of (4.6), with product E' = f; f. Let ¢ denote a positive constant
(not necessarily the same at every occurrence).

(i) We have
T(r,A) <cT'(r,E)+S(r,E). (4.18)
This follows at once from (4.16).
(ii) We have
T(r E) < %T(r, A)+ N(r,1/E) + S(r, E). (4.19)

To see this, write T'(r, E) = m(r,1/E) + N(r,1/E) + O(1) and note from (4.16) that
2m(r,1/E) = m(r,1/E*) < T(r, A) + S(r, E).
(iii) If A has finite order and the zeros of E have finite exponent of convergence, then E has finite order.
(iv) If E has finite order then A is a polynomial if and only if m(r,1/E) = O(logr).
4.2.7 Examples of Bank-Laine functions
(i) Let E = e® with Q a polynomial. Then E is a Bank-Laine function and A has the form
4A = —2Q" — (Q')? — 729,

(i) Let P be a polynomial with only simple zeros, and let ) be a non-constant polynomial, chosen
using Lagrange interpolation, so that E = Pe® is a Bank-Laine function. Here both E and A have
order equal to the degree of Q.

(i) Let K = (2n 4+ 1)2/16 with n a non-negative integer, and define
Q) = am(™
m=0

by ag = 1 and, with ¢ = =4,
(4m% 4 4m + 1 — 16K)an, = 16¢(m + 1)amy1.
Then W (z) = Q(e~*/?) satisfies
W + W' (2ce*/? —1/2) + W(=K +1/16) =0
and w(z) = W(z) exp(2ce*/? — z/4) solves
w” + (e* — K)w = 0. (4.20)

We thus have linearly independent solutions whose zeros have exponent of convergence at most 1. In
fact, the change of variables ¢ = 2¢7/2 u(¢) = w(z), turns (4.20) into Bessel's equation (this is in
[45]). There are quite a lot of similar examples of equations (4.6), with A a polynomial in e** and
e~ **, having LI solutions with A(f1f2) < 1.
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4.2.8 The Bank-Laine conjecture

It is conjectured that if A is a transcendental entire function and the equation (4.6) has linearly inde-
pendent solutions f1, fo with A(f1f2) < oo, then the order of A is either co or a positive integer.
It has been proved (Rossi, Shen 1986) that if A is transcendental and p(A) < 1/2 then A(f f2) = .

4.2.9 Theorem (Bank-Laine)

Suppose that A is a transcendental entire function of order p < o < 1/2, and that E = fi f is the
product of normalized LI solutions of (4.6). Then A\(E) = co.

Proof. Suppose that A\(F) < oco. Then E has finite order. By Lemmas 3.7.2 and 3.7.4 there ex-
ists a constant M > 0 such that provided |z| lies outside a set of finite measure we have

[E"(2)/E(2)] + |E' () E(2)] < || (4.21)

The next ingredient is a classical result known as the cos mp theorem: since A has order p < a < 1/2

we have
log | A(2)|

log M (r, A)

for all r in a set H of lower logarithmic density at least 1 — p/«, so that

>cosma >0, |z]=r, (4.22)

/ @>(1—p/a—0(1))logs, s — 00.
HN[1,s] t

This gives us arbitrarily large r satisfying (4.22), such that (4.21) also holds on |z| = r. Since
logr = o(T(r,A)) = o(log M(r, A)),

we deduce from (4.16) that E must be small on the whole circle |z| = r, which is obviously impossible,
by the maximum principle.

4.2.10 Theorem (Bank-Laine)
Suppose that A is a transcendental entire function of finite order p, and that (4.6) has normalized LI
solutions fi, fa such that A(f1f2) < p. Then p is a positive integer.
Proof. With E = f; fo we have
A(E) < p(A) < p(E) < oc.

Hence we may write E = IleY with II entire of order A\(E) and g a polynomial, of degree p(E). We
now have
m(r,1/E) = (14 0(1))T(r, E)

and so p(A) > p(E).

4.3 Polynomial coefficients

There is an extensive literature on the asymptotic behaviour of solutions of (4.1), when the a; are
polynomials or rational functions. We will describe here the solutions of

w” + b(z)w = 0, (4.23)

when b(z) is a rational function with b(z) = c¢z"(1 + o(1)),z — co,n > —1,¢ # 0.
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4.3.1 Hille’s method

Let ¢ > 0 and 0 < € < w. Then there exists a constant d > 0, depending only on ¢ and e, with the
following properties.
Suppose that the function F' is analytic, with |F(z2)| < c|z|72, in

Q={z:1<R<|z|<S<o0,|argz| <m—e}. (4.24)
Then the equation
w'+ (1 - F(z)w=0 (4.25)
has linearly independent solutions U(z), V (z) satisfying

U(z) =e (14 61(2)), U'(z) = —ie (1 + 82(2)),
V(z) = e(1463(2)), V'(2) =ie"(1 4 64(2)), (4.26)

in which

16;(2)] < ﬂ for z€ Q1 =Q\{z:Re(z) <0,|Im(z)| < R}. (4.27)

Here Q) can be thought of as 2 with the “shadow” of D(0, R) removed.
To prove this, let X = Se', where 0 = min{r/2, 7 — ¢}. Choose a solution v of the equation

V" + 2" — Fu =0, (4.28)

analytic in €, such that v(X) = 1,¢(X) = 0. Set, for z € Q,

L(z) = v(z) — 14 2% (2= _ 1 F(t)o(t)dt, (4.29)

the integration being independent of path in 2, by Cauchy's theorem. Now

z

L) = o (2) /X ¢20-2) P () (t)dt, (4.30)

and

4
L'(z) = u"(z)+2i / 2 Pty (t)dt — F(2)v(z)
X
= "(2) +2i(v(2) = L'(2)) — F(2)v(z) = =2iL'(2).
Since L(X) = L'(X) = 0, the existence-uniqueness theorem gives L(z) = 0 on (2.
Now let z € Q. Choose the path of integration ~y, to be the arc of the circle |t| = S from X
clockwise to the first point x of intersection of the circle |t| = S with the line Im( ) = Im(2), followed
by the straight line segment from = to z. Then Im(¢ — z) > 0 and hence |2(*~#)| < 1 on ~., and this

is the reason for the choice of €); and X.
Since L(z) =0, (4.29) gives

_1</ (o) |, |<1+/ F(8)u ()] |dt]. (4.31)

We apply the method generally known as Gronwall's lemma. Let s denote arc length on ~,, and
parametrize -, with respect to s. Set

¢(s)
H(s)zl—i—/X |F'(t)v dt\—l—i—/ |F (¢ (s))|ds, (€,
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Then the second estimate of (4.31) gives

U = IR < FC)IHS)

so that

Thus the first estimate of (4.31) becomes

() — 1] < H(s) — 1 < exp </X (D) \dt|> Y (4.32)

Let dy,da, ... denote positive constants depending only on ¢ and €. The circle |t| = S evidently
contributes at most d1.S~! < dy|z| 7! to the integral in (4.32). Similarly, if | arg z| < 7/4 then Re(z) > 0
and the horizontal part of «y, contributes at most

/ Sdt < d _ds
Re(z) t Re(z) |Z|

Finally, if m/4 < |arg z| < m —¢e we write z = a+ib with a,b real and |b| > d4|z|, and the contribution
from the horizontal part of v, to the integral in (4.32) is at most

c d5 dﬁ
— _dr<—>< %
Axww2xw\\4

Thus (4.32) gives

d

d
\w@—1Sew<7)—1g8g@,
B E

using the fact that R > 1, and (4.30) gives

z d
W@NS/\HM®Mﬂ§f9
X z ’

Now we need only set V(z) = v(2)ei* so that V solves (4.25), by (4.28), and (4.26) for V follows at
once.

To obtain U, we set Y = X and choose a solution u of

' — 2iu’ — Fu =0,

with u(Y) = 1,4/(Y) = 0, and the integral equation for u is

w142 / (e=2=2) _ 1) P(t)u(t)dt.
23 Y

The path of integration has Im(¢ — z) < 0. Finally we set U(z) = u(z)e™%.



4.3. POLYNOMIAL COEFFICIENTS 61

4.3.2 Other regions
An almost identical argument works if €2 is replaced by
{z:1<R<|z|<S<oo,|argz —7| <7 —¢},

with this time
Q1 =0\ {z:Re(z) >0, |Im(z)| < R}.

We may also replace §2 with an unbounded region. Suppose that F is analytic, with |F(2)| < c|z| 72,
Q' ={2:1<R<|z|<oo,|argz| <7 —c}
We take a sequence S,, — 0o, and obtain corresponding solutions U,, V,, in
{z:R<|z| < Sp,|argz| <7 —e}\ {z:Re(z) <0,|Im(z)| < R}.

The corresponding error terms d;,(2),j = 1,2,3,4, are uniformly bounded, since the constant d is
independent of S in §4.3.1. Thus by normal families we may assume, passing to a subsequence if
necessary, that the Uy, V,,, d;, converge locally uniformly on

Q" ={2:1<R<|z| <oo,|argz| <m—e}\{z:Re(z) <0,|Im(z)| < R}.

The limit functions U,V solve (4.26), and the corresponding d,(z) satisfy (4.27) on Q".

4.3.3 Equations with a polynomial coefficient

The standard application of Hille's method is to the equation (4.23), when b is a polynomial, not
identically zero. Slightly more generally, suppose that b(z) is analytic in Ry < |z, with

b(z) =cz"(1+0(1)), z— o0,

in which c¢ is a non-zero constant and n is an integer not less than —1.

4.3.4 The case n = -1

If n = —1 it is convenient to set

in which f is a solution of (4.23). Then g solves

g"(u) = 2f'(u?) + 4u* f" (u?) = g'(u) /u — 4ub(u?)g(u)

and so
g"(u) — g (u)/u+c(u)g(u) =0, c(u)= 4u2b(u2) =4c(l1+0(1)), u— oc.

Now set h(u) = u~/2g(u) = u=/2 f(u?) so that h satisfies
R (u) + (c(u) — 3/4u?)h(u) = 0.

In the equation for h we have n = 0, and from the asymptotic behaviour of A we can deduce that of f.
We assume henceforth that n > 0.
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4.3.5 Ceritical rays
The critical rays are those rays arg z = 6 € R for which

argc+ (n+2)0 =0 (mod27). (4.33)

Assume that arg z = 6 is a critical ray, let Ry be large and positive, and with € small and positive
define

z 1/2
Z = / b(t)/2dt = 2072z(”+2)/2(1 +o0(1)), z—o00, |argz—06y < 2n E.
2

Roeieo n + n + 2 B

Here we are free to choose either branch of b(t)'/? (each of which is of course —1 times the other).
The condition (4.33) implies that cz"*2 is real and positive on the critical ray, and so we may choose
the branch of b(t)'/? in order to ensure that ¢!/22("*+2)/2 is also real and positive on arg z = 6. We
assume henceforth that this has been done.

4.3.6 Lemma

Let Ry be large and let o be small and positive. Let V =V (z) satisfy

) 1/2 9
V(z) = nciwz(”w)m(l +o(l)) as z— o0, |argz—06y < - :2

-, (4.34)

where 0 < 7 < 0. Then V is univalent on the region T} given by

2T

|z| > R, |argz—00|<n — o,

and V' _maps T onto a region containing
T ={w: |w| > R}, |argw| <7 — "}
Here we may take any large R} and any o* with o* > (n+ 2)o/2 .

To prove the lemma, note first that

1/2
= 2012 (a2
n+2

(with the same choice of square roots as before) is univalent on the region T5 given by

27 o

n+t2 2’

|z2| >0, |argz— 6 <

and ¢ maps T, onto the sector

o(n+2
15 = {C3 ([ >0, [arg(] <7r—(4)}-
But (4.34) and Cauchy's estimate for derivatives give
d d d av d 2
—Vwcl/Zz"/zz—C v V—Z—l—i—o(l) as z— o0, |argz—0y|< .

dz dz> d¢ ~ dzd¢ n+2
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Thus if Ry is large and 21, 22 are distinct and in T, we set (; = ((z;), and we may integrate from (;
to (2 along a a straight line, to obtain

¢1 d 1
v<zl>—v<zz>=/< ngcz o= 6 -G+ oG -G #o

This shows that V' is univalent on T7. To see that V(77) contains 77, just take R large and positive,
and ¢’ with (n +2)o/2 < (n+2)0’/2 < 0*, and look at the image under ¢ of

2

o /
—— o'}

Upr={2z:R<|2| <2R, |argz—6y <

This is, for some large S,

/
= {“’ 5 < fw| <228, Jargu| < 7w — W;)"}

As z goes once around the boundary OURr we see that ¢ goes once around OVg, and V(z) describes a
simple closed curve I'p which is close to Vg, since V(z) ~ (. But V(17) is simply connected, and so
the interior of I'g lies in V(T1), which gives

{w L S(L+0) < Jw| < 2012D28(1 — 5),  |argw| < 7 — 0*} c V().
This proves the last conclusion.

4.3.7 The Liouville transformation

Let 0 be small and positive, let R; be large and write
W(Z) = b(2)"*w(z), (4.35)

in which w is a solution of (4.23), and z lies in

2 0
le{z:]z]>il, \argz—90]<n:2—4}.
By Lemma 4.3.6, we have, for some large Rs,
2)6
Q2 = {w D|w| > Ra,  |argw| < m— (n—Z)} C Z(@Qy),
and the same asymptotics for Z show that
Z(51) CQa, where S;=<z:|z|>R |arg z — Oy| < 2n -4
1) & K2, 1= : 15 g 0 S .
The equation (4.23) transforms to
d*w b 50 (2)?
- R(Z))W =0, Fy(7)= ) (2) (4.36)

dz? T Ab(2)2 16b(2)3

and we have | Fy(Z)| = O(|Z]72) in Q2. By §4.3.1 there exist solutions Uy (Z), Uz(Z) of (4.36) satisfying
(4.26) in Q2 and these give principal solutions

uj(2) = b(z) "V exp((—1)7iZ + o(1)) (4.37)
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of (4.23) in 5.
The u; are zero-free in Sy, but if A, B are non-zero constants we show that
w = Aui; — Busg
has zeros near the critical ray, as follows. Set

1 uz(z)
V(z) = % log L)

Now, w(z) = 0 if and only if uy/u; = A/B, which is the same as

2V (2) = log UZEZ; = 2iZ + o(1) = log(A/B) + k2ni, (4.38)
u\z
with & an integer and any (fixed) determination of log(A/B). First of all, if z € S is large and w(z) =0

then (4.38) gives
7201/2 (n 2)/2(1 (1)) (2) ~ km
- 22 +o Viz ,

and in particular this leads to arg V(z) = o(1) and hence arg z ~ 6y. Thus zeros z of w in Sy with |z|
large must lie near the critical ray.
Now let k£ be a large positive integer. Then

1 A
:—1 —_
Vi 5 ogB—i-/mr

lies near the positive real axis, and so by Lemma 4.3.6 there is a solution z; of V(zx) = Vi in Sj.
Moreover, this z; is unique by the univalence of V' and z lies near the critical ray. Now the number of
these Vj inside a disc of centre 0 and large radius R is (1 + o(1))R/m. Hence by (4.34) the number of
these zeros zj, of w in |z| < Sis (14 0(1))c;S"+2)/2 as § — oo, for some positive constant ¢;, which
gives the following result [8].

Theorem. Let b # 0 be a polynomial of degree n and let w be a solution of (4.23) with infinitely
many zeros. Then
NG 1/w)

4.4 Asymptotics for equations with transcendental coefficients

For a linear differential equation with transcendental entire coefficients it is in general much harder
to obtain asymptotic representations for the solutions. However, when one coefficient is sufficiently
dominant it is possible to obtain local representations for solutions with few zeros. For the case k = 2
it is interesting to compare the results of the next theorem with the solutions (4.37) obtained for
polynomial coefficients.

4.4.1 Theorem

Let k > 2 and let Ay, ..., Ar_o be entire functions of finite order, with A = Aq transcendental. Let E4
be a subset of [1,00), of infinite logarithmic measure, and with the following property. For each r € F;

there exists an arc '
ar = {re": 0 < a, <t < B, <21} (4.39)
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of the circle S(0,r), such that

min{log |A(z)| : z € ar}

li 4.40
Hoéf?eEl logr . ( )
and, ifk >3,
. log™ |4 (2)]
1 — I re = 4.41
oo e Ey max{ og|A(z)] 2 € =0 (441)
forj=1,...,k—2.
Let f be a solution of
k—2
y®) 4 ZAjy(j) =0, (4.42)
j=0

with X\(f) < oo. Then there exists a subset Eo C [1,00) of finite measure, such that for large
r € Ey = E1 \ Ey the following is true. We have

f'(2) 1/k k—1A'(z) -2
=c - — , - 44
5 crA(2) % Al2) +0(r =), z€a (4.43)
Here c, is a constant which may depend on r, but satisfies cF = —1. The branch of AY* in (4.43) is

analytic on a, (including in the case where a, is the whole circle S(0,7)).
We may summarize (4.40) and (4.41) as saying that, as r — oo in Ej,

2+ D A=) < AR (4.44)

1<j<k-2
for z € a,. To prove the theorem, we start by writing
f=vel, p(V) < oo, (4.45)

where V' and h are entire functions. We may assume that 4’ £ 0 (if A’ = 0 then h is constant and we
can replace h(z) by h(z) + z and V(z) by V(z)e™?, which has finite order).
Now P
L — __ 4R
FoveT

and it is easy to prove by induction that, for m =1,2,...,

f(m) / /
—— = (W)™ +m(h)
f
where T),,_o(h’) is a polynomial in i/ of degree at most m — 2, with coefficients which are polynomials
in the logarithmic derivatives V@) /V, K@) /h! j =1,... m (for m = 1 we set T}, 5 = 0).
Denote positive constants by M. Substituting (4.46) into (4.42) gives

m—lz m(m_ 1)

T 5 (RY™ 20" + Ty _a(R), (4.46)

(h/)k + k,(h/)k:—l“//:/ + k(k; 1) (h/)k—Zh// + Tk—Q(h/)+
+ Y4 <(h’)j + j(h’)j—l“//’ + ‘j(‘jQ_l)(h’)j‘2h” + sz(h’)> + Ap = 0. (4.47)

1<j<k—2
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Claim 1: 4/ has finite order (and therefore so has h).
To prove this suppose |z| = r is large and |h/(2)| > 1, and divide (4.47) through by h/(z)*~!. Since
m(r, VP V) = 0(logr), r— oo,

for each j € N, and since Ay, ..., Ax_s have finite order, we obtain

m(r,h') < S(r,h') + O(logr) + O(r*0)
outside a set Es of finite measure, giving

m(r,h') = O0(r™M), r ¢ Es.

For large r € E», choose s € [r,2r] \ Ej to obtain

m(r,h') < m(s,h') = O(sM0) = O(rMo),
This proves Claim 1.

Since V, b/ and the coefficients A,, have finite order we can use §3.7 to find points u,, with |u,,| > 4
and u,, — oo as m — oo such that

Vo) (196 [44E)]
< 1 4.48
v || A < (445)
for1<j<kand 0<pu<k—2and for all large z satisfying
2@ Uy = | Dt [um| ), (4.49)
m=1
and this can be done so that
D Jum M < o0, (4.50)
m=1

Let U be the set obtained by doubling the radii of all the discs of Uy. Since the set of » > 1 such that
the circle S(0,r) meets the disc D(w,, 2|u,,|~2) has linear measure at most 2|u,,| =2 < 2, it follows
using (4.50) that there exists a set E5 of finite linear measure such that for r € E5 the circle S(0,r)
meets none of the discs of U.

Let Ey = E; \ E3 be as in the statement of the theorem. Then Ej is unbounded. Let M3 > 0 be
large compared to M; and M.

Claim 2: for large r € Ey and zy € a, we have (4.44) and (4.48) for z € D(z, |20|3).

To prove Claim 2, note first that if r € Ej is large then the circle S(0,r) does not meet U, and
so provided Mz was chosen large enough the disc D(zp,|z0|~*3) does not meet any of the discs
D (U, [um|~M2), so that (4.48) holds for z € D(zp, |z0|~*2). In particular, integrating Al /A, shows
that

|log [Au(2)/Au(20)ll =

/Z: A;(t)/AM(t)dt‘ <In2
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for z € D(zo, |20|~™3), again provided M3 was chosen large enough, which gives
1
[A(2)[ = S[AGz0)],  [Au(2)] < 2[Au(20)];
2
and so (4.44) for such z. This proves Claim 2.

Claim 3: for large r € Ey and 2y € a, we have

S < ()] < 2AE) (4.51)

Suppose first that |1/(z)| < 1|A(2)|'/*. Then (4.44), (4.47) and (4.48) give

A(2)] < 27MAE)HAR) RO +O0(1AR) M) < 27 A(2) |+ A=) RO A2) W),

which is clearly impossible. Now suppose that |A/(2)| > 2|A(2)|'/%. Then R'(z) is large and (4.44),
(4.47) and (4.48) yield

W (2)]F < 27FIR (2)F + 1 (2)F 1O (2™ + O(|A(2)[*M) < 2781 (2)F + |1 (2)[F PO (IR (2)] M)
which is again impossible. Claim 3 is proved.

1/k

For large 7 € Ey and zy € a, we may now define a branch of A(z)!/*, analytic on D(zp, |z0| =), since
A is large there and so in particular non-zero.
Claim 4: we have

W(2) = o A(2)1% +OGM), 2 € Dz, z0] ™). (4.52)

Here the constant ¢ = ¢, may depend on z( but satisfies k= —1.

To prove Claim 4 set u(z) = h'(z)A(z)~'/k. Dividing (4.47) through by A(z) and using (4.44),
(4.48) and (4.51) we get

0=uf + 0™ |A)|"VF) +1=u* +1+0(1).

Since u is continuous on D(zg, |20|~*3) there is a fixed ¢ with ¢*¥ = —1 such that u = ¢ + o(1) on
D(z0, |20|™3), and the binomial theorem gives

u=(—-1+ O(TM5|A(Z)|—1/k))1/k =c(1+ O(T‘M5|A(z)|_1/k))

1/k

from which (4.52) follows on multiplying out by A(z)'/*. This proves Claim 4.

For large r € Ey and 2y € a, we now set

z) = z) ex Zc 1/k M:c z)1/k M z 20, | 20| M2
s =wees ([ e Al i), ) e a o (T s e DGl ). (459
By (4.45), (4.48) and (4.52) we have

w(z) = Wi(z) = O0(Ms), 2z e D(z, |20 M3). (4.54)
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Now (4.54) and Cauchy's estimate for derivatives give

wY (20) = =— —dz=0(r""), =1,...,k,
( 0) 271 |z—z0|:%|zo|‘MS (z—zO)J+1 ( ) J
and so we get
W(j)(zo) M,
=0(r"®), j=1,...,k 4.55
W (z0) ( ), J ( )

Also, writing

H(z) = / ) oo A(t) VL, (2) _ (4.56)

gives, using (4.48),

HU) () Mo .

Substituting f = Well into (4.42) gives at 2o (compare (4.47))

I —
(H/)k + k(H/)k—l% + k(k21)(H/)k—2Hl/ +Tk_2(H,)—|—

+ 2 A ((H’)j +j<H’>j‘1VVI; + j(j; D (-2 +TjQ(H’)) + A =0,

1<j<k—2

which by (4.56) we may write in the form

W' k(k—1
W' Kk —1)

]C(f[/) 5 (E[/)ku E[H O(TMlo)(F[/)ka 07
s that w’ k(k—1)H"” k(k—1) A
2 2
?Ir = _T?[/ + O(T‘ ) = _27]?274 + O(T )’

using (4.56) again. Substituting this estimate into (4.53) we obtain (4.43) at z.

We show now that we may take the same branch of A/ and the same k'th root ¢, of —1 for
all zp € a,. Suppose first that 5, — o, < 27 in (4.39). Then we may define an analytic branch of
A(2)'* on a simply connected domain containing a,, since A(z) is large near a,. Then we have, for
each zy € a,, using (4.43), (4.44) and (4.48),

f'(20)

—f(zo)A(zo)l/k = ¢y +0(1)

in which c’jo = —1. Since the left hand side is continuous, we see that the root c,, is the same for all
20 € Qp.

Suppose finally that 0 = «., 5, = 27. Then we take a small § > 0 and obtain (4.43) on a]. = {z:
|z| = r,0 <argz < 2w —d}. Here ¢ = ¢, does not depend on §. As we then let 6 — 0+ both sides
of (4.43) are continued analytically around the circle S(0,7) and since the left hand side is continuous
and A(z) is large on S(0,7) it follows that A(z)'/* must return to the same branch of AY* as we
continue once around S(0,7), since otherwise it would return to the original branch of AY* multiplied
by a constant d # 1 with ¥ = 1.



Chapter 5

Asymptotics for matrix linear
differential equations

In this chapter we discuss asymptotics for solutions of linear differential equations with rational coef-
ficients, combining a slightly non-standard approach to the regular singular point case with methods
from Wasow's and Balser's texts [4, 72].

5.1 Some facts from linear algebra

Lemma 5.1.1 Let A = (a;)) be a matrix and suppose that rows ji, ..., js of A are linearly independent.
Then there exists pairwise distinct ky, ..., ks with a;, i, # 0 for each pu.

Proof. It may be assumed that A has s rows and rank s and, by taking s linearly independent columns,
that A is a square matrix, with det A # 0. Now determine k; by choosing a non-zero entry in row 1
with non-zero minor, then delete row 1 and column k1, and repeat. O

5.1.1 Nilpotent matrices

A v x v matrix A is called nilpotent if there exists t € N = {1,2,...} with A® = (0), in which case
0 is the only eigenvalue of A, because Az = Az gives 0 = Alx = Max. Conversely, if 0 is the only
eigenvalue of a v x v matrix B then the characteristic equation of B is just \Y = 0, and so BY = (0)
by the Cayley-Hamilton theorem. Thus if A = (0) for some t € N then A% = (0) for some s < v.

5.1.2 Upper triangular shifting matrices

The m-dimensional (upper) triangular shifting matrix Ny, is the m x m square matrix with all entries
0, excepts for 1s immediately to the right of the main diagonal (i.e. nj; = 0, except that n;, = 1 if
k —j=1). For example,

1
0
0

= O O

N, =

o O O O
o O = O

0 0

Left multiplication (of an m X n matrix) by N,, shifts every row up one place, and replaces the last
row by Os. Right multiplication (of an n x m matrix) by NNV, shifts every column right one place, and
replaces the first column by Os.

69
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Lemma 5.1.2 Suppose that an m X m matrix

al 1 0 0
a9 01 ... 0
B = : =A+Np,
Am—1 0 0 ... 1
am 0 0 ... 0

is nilpotent, where columns 2 to m of A are all zero. Then A = (0).

Proof. Since B is nilpotent, 0 is the only eigenvalue of B, and the characteristic equation of B can be
written (with A = —z)

ai+« 1 0 ... O

as z 1 ... 0
0 = det(B—\,) =

am—-1 0 ... x 1

Am 0o 0 ... z

= (x4 al)xm_l — a2 fasx™ 3+ .. ta, =a™

To see this, observe that each entry in column 1 of B — AL, has minor of form , Where C' is

0
0 D
lower triangular with 1s on the main diagonal, and D is upper triangular with all diagonal entries x.
O

5.1.3 Direct sums

A block matrix

A 0 ... 0
A - 0 A ... O
0 ... ... A

iswritten A=A4,9... 9 A,. Notethatif A=A, 9 ... A; and B=B1 D ... D B, have blocks of
matching sizes then AB = A1B1 @ ... D AsBs.

Lemma 5.1.3 Given a block matrix A = A1 ®...® As and any permutation By, ..., Bs of A1,..., As,
there is a similarity transformation B = T—' AT which produces B = B; @ ... ® B,.

Proof. The proof is by induction on s, and the blocks are interchanged by conjugation of matrices.
First, if s = 2 and Iy and Iy are appropriately sized identity matrices then

(1?)1 £2><102%>=<j2 ?)=(£%)(i§2 £1>- (5.1)

Thus, if s > 3 and By = Ay, where 1 < p < s, then the above method for s = 2 turns A = A;®.. . ®A;
intoC=A4,0.. DA, A .. DA, 1=B1®.. DA;DA1...®A,_1. It remains only to note that
if conjugation by T" turns D1 @ ...@ Ds_q into E1 @ ... @ E;_1 then conjugation by a matrix of form

(o 7)

tuns Fe D1 ®.. ®Ds_1into FOE1®...0 FEs_1.
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5.1.4 Jordan form

A square matrix of form A\l + N, where A € C and N is an upper triangular shifting matrix, is called
an upper Jordan block (or just Jordan block). A Jordan matrix is a block matrix of form

Jo 0 0 0
g=| 0 2 00 o Je =Ml + N,

0o ... 0 Js
This is expressed as a direct sum
J=h®Ld..aJ, JP=JteJie...0JF (peN). (5.2)
Every square matrix A is similar (via a conjugation A = S~1.JS) to a Jordan matrix J.

Lemma 5.1.4 Let A be ann xn matrix. Then A hasn linearly independent “generalised eigenvectors”
w; each with the property that (A — \;1,)Piw; = 0 for some p; € N and eigenvalue \; of A.

Proof. Suppose first that A = AL, + N, where N = N,, is the n x n upper triangular shifting matrix
in §5.1.2. Then N™ = (0), and so (A — AI,,)"z = 0 for every n-dimensional column vector x.

Now suppose that A = A; @ ... ® As, with each A; of form A = \;I,,; + N,,;. Take any vector w
such that its first 1 + ...+ pj—1 and last pj11 + ... + s entries are all 0. Since

(A= NI = (A= N @@ (A = NLy)M & (A= N,
= (A -N[))"e...eo0)d...0 (As— NI, )M
we have (A — \;jI,,)"w = 0. Thus each A; gives rise to p; vectors w with (A — A;I,)*w = 0, and
the collection of all of these is linearly independent.
In the general case, choose an invertible matrix P such that B = P~'AP is in Jordan form. Then
Bx = Mz if and only if A(Px) = PBx = P(Ax) = APz. Thus B has the same eigenvalues as A.

By the previous paragraph there exist n linearly independent vectors v; each with the property that
(B — A\jI,)Piv; = 0 for some p; € N and eigenvalue \; of B (and hence of A). Now

(A — \jI,)Pi Pvj = PP™Y(A — \;1,)Pi Pv; = P(P7YAP — \;1,)Piv; = 0.

5.2 Some basic facts from matrix analysis

For vectors a = (a1, ...,ay), b= (b1,...,by) in C" write

(a,6) =Y ajb = oa), al = v/{a,a) =

J=1

n
> lagl?
j=1

The Cauchy-Schwarz inequality then reads |(a,b)| < ||a| - ||b||: to prove this assume without loss of
generality that (a, b) is real and positive and write, for ¢ € R,

0 < (a+th,a + tb) = ||a|* + t({(a,b) + (b,a)) + t2||b]|* = ||a||® + 2t(a,b) + t2||b||* = At?> + 2Bt 4+ C
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so that B% < AC. The triangle inequality [la + b|| < ||a|| + ||b]| then follows via
la +bl* = llall® + {a, b) + (b,a) + [bl* < llal® + 2]al| - 1ol + 1B = (llall + [B])*,

and this extends by induction to finite sums. For a positive measure 1 on a space Y and a simple
function f = Zj ajXxy; : Y — C", the triangle inequality leads to

HﬂfWW:ZEW%>SZN%mwnaéwwm

so that

l/mﬁs/wwu (5.3)
Y Y
for integrable f : Y — C™.

If Ais an n x n matrix (a;j), then the Frobenius norm of A is defined by

Al =l Allr = > lajel>.
jk

This is the same as the C™* norm of the n2-dimensional vector obtained by writing out the entries of
A, and ||A||% is the sum of the squares of the C™ norms of the rows (or columns) of A. Hence (5.3)
holds for matrix-valued f with the Frobenius norm. For a matrix product C'= AB, the Cauchy-Schwarz
inequality gives (with all sums from 1 to n)

Z ajrb’rk
”

lejil? =

2
< Z ’ajr‘2 : Z |b7"k:|2
r r

and so

Dolenl? <D lage D bl = lage - | BIF
k r r.k r

and
ICI% =" lerl® < lagel* - I1BIF = IIAF - 1B]|%-
Jik J,r

Thus the Frobenius norm is submultiplicative.

5.2.1 The exponential and logarithm of a matrix

If A is a square matrix then
oo Am
exp(A) = E —

nl’

m=0
this being convergent, with norm at most exp(||A4||). If A and B commute, i.e. AB = BA, then
exp(A + B) = exp(A) exp(B) = exp(B) exp(A), and so exp(—A) is the inverse of exp(A).
If A(z) is a holomorphic matrix and A(z) commutes with A’(z), which is always the case if A(z) is
a holomorphic diagonal matrix, then

% (exp(A(2))) = A'(2) exp(A(2)) = exp(A(2))A'(2).
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If F'is a constant square matrix, then 2" = exp(F log z), and continuing this matrix function once
counter-clockwise around the origin multiplies it by exp(27iF'). If F is nilpotent, then the entries of

2F" are polynomials in log z. For example, the notation of §5.1.2 gives
01 00 0 010 00 01
0010 0 0 0 1] (logz)? 0 0 0 0] (logz)?
Ny _
2= It g0 1] T g 0 0 0 2 0000| 6
0000 00 00 0000
1 logz (1/2)(logz)? (1/6)(logz)3
|0 1 log = (1/2)(log 2)?
N 0 0 1 logz
0 0 0
and
2 Mogz (1/2)2Mlogz)? (1/6)2* (log 2)3
AatNe _ Ma Ny _ |0 2 2 log z (1/2)2*(log 2)?
- - A A
0 0 z z"log z
0 0 0 2

Lemma 5.2.1 Let A be a u x p nilpotent matrix. Then there exists a X . matrix D with exp(D) =
I-A.

Proof. Since A is nilpotent we have A* = (0). For t € C write I = I,, and

p—1 1 p—1
- / — m—1
n;m , B'(t) AmZ::l(tA)

as well as
(I —tA)B'(t) = A(I —tA) (I +tA+ ...+ (LA 2) = AT — (tA)F 1) = A.
This gives, since the matrices B’(t) and B(t) commute,

B(t)™!

(-1 @oBe) = -3 "
m=0

_ nff = Aexp(B(1).

m:l

Now write
C(t) = (I —tA)exp(B(1)), C'(t)=—Aexp(B(t)) + Aexp(B(t)) = (0),

so that C(t) is constant, with C'(0) = exp(B(0)) = exp((0)) = I. Hence exp(—B(t)) = I — tA and
the result follows with D = —B(1).
g

Lemma 5.2.2 Let H = A, + N, be a o x pu Jordan block, with A\ € C\ {0} and N,, a shifting matrix.
Then there exists a pu x (1 matrix B with exp(B) = H.
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Iu- Now let K = —A7!N,; then K* = (0),

Proof. Choose b € C with €® = . Then exp(bl,) =
=1, = I, + A"'N,. This gives, because the

and Lemma 5.2.1 gives a matrix M with exp(M)
matrices bl,, and M commute,

exp(bl, + M) = A,(I, + \"*N,) = M\, + N, = H.

Lemma 5.2.3 Let B be a non-singular matrix in Jordan form. Then there exists a matrix C with
exp(C) = B.

Proof. Write B = H; @& ... ® H,, where each H; is as in Lemma 5.2.2, and use the fact that

exp(C1 @ ... C5) =exp(Cy) @ ... D exp(Cs).
O

Lemma 5.2.4 Let B be a non-singular matrix. Then there exists a matrix C' with exp(C') = B.

Proof. Write B = P~1DP, where D is a non-singular matrix in Jordan form, and use Lemma 5.2.3 to
choose E with exp(E) = D. Then exp(P~'EP) = P"'DP = B.
O

Lemma 5.2.5 Let B = (bj;) be a square matrix and c € C. Then exp(cB) has determinant exp(ctr B),
where tr B =}, bj;.

Proof. If B = (0) this is obvious, and if B is in (upper triangular) Jordan form then exp(cB) is an
upper triangular matrix whose diagonal entries are the exponentials of the diagonal entries of ¢B. In
the general case write B = P~1DP, where D is in Jordan form, and

det (exp(cB)) = det (exp(P~'e¢DP)) = det (P~ exp(cD)P) = exp(ctr D).

But if £ = (ejx) and F' = (fji) are square matrices of the same size then

F) = Z (Z ejkfkj> = Z kajejk =tr (FE)7
j k J

k

which gives
tr(B) = tr (P"'DP) = tr (PP'D) = tr D.

5.2.2 A hierarchy of nilpotent matrices

Let A and B be v x v nilpotent matrices. Following [4], the matrix B is called superior to A if
rank A' < rank B! for every [ € N and there exists m € N with rank A™ < rank B™.

Since A¥ = B” = (0) it must be the case that m < v — 1, and because there are only v possible
values for the rank (namely 0 to v — 1) it is not possible to have arbitrarily long sequences A; of v x v
nilpotent matrices such that A; is superior to A;. To see this, write the ranks of the powers A7", for
m=1,...,v—1,as (rj1,...,75-1). Then r;; < rji1,;, with strict inequality for at least one [, so
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the number of matrices in such a chain is at most 1+ (v — 1)?, because the v — 1 entries 7 can each
increase at most v — 1 times.
For example, if

01000 0100 0
00100 00100
C=|00000]|=Ny®N,, D=| 00 01 0 |=NspNy,
00001 00000
00000 00000
then C and D have rank 3, while
00100 00100
00000 00010
c’=100000], DP=]1 00000 |,
00000 00000
00000 00000

so C? has rank 1, while D? has rank 2, and D is superior to C.
Note that if E is similar to A, and F is similar to B, while B is superior to A, then F is superior
to I/, because E' and A! have the same rank for every I € N, as have F! and B’

Lemma 5.2.6 Let Ay and By be v X v matrices given by

My 0 ... 0 0 My 0 ... 0 0
0 My ... O 0 0 My ... O 0
Ao=| .. ., Be=| . ], (5.4)
o ... 0 M, O Chp Oy M, 0
0O ... 0 M 0O ... 0 0 M

in which the following conditions all hold:
the M; are upper triangular shifting matrices of dimension s;, where s1 > ... > s;;
the last block M satisfies M" = (0);
all columns, bar possibly the first, of each block C; vanish;
at least one Cj is not the zero matrix.
Then By is superior to Ag, but is nilpotent.

Here we allow for the case that M is 0 x 0, so that the blocks above and to the immediate left of M
do not appear.

Proof. We first show by induction that (5.4) yields representations

MEo ... 0 0 M0 ... 0 0
0 M, ... 0 0 0o M, ... 0 0
A= ... ... ... ... .|, B=| ... .. . . .. (5.5)
0 ... 0 M o0 ch oMo
o ... 0 0 M o ... 0 o0 M

for [ € N. Only the formula for B(l] needs proof, and it is clearly true for [ = 1, with C,gl) = Ck.
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Assuming the result for some [ € N gives

M, 0 ... 0 0 M 0 ... 0 0

0 My ... 0 0 0 M ... 0 0
Bt = ... o o

C, Cy ... M, 0 c oML oo

0 ... 0 M O ... 0 o0 M

and thus (5.5) is proved for [ + 1, with
o — oy 4w

Since the M; are all nilpotent, the matrix Dy = By is zero on and above the diagonal, so that the
only eigenvalue of Dy is 0. Thus Dy is nilpotent and so is By.

Note next that each C} is an s, X s, matrix. We now claim that for 1 <[ < s;, the lth column
of C’,il) is the first column of C}, and that all columns of C,gl) from the (I + 1)th onwards are zero.
Again this is clear for [ = 1, and assuming it true for some [ € {1,...,s, — 1} gives the following.
First, postmultiplying by M,i shifts columns right [ places, so the (I + 1)th column of C’kM,lg is the first

column of C, and all other columns of Cj. M/ vanish. Second, all columns of MTCIEI) from the (I +1)th
U

onwards are zero, because this is true of C’kl . This proves the claim.

Consider now the pth column of AL where p < s1+...+ 87, and assume that this column of Aé
is not the zero vector. This column then has exactly one non-zero entry, a 1 lying in M,i for some
k < 7; moreover, this 1 must lie in at least the (I + 1)th column of M,lC and it must be the case that
[ +1 < s, We claim that this column of Al is the same as the corresponding column of B}, this
being obvious from (5.5) if k = 7, while if & < 7 then the corresponding column of C,gl) is zero. Thus
rankAf) < rankB(l] for every [ € N.

Now observe that, by (5.5),

M0 0 0 My 0 ... 0 0

0 M 0 0 0 M 0 0
Ar=| ... ... ... ... .|, Br=| .. ..

0O ... 0 0 0 ce) el 0 o

o ... 0 0 M 0 0 ... 0 M

There is at least one k with 1 < k < 7 — 1 for which the first column of C}, does not vanish: since
s < s, this column is then the s-th column of C’,S,ST), and so at least one column of BST is not a linear
combination of columns of Aj". Therefore rank A)” < rank B;™ and the lemma is proved. O

There is a companion version for rows, in which we again permit the case where M is 0 x 0.

Lemma 5.2.7 Let Ay and By be v X v matrices given by

My 0 ... 0 0 My O ... D; O
0 My ... O 0 0 My ... Dy O
Ao=| ... . |, Be=| ., (5.6)
0 ... 0 M, O 0 0O ... M. O
0o ... 0 M 0o ... 0 0 M

in which the following conditions all hold:
the M, are upper triangular shifting matrices of dimension s;, where s; >
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the last block M has M" = (0);
all rows, bar possibly the last, of each block D; vanish;
at least one D; is not the zero matrix.

Then By is nilpotent but superior to Ay.

Proof. This time (5.6) yields representations

M0 ... 0 0 Mmoo ... DYoo
0 M ... 0 0 o M, ... D o
Ay=| ... o oo BY= (5.7)
0 ... 0 M o0 0o 0 ... ML 0
0 ... 0 0 M 0O ... 0 0 M

for [ € N. To check this write Dl(;) = Dy, and

M0 DY 0 My 0 Di 0
0 M, DY o 0 My Dy 0
Bl—l—l
0 = e ce
0 0 M. 0 0 0 M, 0
0 0 o M 0 0 0 M

so that the recurrence relation is
D™ = M! Dy, + +D{ M.

Here each Dy, is an s; X s; matrix.

We now claim that for 1 <[ < s the following holds for D,(Cl): the [th row from the bottom is the
last row of Dy, and all rows above it vanish. This is clear for [ = 1, and assuming it true for some
l € {1,...,sx — 1} gives the following. First, premultiplying by leC shifts rows up [ places, so the
(I 4+ 1)th row from the bottom of M,f;Dk is the last row of Dy, and all other rows of M,ka vanish.
Second, if we count from the bottom then all rows of D,(CI)MT from the (I + 1)th onwards are zero,
because this is true of D,(Cl). This proves the claim.

Consider now the pth row of Aé, where p < s1+...+ 5., and assume that this row of Aé is not the
zero vector. This row then has exactly one non-zero entry, a 1 lying in ]\4}C for some k < 7. This 1 must
lie in at least the (I 4 1)th row from the bottom of M,i and we must have [ + 1 < s;. Again we assert
that this row of Aé is the same as the corresponding row of BY, this being obvious if k = 7, while if
k < 7 then the corresponding row of D,(fl) is zero. Thus we see that rank A%) < rankB(l) for every [ € N.

Now observe that

0 M 0 0 0 Mj ... D{")
Ay =1\ ... . .. .|, Br=| . L.

0 ... 0 0 0 0 0 ... 0 0

0 ... 0 0 M 0 ... 0 0 M+

There is at least one k with 1 < k < 7 —1 for which the last row of D}, does not vanish: since s, < sy,
this row is then the s th row from the bottom of DI(CST), and so at least one row of Bj" is not a linear
combination of rows of Aj™. Therefore rank Aj™ < rank Bj™ and the lemma is proved. O
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5.2.3 The solution of certain equations

Lemma 5.2.8 Let P and Q be upper triangular shifting matrices, of dimensions p and q respectively,
let C be a given p X q matrix, and consider the equation

PX-XQ=C-B. (5.8)

Then there exists a p X q matrix B such that (5.8) has a p x q solution X. This may be done so that
one of the following holds:

(i) all columns of B are zero, bar possibly the first, and the last column of X is zero;

(ii) all rows of B are zero, bar possibly the last, and the first row of X is zero.

Note that in the subsequent application of Lemma 5.2.8 we do not use the conclusions regarding the
columns/rows of X, only those involving B.

Proof. Premultiplying by P moves rows of X up one place, and replaces the last row by 0s. Sim-
ilarly, postmultiplying by  moves columns one place right, replacing the first by Os. Thus (5.8) may
be written in case (i) in the form

Y = PX-XQ
T2,1 2,2 T2,9-1 24 0 1 T1,2 T1,9-1
0 o1 2,9 2,91
= Tp-1,1 Tp—1,2 Lp-1,q-1 Tp-1q | — | ---

Lp,1 Tp,2 Tp,g—1 Lp,q 0 Zp11 xp-12 Tp—1,q—1
0 0 e 0 0 0 xp71 .rp’g a?p7q_1

c1,1 —bia 1,2 Cl,g—1 Cl,qg

c2,1 — b2 2,2 €2,9—1 2,4

Cp-1,1 —bp-1,1 Cp-1p2 Cp—1q-1 Cp-lg

cp1 — bp Cp,2 Cp,g—1 Cpq

Consider the last rows in (5.9); we see that we need bp1 = cp1; thus x,1 up to xp, 41 are now

determined, and we set z, , = 0. Thus the last row of X has been determined. Now looking at the
penultimate row in both sides shows that we need ¢,_11 — b,—1,1 to equal x;, 1, which has already been
determined. This gives us b,_1,1 and the penultimate row of X, with the stipulation that its last entry
be 0. The rows of X are thus determined moving upwards: once the kth row of X is known, we need
Ck—1,1 — bp—1,1 = x,1, and we can determine xj_11,...,Tx_14—1 and set x;_1 4 = 0.

Now consider case (ii); here (5.8) may be written as

Y = PX-XQ
21 2.2 T2,9-1 24 0 x11 Z1,2 T1,g-1
0 @21 T2,2 2,91
= Tp—1,1 Tp—1,2 Tp—1,q—1 Tp—1,q - cee
Tp,1 Lp,2 Lp,g—1 Tp,q 0 zp11 Tp-12 Tp—1,g-1
0 0 e 0 0 0 Tp,1 Tp2 Tp,qg—1
c1,1 €1,2 C1,q—1 Clq
C21 €22 €2,9—1 €2,q
_ (5.10)
Cp—1,1 Cp—1,2 Cp—1,q-1 Cp—1,4q
Cp1 —bp1 Cp2—bp2 Cpg—1 — bpg—1 Cpq —bpg
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Comparing the first columns in (5.10) we see that we need b,1 = ¢p1. Now x2; up to x,; are
determined, and we set z1; = 0. Thus the first column of X has been determined. Now looking at
the second columns shows that we need ¢, 2 — by, 2 to equal —x, 1, which has already been determined.
This then gives us the second column of X (with the stipulation that its first entry be 0). The columns
of X are thus determined moving rightwards: once the (k — 1)th column of X is known, we need
Cpk — bpk = —xp k1, and we can determine To, ..., T,k and set x1; = 0.

O

Comment. Balser [4] imposes conditions on the dimensions of P and () and states in passing that these
are required to ensure uniqueness. For the existence of a solution as in (i) or (ii) the dimensions p and
g can be arbitrary.

In particular, if p =1 then cases (i) and (ii) require, respectively,

(0 11 @12 ... @191 )=(c1—b1 c12 ... Clg-1 Cq ), T1g=0,

and
( 0O 0 ... 0 0 ) = ( C1,1 — b1’1 0172 — bLQ 617(1_1 — bqu_l Cl,q — qu ),

both of which are plainly solvable.
Similarly, when ¢ = 1 the required equations for cases (i) and (ii) are, respectively,

0 c1,1 — b1 21 0 c1,1
0 c2,1 — b2 0 2,1
(Z) = s (ZZ) acp_Ll - = ,
0 cp—1,1 — bp—1,1 Tp,1 0 Cp—1,1
0 Cp,1 — b 1 0 0 Cp,1 — b 1
and these are obviously solvable. |

Lemma 5.2.9 Let A and B be square matrices, where A ism x m and B isn xn. Then the equation
AX — XB=(0) (5.11)

has a unique m x n solution X if and only if A and B have no common eigenvalue.
Now let C' be an m x n matrix. If A and B have no common eigenvalue then the equation

AX -XB=C (5.12)
has an m x n solution X, and this solution is unique.

Proof. Obviously one solution to (5.11) is to make X be the m x n zero matrix. Suppose A and B share
the eigenvalue \. Then so do A and the transpose BT (because BT — \I = (B — \I)? has determinant
0), and there exist non-zero column vectors v, w with Av = Av and BTw = \w, so w” B = MwT. The
matrix X = v-wl ism x 1 x 1 x n and so m x n, and

X #(0), AX —XB=Av-wl —v-w'B=XM-w! —v 2! =(0).

Now suppose that A and B share no eigenvalues, and that (5.11) has a solution X. Then A™X =
X B™ for every integer m > 0. Thus

(A=A )PX = X(B—\I,)?P
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for every A € C and p € N. The matrix B has n linearly independent vectors w; each with the property
that (B — \;I,)Piw; = 0 for some p; € N and eigenvalue \; of B, and each of these satisfies

(A= A\jLn)P Xwj = X (B — \jL)Prw; = 0.

Since det(A — AjI;,) # 0, this forces Xw; = 0 for each j, and so X annihilates every n-dimensional
column vector and is the zero matrix.

Next, form an mn-dimensional column vector E by writing the columns of C' one after another,
and let Y be formed from X in matching fashion. Each entry of C' is a linear combination of entries
from X, with coefficients which are entries of A and B. Thus the equation (5.12) can be written in the
form DY = FE, where D is a square matrix. If A, B have no common eigenvalue, then the equation
DY = 0 has no non-trivial solution, by the first part. Hence D is non-singular and DY = FE has a
solution, which is then unique.

O

5.3 A class of formal expressions

Let p € N; then a formal series in descending powers of z'/P will mean a series v(2) = 3, .7 anz"/?,
with the a, € C and a,, = 0 for all but finitely many positive n. Let V =V, be the collection of these
formal series.

Two elements a = ) a,2"P? and b = Y onez bp2"/P of V), are equal if and only if a,, = b, for
every n. The product ab is determined by multiplying term by term and gathering up like powers. Thus
the set V forms a field, since if v(z) is not the zero series then 1/v(z) can be computed formally by
writing

1 1,-—n/
— =a 2P+ ap_1/anZ P+ . )7t
U(Z) n ( n 1/ n )
It follows that a square matrix with entries in V) has an inverse matrix with entries in )V if and only if its
determinant is not the zero series.

U(Z) = anzn/p + an_lz(nfl)/p + ... , an, 7& 0’

Lemma 5.3.1 Let n be a positive integer. Then the powers (log z)™, m = 0,...,n, of the formal
logarithm are linearly independent over V.

Proof. Suppose that we have a formal identity

Z am(2)(log z)™ =0,

in which the coefficients a,,(z) belong to V and do not all vanish. It may be assumed that a,(z) is
not the zero series and that n is the least positive integer for which such an identity holds. Formally
differentiating then gives

Z b (2)(log2)™ =0, bp(z) €V, by_1(z) = g + ay,_1(2).

Since b,—1(z) cannot be the zero series, this contradicts the minimality of n. a

Lemma 5.3.1 motivates the following definition. Let W be the collection of polynomials in the
formal logarithm log z with coefficients in V, that is, sums Y>>  a,(z)(log z)", where a,(z) € V and
all but finitely many a,, vanish. Two elements of W are the same if and only if they have the same
coefficients.
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Lemma 5.3.2 Suppose that we have a formal identity
Q
ZP Z‘/}m (log2)™ =0, Pj(2) = e¥(?) %

in which: each q;(2) is a polynomial in z'/P and each d; is a complex number; each V;,,(z) belongs to
V, if j # k then either q; — gy, is non-constant or p(d; — dy) ¢ Z. Then Vj,,(2) is the zero series for
each j and m.

Proof. Suppose that we have such an identity, in which not all the V} ,,, vanish. It may be assumed that
each Vj , is not the zero series, while Py = Vg, = 1 and R = Z]Q:l(l + n;) is minimal. Formal
differentiation yields

ng—1
0 = (ng/2)(log2)"e™" + Y (Vhm(2)(log2)™ + (m/z)Vgm()(log2)"™ ") +
m=0
Q-1 n;
+ D Pi(2) Y ((Vi(2) + (g(2) + dj/2)Vim(2))(log 2)™ + (m/2) Vjm() (log 2)" ).
j=1 m=0

If ng > 0 then the minimality of R forces ng/z+Vy) ,,_1(2) = 0, which is impossible. Hence we have
ng = 0 and so ) > 1. Moreover, again since 12 is minimal, we get

0= V]’n]( )/ Vim, (2) + d5(2) + dj/2

for 1 < j < Q. Expanding out V. ( 2)/Vijn;(2) in a formal series in descending powers of Z1/P then
shows that ¢; is constant and pd |s an integer for each j < @, which is again impossible. a

Lemma 5.3.3 Let U(z) be a formal expression

U(z) = %) ¢ Z Vin(z)(log 2)™

m=0

in which d € C, while q is a polynomial in z/P and each Vin(z) is a formal series in descending integer
powers of zY/P_ If the formal derivative U’ vanishes then ¢ is constant and pd € Z, while Vin(2) vanishes
for all m > 0 and U reduces to a constant.

Proof. We have, with the notation V11 = 0,
U'(z) = dz (Vin(2 '(2) + d/2)Vin(2))(log 2)™ +
+e4(2) 4 Z Vin(2)(m/z)(log z)™ 1

= e, Z (Vin(z (2) + d/2)Vin(2) + (m + 1)Viq1(2)/2) (log 2)™

The fact that this expression for U’ vanishes then requires that

Vin(2) 4 (¢'(2) + d/2)Vim(2) + (m + 1)Vinga(2) /2 = 0
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for 0 < m < n. Taking m = n gives
Vi) +(d(2) +d/2)Vi(2) =0, Vi(2)/Va(z) + ¢ (2) +d/z = 0.

This forces g to be constant and pd to be an integer. We may assume that d = 0, and we then have
V!(z) = 0 so that V}, is a non-zero constant. Moreover, n must be 0, since otherwise

Viea(2) + (n/2)Va = 0,

which is impossible. g

5.4 Formal solutions and uniqueness

Lemma 5.4.1 Let H be a v x v Jordan matrix with diagonal entries n1,...,n, € C. Then all non-zero
entries in column k of 2 have the form ;.2 (log z)™s*, and all non-zero entries in row j of z have
the form d;;.2"i (log z)"i*, where c;i,, d;, € C and mji, n;j, are non-negative integers.

Proof. If H is a single Jordan block H = nI+ N, where 7 is the eigenvalue, I is the identity matrix and
N is a shifting matrix, then 2" = 2"I and 2" is a matrix whose non-zero entries are constant multiples
of non-negative integer powers of log z. The result then follows by writing 2/ = 2" 2N = 2N 27! using
the fact that I and N commute. In the general case we have H = H; @ ... ® Hy, where the H; are
Jordan blocks, and 2z = 21 @ . @ 2Hs, O

Lemma 5.4.2 Let p € N and let H be a v X v Jordan matrix with diagonal entries n1,...,n, € C,
and let R(z) be a v X v diagonal matrix with diagonal entries r1(z),...,r,(2), each of these being a
polynomial in z'/?. Let V(z) be a v x v square matrix with entries which are formal series in descending
powers of z'/P. Then the following statements hold:

(i) the entry in row j, column k of Y (z) = V(2)zHef(?) s emv(2) 2Ty, (), where Tjx(2) € W, that is,
Tjk(2) is a polynomial in log z with coefficients which are formal series in descending powers of Z1/P;
(ii) the entry in row j, column k of eM=)HV (2) is €"i(*) 21U ;1. (2), where Uji(z) € W,

Proof. The entries of column k of V(2)z are formed by taking the dot product of each row of V (z)
with column k of 2z, and Lemma 5.4.1 shows that each non-zero entry in column k of 2z has form
¢z (log z)™ for some ¢ € C and integer m > 0. Now right-multiplying by efi?) multiplies column k
by (%),

Similarly, the entries in row j of 27V (z) are formed by taking the dot product of row j of 2z with
each column of V(z), and each non-zero entry in row j of z7 has form cz"i(log z)™ for some ¢ € C
and integer m > 0. Now left-multiplying by e®(*) multiplies row j by e"i(2). O

Now consider the differential equation
y = B(2)y, (5.13)
where B(z) is a v X v matrix whose entries are formal series in descending powers of z.

Definition 5.4.1 A basic formal matrix will mean a v x v matrix Y (z) with the following property.
There exist ¢ € N and q1(2), ..., q,(2), each a polynomial in z*/ with zero constant term, as well as
complex numbers o1, . .., a,, such that the entry Yj;.(2) in row j, column k of Y (2) is e%(*) 27k S (2),

where S;(2) is a polynomial in log z with coefficients which are formal series in descending powers of
1/q
z .
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Equivalently, Y (z) has the form Y (z) = E(z)D(z), where E(z) is a matrix whose entries are
polynomials in log z with coefficients which are formal series in descending powers of z'/9, while D(z)
is a diagonal matrix with entries e (%) 2k

It is clear that if Y (2) is a basic formal matrix, then so are its formal derivative Y’(z) and the matrix
B(z)Y (2), and their columns have the same exponential parts g; and powers o as Y (z). Thus we will
define formal solutions of (5.13) as follows.

Definition 5.4.2 A basic formal matrix solution of (5.13) will mean a basic formal matrix Y (z) such
that Y'(z) and B(2)Y (z) agree: that is, the powers of log z and their series coefficients in each entry
of Y'(2) match those of B(2)Y (z).

Definition 5.4.3 A principal formal matrix solution of (5.13) will mean a v x v matrix solution X (z) =
U(z)2"eP?) satisfying the following, for some p € N.
(i) F is a constant matrix in Jordan form given by

F=J1®...0J,,

where Jj is p; X p; and a Jordan block.
(ii) P(z) is a diagonal matrix of form

P(z) = Pi(2)I,, ®...® Py(2)1,,,

where Pj(z) is a polynomial in z'/P with constant term 0; this implies that P'(z), P(z) and ") all

commute with any matrix M = My @ ... ® M, such that M; is u; x pj, and in particular with F' and
F

2.
(i) U(z) is a matrix over V (that is, its entries are formal series in descending powers of zl/p), and

det U(z) is not the zero series.

Lemma 5.4.2 implies that any principal formal matrix solution is a basic formal matrix solution.
Moreover, X (z) in Definition 5.4.3 has determinant det U(z) - 2" - exp(tr P(2)), by Lemma 5.2.5.

Lemma 5.4.3 If X(2) = U(2)2"eP?) is a principal formal matrix solution of (5.13) as in Definition
5.4.3, then F' may be chosen so that all its eigenvalues have real part lying in [0,1/p).

Proof. Choose a diagonal matrix Dy = 011, ©...® 041, so that ' = Dy + Fpy, where all eigenvalues
of Fy have real part lying in [0,1/p). Then Dy and Fj commute and it is possible to write

U(z)z! = U(2)2P0 210 = U210,
in which det Uy(z) is not the zero series. O

If X(2) = U(2)2FeP® is a principal formal matrix solution as in Definition 5.4.3 then we have,
since F, 2!, P'(z) and P(z) all commute with each other,

i Fy _ 7}. F_ F L i P()) — p’ P(z)
dz (Z ) z & i 2z’ dz (e ) (2)e
and

(0) = X'(2) — B(2)X(2) = (U'(z) + U(z)g +U(2)P'(2) — B(z)U(z)) ZFeP()

so that 7
R(z) =U'(2) + U(z); +U(2)P'(z) — B(2)U(2)

must be the zero series in powers of z1/P. The question of existence will be treated later, but some
initial results concerning uniqueness will be developed following an example.
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5.4.1 Uniqueness of formal solutions

Example 5.4.1 Suppose that an equation ' = B(z)x has a solution

vy (5 2)

with a,b € C, P and Q polynomials in z and U(z) a matrix whose entries are analytic functions of z,
or formal series in descending integer powers of z. Then another solution is

v —va(y ) (5 20 )
- va (3 B (e %)
= vy 2) (0 0) (v )
= va (o) (v #) (o 5)
Here the powers a,b and exponential parts P and () have been interchanged.

Lemma 5.4.4 Let X andY be formal solutions of (5.13), such that'Y is a basic formal matrix solution
as in Definition 5.4.2, and X is a principal formal matrix solution as in Definition 5.4.3. Then there exists
a constant matrix C with Y = XC. Furthermore, if C is invertible, then the polynomials appearing
in the exponential terms in the columns of Y form a permutation of the diagonal entries of P: in
particular, this holds if Y is also a principal formal matrix solution Y (z) = V (2)2%e%(*) as in Definition
5.4.3.

Proof. By taking the least common multiple, it may be assumed that the integers ¢ and p occurring in
Definitions 5.4.2 and 5.4.3 are the same. Write

C(2) = X(2)"WY(2) = e PO U)WV (2) = (¢n(2)) . (5.14)

Here U(z)~! exists because det U(z) is not the zero series. Let p1(2),...,p,(2) be the diagonal entries
of P(z), and Ay, ..., A\, those of F. Then Lemma 5.4.2 and the notation of Definition 5.4.2 show that

cip(2) = e BRI 00Ny (5)) (5.15)

where v;,(2) € W, that is, v;,(2) is a polynomial in log z with coefficients which are formal series in
descending powers of z'/?. Thus C(z) has a formal derivative, and

Y =XC, (0)=Y'—BY =XC+XC' —BXC=XC, C =(0),

so that c;k(z) = 0 for each j,k. Lemma 5.3.3 shows that ¢j;(z) = c;i is a constant, and if cj, # 0
then (5.15) implies that g, — p; is constant, and so 0.
Suppose that C' is invertible, and that p* occurs s times in the list p1,...,p,, say

Pjp=-..=Dj, =D,

with the j,, pairwise distinct. Since C'is invertible, Lemma 5.1.1 shows that there exist pairwise distinct
ky, with ¢; x, # 0, forcing p;, — g, to be constant. Hence p* occurs at least s times in the list



5.4. FORMAL SOLUTIONS AND UNIQUENESS 85

q1,---,qy. This implies that if the distinct polynomials which occur in the list p1,...,p, are rq,..., 7,
with frequencies s1, ..., s, then these occur with frequencies t; > s1,...,t; > s, inthelist ¢1,...,q,
and

VZZT:SkSZT:tkSVa
k=1 k=1

which forces s, = ¢, and ), _; tx = v. Thus each list is a permutation of the other.
Now suppose that Y(z) is also a principal formal matrix solution Y (z) = V(2)2%e®(*). Then the
qx(z) in Definition 5.4.2 are precisely the diagonal entries of Q(z), and C'is invertible, because

det V(2) - 2" ¢ - exp(tr Q(z)) = det Y (2) = det U(z) - 2" I - exp(tr P(2)) - det C
and det V(z) does not vanish identically. O

In the case where X = Uzfe” and Y = V2%e? are both principal formal matrix solutions, with
the same integer p, and the eigenvalues of £’ and G are normalised as in Lemma 5.4.3, it is possible to
say more. We can write

F=J+D, G=K+E,

where D and E are diagonal constant matrices, whose entries all have real part in [0,1/p), and J, K
are Jordan matrices, all of whose eigenvalues are 0; moreover, this can be done so that J, D and P
commute, as do K, E and (). As before, C'is a constant matrix, and if ¢ # 0 then Lemma 5.3.2 and
(5.15) imply that p; = g and p(\; — oy) € Z, which forces \; = \;, by virtue of the normalisation of
the eigenvalues. Hence we always have
Cikok = Njcjr  and  cjrqi(z) = pj(2)cjk,

whether or not c;;, = 0. It follows that

CE=DC, CQ=PC, E=C'DC, Q=C'PC,
which leads in turn to

CP=2P0, ce? =efC.
Furthermore, Y satisfies
Y (2) = U(2)2F A0 = U(2)27 2PeP A0 = U(2)27 C2FeR) = V(2)K 2R,

which forces

U(2)27C =V(2)K, 27C8 =H(z)=U(2)"'V(2). (5.16)

Here H(z) is given by a formal series in descending powers of z!/P, because U(z)~" € V, which follows
from the fact that det U(z) is not the zero series. But, since the eigenvalues of the Jordan matrices .J
and K are all 0, the entries of 2/Cz~¥ are all polynomials in log z. Thus H is a constant matrix and
so

J2lC K — /0 KK = (0), JH - HK = (0). (5.17)

Since H is invertible, (5.17) implies that J = HKH !, so that J and K are similar matrices, and
27 = HzK H='. This now gives, by (5.16),

H=HNXH'C7K, 1=:KXH71C%, K=K 'C, H=C.
Finally, this delivers
CG=C(K+E)=HK+CE=JH+DC=(J+D)C=FC,

and so
G=C"'FC, Q=cCc'pCc, V=UC.
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5.5 Holomorphic matrix differential equations

Lemma 5.5.1 Let a(z) be a holomorphic v x v matrix function on a domain D C C, let z(z) be a

holomorphic v x v matrix solution of
7 =a(2)x (5.18)

on D, and let B be a constant v x v matrix. Then x(z)B also solves (5.18) on D. Furthermore,
W (z) = det x(2) satisfies W/(z) = b(2)W (z) on D, where b(z) is the trace of a(z). In particular, if
20 € D and det z(z9) = 0, then detz(z) =0 for all z € D.

Proof. The first assertion is obvious. Next, by the product rule, we have
= Z det zV1(z)
j=1

where zU(2) means the matrix z(z), but with row j replaced by its derivative, which is

(xz'l (Z), R x;V (2)) = <Z a]t ':Utl Z a]t xtu )

= Z ajt(2) (e (2 s zw(2)),

this being a linear combination of the rows of x(z). Since a determinant is left unchanged by adding to
one row multiples of the other rows, we get det zll(2) = a;;(2) det z(2). O

If det z(z) # O for all z € D then x will be called a non-singular solution.

Theorem 5.5.1 (The existence-uniqueness theorem) Let a(z) be a holomorphic v x v matrix func-
tion on a simply connected domain D C C, let B be a constant v X v matrix, and let zo € C. Then
the equation (5.18) has a unique holomorphic v x v matrix solution x(z) on D with x(zy) = B.

Proof. This uses the (standard) Newton-Picard successive approximations method coupled with the
Riemann mapping theorem. The first step is to prove existence and uniqueness on a neighbourhood of
zg. The equation can be written in integral form as

x(z) = x(20) + /Z a(t)z(t) dt. (5.19)

Define
zo(2) =(0), zi1(2)=B, ..., zg1(2) =B +/ a(t)zq(t)dt (¢ >0). (5.20)

20
Using the Frobenius norm for matrices, suppose that ||a(z)|| < M < oo on D(zp,d) C D, and take p
with 0 < p < § and pM < % It will be shown that there exists a unique solution z of (5.18), analytic
on D(zo,p), with z(z9) = B. To this end write, for ¢ > 0,

M, = sup{[g41(2) — 24(2)]| : = € D(z0,p)}. (5.21)

Then My = || BJ|. But (5.20) gives

tasa(2) — Zqa(2) = / () (g () — zg(t)) dt,
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and |la(t)(zq+1(t) — z4(t))]| < MM, on D(zp, p), which implies that
1
Mys1 < pMM, < 5M,.

Thus M, < (1/2)4||B|| and the series

7
L

2(2) = Y (2j11(2) —a(2) = lim D (2j1(2) = 25(2)) = lim 24(2)
=0

q—00 4 q—00
J

<
I
o

converges absolutely and uniformly on D(z, p); moreover, the limit function x(z) is analytic there, by
Weierstrass' theorem. Since z441(2) and z4(z) both converge to z(z), we get

x(z) =B+ /Z a(t)x(t)dt, 2 =ax, x(z2)= B.

The uniqueness is established as follows. If B = (0) then, with p as above and

T = sup{||e(2)] : = € D(z0.p)).

we get T < %T and so 7' = 0. Moreover, with this same value of p, fix a solution X of (5.18) which
is holomorphic on D(zg, p) and satisfies X (z9) = I. Then the uniqueness property implies that any
solution z of (5.18) which is holomorphic on D(z, p) must satisfy x(z) = X (z)z(20).

We now extend the solutions to all of the simply connected domain D. We have seen how to define
solutions on D(zp, p), for zp € D, where p depends on the coefficient A but not on x or B = z(zp).
If D is a disc D(0, R), where 0 < R < oo, and B is given, let S be the supremum of » > 0 such that
there exists an analytic solution x on D(0,r) with 2(0) = B: then S > 0. By the identity theorem and
the fact that we can choose r arbitrarily close to S, there exists such a solution on D(0,.5), and so if
S = R we have finished. If S < R, choose S; > S and M; > 0 such that |ja(2)|| < M; for |z]| < 5.
Then there exists a small positive o such that if [o| < S we may take zyp = b and p = o in the above
construction. Choose Sy with Sy < S < Sy + ¢ and finitely many b; with |b;| = S such that the discs
D(b;,0) together cover the circle |z| = S. For each j, we can then choose a solution y; defined on
D(b;,0) with y; = z at b;, from which it follows that y; = x on all of the domain D(0,.5) N D(b;,0).
If 5 and m are such that D(bj, o) N D(by,, o) is non-empty, then D(bj, o) N D(by,, o) is connected, and
D(bj, o) N D(bp, )N D(0,S5) is non-empty. Hence y; = yy, on D(b;,0) N D(by,, o). But this allows us
to extend x to the union of the D(b;,0) and so to D(0, S’), where S’ > S. This contradiction shows
that S = R.

Thus we have proved the existence-uniqueness theorem for the whole plane and for any disc. Now if
D is any simply connected domain, not the whole plane, and 2y € D, choose an analytic one-one function
¢ such that z = ¢(w) maps the unit disc D(0, 1) onto D, with ¢(0) = zp, and let b(w) = a(¢(w))d (w).
Then there exists y(w) on D(0,1) with y(0) = B satisfying v/(w) = b(w)y(w), and = may be defined
by z(z) = z(¢(w)) = y(w), which gives

7)o/ () e = L) M) (),
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5.6 The regular singular point case

This section will mainly be concerned with the equation
zz! = A(2)x, (5.22)

where A(z) is bounded and holomorphic in a sector S given by 2| > R > 0, —00 < o < argz <
B < +o00. Here it is convenient to allow the possibility that 3 — a > 27, so that S is understood to
lie on the Riemann surface of log z, on which we no longer identify points whose arguments differ by
27, and both A(z) and x(z) are continued analytically. In any case, any ambiguity may be eliminated
here by considering y(w) = z(e") and B(w) = A(e") on the half-strip T" given by Rew > log R,
a < Imw < B; here y(w) = B(w)y(w) and any local solution extends to the whole of T' by the
existence-uniqueness theorem.

In the case where A(z) is bounded and holomorphic in the annulus R < |z| < 400, the equation
(5.22) will be said to have a regular singular point at infinity.

Lemma 5.6.1 Let A(z) be a holomorphic v x v matrix function on on an annulus 2 given by 0 < R <
|z| < co. Let x be a holomorphic solution of (5.22) on a domain D C . If det x(z9) # O for some
zo € D then there exists a non-singular constant v X v matrix C with T = xC on D, where I denotes
the solution of (5.18) obtained by analytically continuing x(z) once around a circle |z| = r > R.

Proof. Note that det(z(z9)) # 0, by Lemma 5.5.1 and analytic continuation. To prove the lemma
just choose C such that Z(z9) = x(20)C, so that z(z) = z(2)C on a neighbourhood of 2y, by the
existence-uniqueness theorem, and hence for all z € D by the identity theorem. |

Lemma 5.6.2 Suppose that x(z) and A(z) are holomorphic v X v matrix functions on a sector S given
by |z| > R >0, —oo < a < argz < 8 < 400, and that ||A(z)|| < M < oo on S. Suppose further
that x satisfies zx' = A(z)x or za' = xA(z) on S and let zy € S: then

M
c —
Hz:(z)|§||:n(z0)||H ()M
20

for z € S,|z| > |zo].

Proof. This is a straightforward application of a method going back to T.H. Gronwall. As already noted,
the change of variables w = logz maps S onto the horizontal half-strip T' given by Rew > log R,
a <Imw < f. Setting X (w) = z(z) then gives

X7 < M| X]|

on T. Fix wg € T', and parametrize with respect to arc length s a straight line L starting from wq. This
gives, for w =w(s) e TNL,

w(s)
[ X (w(s) || < [[ X (wo)ll +/ M| X (w)]| |dw| < H(s),
where s
H(s) = HX(wo)||+/0 M| X (w(t))]| dt.
Then

H'(s) = M| X(w(s))|| < MH(s), H(s) < H(0)e™",
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which yields, if z € S with |z| > |z9|, and wy = log zp and w = log z,
IX(w)l < 11X (wo) [l

[1X (wo) || exp(M|log z/z0)
[1X (wo) || exp(M log |2/ 20| + (8 — ) M).

IN

d

Lemma 5.6.3 Suppose that 2:(z) and A(z) are holomorphic v x v matrix functions on a sector S given
by |z| >R >0, —00 < a < argz < 8 < 400, and that ||A(z)|| < M < oo on S. Suppose further

that x(z) is non-singular for all z € S and satisfies (5.22) on S. Then u = z~! satisfies
LM
e < o) | | et
20
for z,zo € S with |z| > |2|.
Proof. This follows from Lemma 5.6.2 since
I, =uz, (0)=zu'z+z2uz’ = z2u'z +uldz, 20 =—uA.

d

Lemma 5.6.4 Suppose that x(z) and A(z) are holomorphic v X v matrix functions on a sector S given
by |z| > R >0, —o0o < a < argz < 8 < 400, and that ||A(z)|| < M < oo on S. Suppose further
that x(z) satisfies (5.22) on S. If there exists N > M such that ||z(z)|| = o(|z| ™) as 2 — oo in S
then z(z) = 0.

Proof. It may be assumed that « = —f < 0, and it suffices to show that z(z) vanishes for large z on
the positive real axis. For large positive ¢t write

vy = [ TASE) by = 2 (0),

S

Since () and y(t) both tend to 0 as t — 0o, we have x(t) = y(t). Because x(t)t" — 0, there must
exist large positive ¢ with ||z(s)s™|| < [|z(t)t"V]| for t < s < +00. This implies that

oo N
lz@ = lly@®l < [ Mllz(@)]] ]tviﬂ ds = 2 [la()]l
' s N

which forces z(s) = x(t) = 0 for t < s < 0. O

Lemma 5.6.5 Suppose that x(z), A(z) and B(z) are holomorphic v x v matrix functions on a sector
S given by |z| > R > 0, —00 < a < argz < § < 400, and that ||A(z)| < M < oo on S. Suppose
further that x(z) is non-singular for all z € S and satisfies (5.22) on S, and that C(z) = B(z) — A(z) =
O(]z|™) as z = oo in S, where N > 2M. Then the equation zy' = B(z)y has a solution 3 on S
which satisfies

y(z) = 2(2) (L + O(|PY™N)) = (I, + O(|=[*~))a(2)

asz—ooinS.
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Proof. We first determine a solution u(z) = I, + O(|z|* =) on S of

' =Du, D=zl271Cxz. (5.23)
Here D is a holomorphic v x v matrix function, and there exists ¢ > 0 with ||D(z)|| < ¢|z|*M V-1 as
z — oo in S, by Lemmas 5.6.2 and 5.6.3. A suitable solution w will be generated in the standard way
via

u1(2) = (0), wuo(z) =TIy, tpsr(2)=1I, — / " D(un(t) dt, (5.24)

in which the integration is eventually along arg z = (av+ 3)/2. Let T be large and positive. We assert
that |Jup(2) — up—1(2)|| <27 and u,(z) is bounded for n >0, z € S, |z| > T. This is evidently true
for n = 0, and assuming it true for 0 < k < n implies that u,4+1(2) is well defined by (5.24), since
N > 2M, and that, for z € S, |2| > T,

[ DOm0 - wma) dtH .

o0
ltns(2) = wun(2)]| = [ \dt|‘ <o,
z

Hence the series Y > | (un(2) — un—1(2)) converges uniformly for z € S, |z| > T, which makes it
possible to write

u(z) = up(2) + Z(un(z) —Up—1(2)) = lim uy(2) =1, — /OO D(t)u(t) dt.
n=1 z

n—oo

Here u is holomorphic and bounded for z € S, |z| > T, and satisfies v' = Du and ||u(z) — I, || =
O(|2|*M=N) as required. Now write, using (5.23),

y=azu, By= Bru=(A+C)zu=z20"u+ Cru = 20"u+ zau’ = 2y
Then y satisfies
y(2) = 2(2)u(z) = 2(2) (L, + O(|zPM ™M) = 2(2)(L, + 6(2)) = (I, +e(2))z(2),

where, in view of Lemmas 5.6.2 and 5.6.3,

Theorem 5.6.1 Let A(z) be a bounded holomorphic v x v matrix function on an annulus ) given by
0< R < |z| < o0, and let D C Q2 be a simply connected domain. Take a non-singular solution x(z) of
(5.22) on D, and let T be the solution of (5.22) on D obtained by continuing x once counter-clockwise
around the origin. Then there exists a constant matrix B such that

on D, where G is any constant matrix with exp(2miG) = B, while W (z) is a non-singular holomorphic
matrix function on §) and each entry of W (z) has at most a pole at infinity. Moreover, the solution
x(2) = W(2)29 continues analytically to any sector given by |z| > R, —0o < a < arg z < f§ < +00.
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Equations (5.22) with A(z) holomorphic and bounded on an annulus R < |z| < oo will be said to have
a regular singular point at infinity.

Proof. By Lemmas 5.2.4 and 5.6.1 there exist constant matrices B and C' with B non-singular such
that

T(z) = 2(2)B, exp(2miC) = B~

Since z(z) may be continued analytically throughout © we may write

Wi(z) = x(z)zc, W(z) = z(2) exp(Qﬂ'iC)zC = EU’(Z)B*lZC = x(z)zc =W(z2).

Thus W is a holomorphic non-singular matrix function on 2, and applying Lemma 5.6.2 to z(z) in
|arg z| < 7 and 0 < arg z < 27 shows that there exist positive M, My such that

1W< ()l - |21 < 122 on Q.

Hence each entry of W (z) has at most a pole at infinity. Now set G = —C. O

5.7 Asymptotic series

Let p € N and consider a formal series a(z) in descending powers of 21/P given by

a(z) = Z amz™'P,

with a,, € C and a,, = 0 for all sufficiently large m > 0. If a branch of z!/? is chosen on a sector S
given by [z] > R > 0, —00 < a < argz < f < 400, and if b(z) is holomorphic on S, then a(z) is
called an asymptotic series for b(z) on S if the following is true: for each n € N we have

b~ S @ = ol )

meZ,m>—n

as z — oo in S. This will be written b(z) ~ a(z) on S, and an equivalent condition is, for each n € N,

b) = Do amP=O( 7).

meZ,m>—n

As before, it is convenient to allow the possibility that 8 — o > 27, which is facilitated by mapping to
a half-strip via w = log z.

Lemma 5.7.1 Suppose that b(z) and d(z) are holomorphic on the sector S given by |z| > R > 0,
—00 < a < argz < f8 < 400, each having an asymptotic series in descending powers of z'/P. Then
so have b(z) 4+ d(z) and b(z)d(z). If the asymptotic series for b(z) is not the zero series, then 1/b(z)
also has an asymptotic series on S. Finally, if e > 0 then V/(z) has an asymptotic series on the sector
a+e < argz < 8 — e, obtained by differentiating that of b term by term.
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Proof. To obtain an asymptotic series for 1/b assume without loss of generality that p = 1 and
b(z) =1 — f(2), where f(2) ~ > oamz™. This gives, for N € N,

N
1
[ — O 1-N
i = DGO
n=0
N n
= > amz™ + 027N |+ 0(]2 7
n=0 —N<m<0
N n
- X +0(|z77)
n=0 7N<m<0
N
= > dpz "+ 0(2 7Y,
n=0
in which dy, . .., dy are the coefficients in the formal reciprocal of 1 —Zm<0 amz"™ and are independent
of those a,, with m > IN. The proof of the other assertions is routine. O

Lemma 5.7.2 Suppose that a(z) is holomorphic on the sector S given by |z| > R > 0, —oco <
a < argz < B < +oo, and has an asymptotic series a(z) ~ b(z) = Y -7, b,z~™ there. Then
c(z) = exp(a(z)) has asymptotic series c(z) ~ d(z) = > .72 dnz~", where dy = 1 and d(z) is the
formal exponential of b(z). Furthermore, ¢(z) has asymptotic series b/ (z)d(z).

Proof. Let N € N. As z — oo in S, we have

N 1 N n
o(z) = Zn!<z bmz_m+0(|z|_1_N)> +O(|z|7 )

n=0 m=1
N 1 N n
= Z%)n! (Z bmzm> +O(|z|7N)

= Zdz +O(|z|717N),

in which dp, ..., dy are the coefficients in the formal exponential of b(z) and are independent of those
by, with m > N.
a

Theorem 5.7.1 Given a formal series a(z) = Y .z amz™? in descending powers of z'/P, and any
choice of the branch of z'/P on a sector S given by |z| > R > 0, —0co < a < argz < 8 < +00, there
exists a holomorphic function f(z) on S with f(z) ~ a(z) on S.

Proof. It may be assumed that that p = 1, since if p > 1 then w = z1/P maps S onto a sector. It may
also be assumed that « = = < 0 and R > 2, and that a,, = 0 for all m > 0, as this involves only
subtracting a polynomial from a(z).

Since the function (1 — e*)/z is entire, and bounded in the left halfplane, there exists C' > 0 such
that if Rez < 0 then |1 — e*| < C|z|. Choose a small positive d, in particular with d < /4, and for

m < 0 set

~d

bn(2) =1 —exp(—cm(2)), em(z) = m,
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so that |arg z| < 3 gives |arg c,,(2)| < 7/4 and |ambm(2)| < C|z|%. Therefore

D ambm(2)2" < C > |2 <Y R < 00

m<0 m<0 m<0

on S, and so the series
f(z) = Z Wb (2)2™
m<0
converges absolutely and uniformly, and is holomorphic, there. Let n € N and write

f(z)— Z amz" = Z b (2)2"™ — Z amz™ + Z ambm (2)2™,

—n<m<0 —n<m<0 —n<m<0 m<—n

in which, as z — oo in S,

Y lambn(2)2"| < Y Cla|™™ = Ol Y 7 o™ < Clz|T" T Y R = o]z,

m<—n m<—n m<0 m<0

while

Z am 2™ — Z b (2)2"™ = Z amz" exp (—em(2))

—n<m<0 —n<m<0 —n<m<0

tends to 0 faster than any power of |z|.

5.7.1 Asymptotic series and the inverse matrix

In general, a non-singular holomorphic function A(z) can have an asymptotic series in descending
powers of z without its algebraic inverse necessarily having one: for example e™* ~ 0 on the sector
|arg z| < m/4, but e* has there no asymptotic series in descending powers of 2.

However, suppose that we have a formal v x v matrix series A(z) = " ., Ap2", such that A, =0
for all sufficiently large n > 0 and d(z) = det A(z) is not the zero series. Then a formal inverse
B(z) = > ,cz Bnz" is given by the standard formula for the inverse matrix as the adjugate matrix
divided by the determinant d(z).

Suppose next that A(z) is a holomorphic matrix function on a sector S, with

A(z) ~ A(z) =) Apa"

neL

as z — oo in S, the series again having A, = 0 for all sufficiently large n > 0, and suppose that

d(z) = det A(2) is not the zero series. Then A(z) has a formal inverse B(z) = > nez Bnz". Moreover,

d(z) = det A(z) ~ d(z), and so A(z) is a non-singular matrix for each large z € S. Hence an inverse
matrix function B(z) of A(z) is defined by the adjugate-determinant quotient formula, and taking

asymptotic series in this formula shows that B(z) ~ B(z).

5.7.2 Asymptotic series and the equation (5.22)

Lemma 5.7.3 Given a formal series ) >, Az~ ™, where each Ay, is a constant v x v matrix, there
exist M > 0, a non-negative integer (), an increasing real sequence (R,,) and a constant matrix G with
the following properties. First,

Dn(2) = Apz ™ satisfies |Dp(2)|| <M for |z| > Ry. (5.25)
m=0
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Next, let —o00 < a < 8 < +oo. If N is sufficiently large then for all n > N the equation

za' = Dy (2)z (5.26)

has a holomorphic solution x,(z) = W,(2)z% on the sector S* on the Riemann surface of log z

given by |z| > Ry, a < argz < 3, such that W,, is a non-singular holomorphic matrix function on
Ry < |z| < o0, each entry of W,, having at most a pole of order Q) at infinity. Moreover, there exist
P >0 and a formal series y > Cy,z~™, independent of n, such that the W, satisfy

||Wn(z) — 29 Z Crnz ™| < |2 as 2z — oo. (5.27)
m=0

Proof. Let Ry = 1; once R,_; has been chosen, choose R,, > R,_; such that ||A,z7"| < 27" for
|z| > Ry,. Thus (5.25) holds with M = || Ag|| + 1.

Now let N be a large positive integer and assume without loss of generality that 8 — a > 4m. It
will be shown that there exist, for each n > N, a constant matrix G,, and a non-singular solution
T,(2) = Wy (2)2% of (5.26) on S*, where W, is a non-singular holomorphic matrix function on
Ry < |z| < oo and each entry of W, has at most a pole at infinity. Moreover, provided N is large
enough, this will be accomplished so that each matrix G,, satisfies G,, = Gy = G.

For n = N the existence of such a solution WN(z)zGN, with Gy a constant matrix and Wy
holomorphic on Ry < |z| < 400, follows from Theorem 5.6.1. The solutions z;,, for n > N are now
determined inductively as follows. If n > N and 2,(z) = W,,(2)2%" has been determined, combining
(5.25) with Lemmas 5.6.2 and 5.6.5 shows that there exists a solution x4 of

22’ = Dpy1(2)x, (5.28)
holomorphic on the sector |z| > Ry, o < arg z < 3, such that
Tn41(2) = Ta(2) (L + O(|2PM7) = 2a(2) + O(|2PM77) = O(I2|") (5.29)

as z — oo there. Starting near the ray argz = o+ 7/4 and continuing (5.28) once counter-clockwise
around the origin then gives a continued solution

Tn41(2) = Tn(2) (L + O(|2PM7") = 20 (2)(Ba + O(|2PY7)), By = exp(2miGh).
Hence (5.29) yields, as z — oo near arg z = a + 7/4,
Zn+1(2) = Tnp1(2) (L + O(12PY7)) (Br + O(|2PM)) = 2n41(2) Br + n(2),

in which ¢,,(2) = O(|z]>~") satisfies (5.28) and so vanishes identically by Lemma 5.6.4, since N is
large. Applying Theorem 5.6.1 then makes it possible to write 2, 11(2) = W, 11(2)2%", where W,, | is
a non-singular holomorphic matrix function on Ry < |z| < oo, and each entry of W, has at most a pole
at infinity, this holding initially near arg z = o + 7/4, but extending to o < arg z < 8 by continuation
of z&». This completes the induction, and shows that G,, = Gy = G for all n > N.

Now (5.25) and Lemma 5.6.2 yield @ € N such that

Wy(z) = 29 Z Crnz™™
m=0

as z — 00, in which each C,, , is a constant matrix (here ) depends only on M and G). Moreover,
(5.29) delivers Py > 0, independent of n, such that

(Crmn+1 — Cmpn)2™ " = Z_Q(WnJrl(Z) — Wa(2)) = Z_Q(wil(z) - xn(z))z_G = O(‘Z|P1_n)

m=0
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as z — oo. This implies that Cyy, 41 = Cry i = Cpy, for m < n — Py, which proves (5.27). O

Theorem 5.7.2 For each integer m > 0 let A,, be a constant matrix. Then the formal differential

equation
o0
zx' = (Z Amz_m> x (5.30)
m=0

has a formal solution S(z) = T(2)z% = S°2°_ Cpoz=™2%, where G and C,,,, m > 0, are constant

matrices, and the determinant of T'(z) =Y -~ Craz~™ is not the zero series.
Moreover, if A(z) is a holomorphic v x v matrix function on a sector S(R, «, 3) given by |z| > R > 0,

—o0 < a<argz < 3 < +400, such that A(z) has on S(R, «, 3) the asymptotic series
A(z) ~ Z Apz™™,
m=0
then (5.22) has a holomorphic solution x(z) = Y (2)2% on S(R,«, 3), where Y (z) has the asymptotic
series Y (z) ~ > 00 Cz™ ™ there.

This theorem is the key result of this section. It may be applied, in particular, when A(z) is holomorphic
and bounded on an annulus R < |z| < 400, in which case its asymptotic series is a convergent Laurent
series, and the theorem gives the existence of holomorphic solutions, on any sector S(R, «, 3), of the
equation (5.22), which has a regular singular point at infinity.

Proof. Let D,,, G, x,, W, and the sector 5* be as in Lemma 5.7.3. By incorporating a term 2Mv into
2%, where \ € Z, it may be assumed further that Cy # (0) and Q = 0 in (5.27), so that W,,(c0) = Cj
is a finite matrix. The fact that 2, (2) = W,,(2)2" solves (5.26) gives P € N such that, for all large n,

(0) = 2W\(2) + Wpn(2)G — Dy(2)Wy(2)

= z Z mCz ™1 4 Z CnGz7™ — (Z Amz_m> <Z sz_m> + O(ZP_")
m=0 m=0 m=0

m=0
= 2 i mCpz" ™1 4+ i CrnGz™™ — (i Amzm> (i szm> + O(zP’"),
m=0 m=0 m=0 m=0

where O(zF~") means a formal series involving no powers of z higher than P —n. Since n is arbitrary,
this gives the formal solution S(z) = T'(2)2% of (5.30).

To establish the non-vanishing of of det T'(z), observe first that, by Lemmas 5.2.5 and 5.5.1, (5.26)
and the fact that W, (2) is non-singular, there exists ¢, # 0 such that, as z — oo in S*,

det Wy (2) = 2 "%deta,(z) =2""%exp </ u” L (tr Dy (u)) du>

z n
= 2" (A0=C) exp </ Z tr Amu_m_1> ~ Cp 2t (A0=G)
m=1

Provided n is so large that n — P > |tr(Ao — G)|, formula (5.27) now yields, for large n, as z — oc.

det <Z C’mz_m> = det W,,(2) + O(|2|7™™) ~ ¢, 2" A=),
m=0
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The left-hand side of this equation is a rational function and the leading term of its Laurent series, valid
near infinity, is independent of n for large n, from which it follows that so is ¢,,. This implies that for
large n, in the sense of formal series,

detT(z) = det (i szm> Lo

m=0

_ antr(Ao—G) +0 (Z—1+tr(Ao—G)) + O(Z—n—l) £0.

Now suppose that A(z) and the sector S(R, «, ) are as in the hypotheses. By Lemma 5.6.5 there
exist M7 > 1 and, for each large n, a solution

Yn(2) = (L, + 021" ")zn(2) = (I + Oz )W (2)29 = Y(2) 2 (5.31)
of (5.22) on S(R,«,3). Then (5.27) shows that there exists M > 1 with, for each large n,

Yorr(2) = Ya(z) = (G + O " )Woa(2) = (L + O =)W (2)
= (L + O(= ) (W) + O(=1" ™) = (1 + O(J= =) Wi (2)
= 0"

as z — oo on S(R,a, 3). It follows from Lemma 5.6.4 that y,11 =y, =y and Y41 =Y, =Y on
S(R,a, 3), for all large n. Now (5.27), (5.31) and the formula W,,(c0) = Cj together show that there
exists M3, My > 1 with, for each large n,

Y (2) = Wa(2) + O(|z[Msm) = Z%ﬂm (Jz[Ma=m).

It follows that Y °_ Cy,z~" is an asymptotic series for Y on S(R, a, 3). O

In Theorem 5.7.2 it may be assumed further that G is in Jordan form, so that S(z) becomes a
principal formal matrix solution as in Definition 5.4.3. This may be seen by choosing an invertible
constant matrix H such that J = H~'GH is in Jordan form, and right-multiplying S(2) and z(z) by
H, using the fact that

S(z)H=T(2)2°H =T(:)HH ':°H =T(2)Hz', z(z)H =Y (2)Hz’.

Example

In Theorem 5.7.2 it cannot in general be asserted that det Cy # 0. Write

(11 (1 =1\ g (1 =1\ [z =zlogz\ [z =zlogz—=z
w=o) o= )= 26T 6 TR,

so that
iy [z zlogz\ (1 1/z\ (z zlogz—=z\ (1 1/z
= (Z)_<0 222 )‘(0 2 J\o 22 =lo 2 )%

Here 2(z) = T(z)zH with
=z (8 2) + (é _01> , detT(2) =2 T(z) ' = <(1] %z) .

re=(, )
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Suppose that z(z) = U(2)z! with U(z) = Uy + Uz~ ! + ... and det Uy # 0, where F and the U,,
are all constant matrices. Then there exist constant matrices M and G, with M non-singular and G in
Jordan form, such that

FM = MG, z(z2)M =U(2)zFM =U(z)Mz% =V (2)2Y,
where V(2) = U(2)M = Vo + Viz=t + ... and det V # 0. This gives
23 det M = det(x(2)M) = 29 det V(2) = 29(det Vy + o(1)),

where g is the trace of GG, which must therefore be 3. Hence the sum of the eigenvalues of G must be

3. Now 3/2 cannot be the unique eigenvalue of G, since otherwise x(z)M = V(z)z% would involve

fractional powers of z, and so the eigenvalues of G are distinct. But then V'(2)z% cannot involve

logarithms, and nor can z(z)M, so Ma; = Mas = 0, contradicting the fact that M is non-singular.
The same z(z) can be written, in accordance with Lemma 5.4.3, in the form

z zlogz—2z\ (z —=z\ (1 logz\ [z -z LK K_Ol
0 22 “\o 22)\0 1 ) \0 22 ’ ~\0 0/’

in which K has 0 as its only eigenvalue, and so is not similar to H.

5.8 Scalar equations and asymptotic series

Theorem 5.8.1 Given an integer p and a formal series A(z) = > P A,,2™, with each A, € C,

there exist a polynomial P and a complex number ) such that the equation

¥ =A(z)x = ( i Amzm> x (5.32)

m=—oo
has a formal solution X (z) = 2P U (z), where U(2) = 320°_ umz™™ with u,, € C and ug = 1.

Moreover, if B(z) is a holomorphic function on a sector S given by |z| > R > 0, —0 < a <
argz < 8 < 400, and B(z) has on S the asymptotic series B(z) ~ A(z) =Y P ___ Anz™, then the
equation

¥’ = B(2)z (5.33)

has a holomorphic solution z(z) = 29eP?)Y (2) on S, where Y (z) has asymptotic series Y (z) ~ U(z)
onS.

Proof. On S write

P A, zmtt /
PE=Y A @=L, 0 =BE) - L-PE)~ Y An

m=0 m<—2

and
Amzm+1

Y (2) = exp(D(z)), D(z):—/OOC(t)dth(z): > .

m<—2
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Lemma 5.7.2 shows that Y (z) = exp(D(z)) has an asymptotic series Y (z) ~ U(z) = D> oy umz""™
on S, where u,, € C, up =1, and U(z) is the formal exponential of E(z). Thus Y (z) satisfies

0 = Y'(2)=D'(2)Y(2) =Y'(2) — C(2)Y(2)

= Y'(z) - <B(z) — % — P’(z)) Y (2)
= Y'(2)+ % Y (2) + P'(2)Y(2) — B(2)Y (2)
~ U'(z) + % U(z) + P'(2)U(z) — A(2)U(2).

Thus z(z) = 29eP?)Y (2) solves (5.33) and X (z) = 2¥eP*)U(z) is a formal solution of (5.32). O

The aim of the subsequent sections will be to prove a counterpart of Theorem 5.8.1 for the case
of matrix linear differential equations (5.18). For the special case of (5.22), with A(z) a bounded
holomorphic matrix function in a sector, such a result is already provided by Theorem 5.7.2.

5.9 Reducing the dimension via eigenvalues

We start this section with the v x v equation

AP = A(2)z,  Az) ~ Z Apz™™, (5.34)
m=0

2P = A2z, Az) = Z Apz™™. (5.35)
m=0

Here p € Z and A(z) is a v x v holomorphic matrix function, the asymptotic series in (5.34) being valid
as z —» oo in a sector S given by 2| > R >0, —o00 < a < argz < 8 < +00. Then the cases where
p < 0orall A,, are the zero matrix are covered by Theorem 5.7.2. Assume for the rest of this section
that p > 1 and Ag # (0): the equation is then said to have rank p.

Following Wasow [72, pp.52-55], assume for now that v > 2 and that Ay = lim,_,+ .c5 A(2) has

the block form "
A 0
A = ( 0 )7 5.36
0 0 A(2)2 ( )

in which A}! and A2? are square matrices of dimensions ;. and v — u respectively, with no common
eigenvalue. We seek a formal transformation

o
= P(2)y, P(z)= Z Pz, (5.37)
m=0
which turns the formal equation (5.35) into
_ _ _ _ _ o)
27y = B(2)y, B(z) =P(2) 'A(z)P(z) — 2" PP(2) 'P'(z) = ) _ Bmz ™", (5.38)
m=0

with each B,, a block diagonal matrix having the same block configuration as Aj.
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The second equation of (5.38) can be written

217PP'(2) = A(2)P(z) — P(2)B(z). (5.39)
Writing
A(z) =Y Apz™™,  Apy =0 form <0, (5.40)
MEZ

with a similar convention for B, P and P’, gives the recurrence relation

—(m=p)Pnp=> (Am—sPs=P:Bn )= > (Am_sPs— PBn ), (5.41)

SEZ 0<s<m

in which the sums on the right reduce because of (5.40). Since p > 1, the equation (5.41) is vacuous
for m < 0, and for m = 0 it gives

A()Po - PQB[) = pP_p = (0) (5.42)
For m > 0 we write (5.41) as
m—1
AoPp = PuBy =Y (PiBp—s — Ap_sPs) — (m = p) Py (5.43)
s=0

The choice Py = I = I, then gives, for m > 0, by (5.42), (5.43) and the fact that p > 1,
Py=1, By=Ay, AP, — P,Ay= B, + H,, (5.44)

where H,,, depends only on Ay, ..., A, (which are known) and those P; and B; with 0 < j < m.
We assert that these equations can be solved in such a way that, for each m > 1,

B 0 0 P2
Bm = ( 0 _822) ’ Pm = (PQI 0 > ’ (545)

where B, and P, are block matrices in the same configuration as (5.36) (the first of these is clearly
true for m = 0, but the second is not). For m > 0 write H,, in the block configuration of (5.36) as

Hm Hm

Then we require, for m > 0,

By + Hy, = (0),
Alpl2_plagn gl
m m m
ARp2_ priglt g2
m m m
B2 1 g2 = (0). (5.46)
The first and last equations of (5.46) are automatically satisfied by setting Bl = —H!l and B%2 =

—H?22. Because A} and A2* have no common eigenvalue, Lemma 5.2.9 shows that the second and
third equations are also solvable (and uniquely). This proves the following theorem.
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Theorem 5.9.1 Suppose that Ay has the block form (5.36), where A}l and A%? are square matrices
of dimensions p and v — p respectively, and with no common eigenvalue. Then there exists a formal
transformation x = P(z)y = >.>°_, Pz~ ™y with

m=0

0 P12
Py=1,, Pm:(P21 6n> (m21),
m

which transforms (5.35) to

0 11
Zlipy/ = Z Bmzimyv B, = (B(;n BO22) ) (5'47)
m=0

where By = Ao and B}l is u x u, while B2? is (v — p) x (v — p).
|

The next issue is to resolve whether the same reduction is possible for holomorphic solutions of
(5.34). To this end assume again that A(z) has the asymptotic series in (5.34), in which Ay has the
block form (5.36), and write

P(z)=1,+ P(2), B(z)= Ao+ B(z), (5.48)
as well as
B = By+Be (Aélgﬁn Ang(:E??)’ By = Ao,
p = ner= (7).
A= (hn d»). aP-0. -0 (5.49)

with 1 and I?? identity matrices of appropriate dimension, and all of these matrices in the same block
configuration as Ag. Then, by (5.38) and (5.39), the transformation z = P(z)y turns (5.34) into
21=Py" = B(z2)y if and only if P and B satisfy

,\ /
0 (P12>
A= — AP - PB
<P21> 0
ALl 12 It ]312
= (A21 A22> p2t 22

i 1312 A[1)1+§11 0
- ]321 122 0 A32+§Q2 :

(0) - Al +A12ﬁ21 o (A(l)l +§11)’
L= (]312)/ — AUPIZ 4 g1z pl2(g22 y B22)

Expanding this out gives

L1-p (1321)' _ A2 4 AP Pl ALl 4 BY),
(0) = A?'P24 A% (A + B®). (5.50)
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We eliminate B! and B?2 using the first and last equations of (5.50). The second and third equations
then become

L1-p (1312)’ _ AUPI2 4 12 PI2(g2 P12 422)
L= (1321)/ — ALy AP PA(ALL L gl2p2ly (5.51)

Now the equations (5.48), (5.49) and (5.50) are satisfied when A, P and B are replaced by the
formal series occurring in Theorem 5.9.1. Thus the equations (5.51) have a formal solution arising
from the series >~ Pz~ in Theorem 5.9.1. Suppose that the equations (5.51) have holomorphic
solutions P'2 and P! on a sector S* C S for which

D12 o
P(z) = I, + <ﬁ2?(z) P O(Z)> ~ 3 P (5.52)
m=0

Then defining B! and B2 using the first and fourth equations of (5.50) means that all four equations
of (5.50) are satisfied and, with B and P defined by (5.48) and (5.49), the holomorphic change of
variables x = P(z)y transforms (5.34) into 2! 77y’ = B(z)y, where B is a holomorphic block diagonal

matrix on S* given by
B (z 0
5= (") i)

Here (5.52) makes P(z) invertible for large z, because P, is the identity. Moreover, B has an asymptotic
series determined by the first and last equations of (5.50), and so the series > > | By, 2z~ in Theorem
5.9.1 is an asymptotic series for B on S*. Thus the key step is now to find holomorphic solutions p2
and P2! of (5.51) on a sector S* C S which satisfy (5.52).

Consider the first equation of (5.51), and write it in the form

L= (]312)' — A2 AUIPI2 _ pl2y22  pl2 42112, (5.53)
Now write the entries of P'2 as a column vector Y. Then (5.53) may be expressed as
ATPY = F(2,Y) = Fy(2) + Fi(2)Y + Fa(z,Y),

where the following condit