5 Gaussian Integers and sums of squares

Aims of this chapter: to discover things about the arithmetic of \mathbb{Z} by passing to larger number rings.

The Gaussian integers

Definition. The set of Gaussian integers is $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$.
Remark. $\mathbb{Z}[i]$ is closed under addition and multiplication, and contains \mathbb{Z} : it is a subring of \mathbb{C}. It is not a field: dividing one Gaussian integer by another results in an element of $\mathbb{Q}(i)$ with rational real and imaginary parts.

Questions: What does $\mathbb{Z}[i]$ look like? Does it have an "arithmetic" like that of \mathbb{Z} ? What are "Gaussian primes"?

Remark. Note that $(1+i)(1-i)=2$, so the number 2 is "not prime" in $\mathbb{Z}[i]$. Neither is 5 , since $5=(1+2 i)(1-2 i)$. What about $3=(-1)(-3)=i(-3 i)$?

Definition. An element $\alpha \in \mathbb{Z}[i]$ is a unit, or invertible element, if there exists a $\beta \in \mathbb{Z}[i]$ such that $\alpha \cdot \beta=1$. Two elements α and β in $\mathbb{Z}[i]$ are called associate to each other if $\alpha=\gamma \beta$ for some unit γ.

To answer the above questions properly we first need to decide what the units of $\mathbb{Z}[i]$ are . As well as ± 1 there are also $\pm i$ since $i(-i)=1$. Are there any more? To decide this we'll introduce a function on $\mathbb{Z}[i]$ called the norm.
Definition. The function $\mathrm{N}: \mathbb{Z}[i] \rightarrow \mathbb{Z}$, called the norm, is defined by

$$
\mathrm{N}(a+b i)=(a+b i)(a-b i)=a^{2}+b^{2}
$$

so $\mathrm{N}(\alpha)=\alpha \cdot \bar{\alpha}$.

Lemma 5.1 (Properties of the norm).
a). $\mathrm{N}(\alpha)=0$ if and only if $\alpha=0$;
b). $\mathrm{N}(\alpha \cdot \beta)=\mathrm{N}(\alpha) \cdot \mathrm{N}(\beta)$;
c). $\mathrm{N}(\alpha)=1$ if and only if α is a unit in $\mathbb{Z}[i]$;
d). $\{1, i,-1,-i\}$ is the complete set of units of $\mathbb{Z}[i]$.

Proof. a). is obvious.
b). We have

$$
\mathrm{N}(\alpha \cdot \beta)=(\alpha \cdot \beta) \cdot \overline{\alpha \cdot \beta}=\alpha \cdot \bar{\alpha} \cdot \beta \cdot \bar{\beta}=\mathrm{N}(\alpha) \cdot \mathrm{N}(\beta)
$$

c). If $\mathrm{N}(\alpha)=1$ then $\alpha \cdot \bar{\alpha}=1$ and since $\bar{\alpha}$ is also in $\mathbb{Z}[i]$, we must have that α is a unit. Conversely, if $\alpha \cdot \beta=1$ for some $\beta \in \mathbb{Z}[i]$, then $\mathrm{N}(\alpha) \cdot \mathrm{N}(\beta)=1$ and since both $\mathrm{N}(\alpha)$ and $\mathrm{N}(\beta)$ are positive integers, we have $\mathrm{N}(\alpha)=\mathrm{N}(\beta)=1$.
d). We find all the units by solving $\mathrm{N}(\alpha)=1$. If $\alpha=a+b i$, then $a^{2}+b^{2}=1$ gives that either a or b must be 0 and the other ± 1.

Theorem 5.2 (Euclidian division in $\mathbb{Z}[i]$). Given α and $\beta \neq 0$ in $\mathbb{Z}[i]$, there exists κ and ρ in $\mathbb{Z}[i]$ such that

$$
\alpha=\kappa \cdot \beta+\rho \quad \text { and } \quad \mathrm{N}(\rho)<\mathrm{N}(\beta) .
$$

We call κ the κ uotient and ρ the ρ emainder.
Proof. The vector from 0 to $i \beta$ is perpendicular to the vector from
 0 to β in the complex plane $\mathbb{C}=$ \mathbb{R}^{2}. So the set

$$
\beta \cdot \mathbb{Z}[i]=\{\kappa \cdot \beta \mid \kappa \in \mathbb{Z}[i]\}
$$

forms a lattice of squares with side length $|\beta|=\sqrt{N(\beta)}$. Our given α belongs to at least one of these squares. Let $\kappa \cdot \beta$ be a closest corner of this square, i.e. an element in $\beta \cdot \mathbb{Z}[i]$ of smallest distance to α. Put $\rho=\alpha-$ $\kappa \beta \in \mathbb{Z}[i]$. So $|\rho|$ is smaller or equal than half the diagonal of the square. So

$$
\sqrt{\mathrm{N}(\rho)}=|\rho| \leqslant \frac{\sqrt{2}}{2} \cdot|\beta|<\sqrt{\mathrm{N}(\beta)} .
$$

Definition. We say that α in $\mathbb{Z}[i]$ divides β in $\mathbb{Z}[i]$, denoted by $\alpha \mid \beta$ if there is a $\gamma \in \mathbb{Z}[i]$ such that $\beta=\gamma \cdot \alpha$.

Definition. An element $\delta \in \mathbb{Z}[i]$ is called a a greatest common divisor of α and β, if δ is an element in $\mathbb{Z}[i]$ of maximal norm such that $\delta \mid \alpha$ and $\delta \mid \beta$.

Note that if ε is a unit in $\mathbb{Z}[i]$ and δ a greatest common divisor of α and β then $\varepsilon \cdot \delta$ is also a greatest common divisor. A greatest common divisor can be computed with the Euclidian algorithm using the previous theorem. See the example below. The algorithm also yields two Gaussian integers ξ and η such that a chosen greatest common divisor δ can be written as $\delta=\xi \alpha+\eta \beta$. Conversely to the above, any two $\operatorname{gcd}(\alpha, \beta)$ are obtained by multiplying with a unit. See problem sheet.
Let $\alpha=1-8 i$ and $\beta=5+5 i$. So $\mathrm{N}(\alpha)=65$ and $\mathrm{N}(\beta)=50$. If $\kappa=-1-i$, then $\rho=1+2 i$ with $\mathrm{N}(\rho)=5<\mathrm{N}(\beta)$.

$$
\alpha=1-8 i=(-1-i) \cdot \beta+(1+2 i) .
$$

In the next step we try to divide β by $\rho=1+2 i$. But actually β lies on the lattice $\rho \mathbb{Z}[i]$. We find

$$
\beta=(3-i) \cdot \rho+0
$$

Hence $1+2 i$ is a greatest common divisor of α and β.
Definition. An element $\pi \in \mathbb{Z}[i]$ is called a Gaussian prime if $\mathrm{N}(\pi)>1$ and the following holds: if, for any α and $\beta \in \mathbb{Z}[i]$ such that π divides $\alpha \cdot \beta$, then π divides α or β.

Lemma 5.3. Let $0 \neq \pi \in \mathbb{Z}[i]$. The following are equivalent

- π is a Gaussian prime
- If, for some α and $\beta \in \mathbb{Z}[i]$ we have $\pi=\alpha \cdot \beta$, then α or β is a unit.

Proof. $\Downarrow:$ If $\pi=\alpha \cdot \beta$, then $\pi \mid \alpha \cdot \beta$. Without loss of generality, we may assume that there is $\gamma \in \mathbb{Z}[i]$ such that $\alpha=\pi \gamma$. Then $\pi=\pi \gamma \beta$, so $\gamma \beta=1$ shows that β is a unit and α is not a unit because π is not.
\Uparrow : Suppose π divides $\alpha \cdot \beta$. Let δ be a $\operatorname{gcd}(\alpha, \pi)$. So there is a γ such that $\pi=\gamma \delta$. By assumption, either δ or γ is a unit. If γ is a unit then $\pi \gamma^{-1}=\delta$ divides α. So π divides α. Otherwise δ is a unit. As $\delta=\xi \alpha+\eta \beta$ for some $\xi, \eta \in \mathbb{Z}[i]$, we get that π divides $\delta \beta$ and hence β.

Lemma 5.4. If $\pi \in \mathbb{Z}[i]$ is such that $\mathrm{N}(\pi)$ is a prime number then π is a Gaussian prime

Proof. If $\pi=\alpha \cdot \beta$ then $\mathrm{N}(\alpha) \cdot \mathrm{N}(\beta)=\mathrm{N}(\pi)$. So either $\mathrm{N}(\alpha)=1$ or $\mathrm{N}(\beta)=1$.
Example. $1+i$ is a Gaussian prime of norm 2. Also $1+2 i$ of norm 5 is a Gaussian prime. So $5=(1+2 i) \cdot(1-2 i)$ is not a Gaussian prime. But $q=3$ or $q=7$ are Gaussian primes:

Lemma 5.5. Let q be a prime number with $q \equiv 3(\bmod 4)$. Then $q \in \mathbb{Z}[i]$ is a Gaussian prime.
Proof. If $q=\alpha \cdot \beta$ for $\alpha=a+b i$ and $\beta \in \mathbb{Z}[i]$, then $q^{2}=\mathrm{N}(q)=\mathrm{N}(\alpha) \cdot \mathrm{N}(\beta)$. But $\mathrm{N}(\alpha)=$ $a^{2}+b^{2}=q \equiv 3(\bmod 4)$ is not possible for $a, b \in \mathbb{Z}$. So either $\mathrm{N}(\alpha)=1$ or $\mathrm{N}(\beta)=1$.

Lemma 5.6. Let p be a prime number with $p \equiv 1(\bmod 4)$. Then there exists a Gaussian prime π such that $p=\pi \cdot \bar{\pi}$.

Proof. By quadratic reciprocity, $p \equiv 1(\bmod 4)$ implies $\left(\frac{-1}{p}\right)=+1$. So there is a $c \in \mathbb{Z}$ such that $c^{2} \equiv-1(\bmod p)$. Hence p divides $(c-i)(c+i)$ in $\mathbb{Z}[i]$. But p does not divide $c+i$ or $c-i$. Therefore p is not a Gaussian prime. Hence there is $\alpha \cdot \beta$, both non-units, with $p=\alpha \cdot \beta$. By $p^{2}=\mathrm{N}(p)=\mathrm{N}(\alpha) \cdot \mathrm{N}(\beta)$, we must have $\mathrm{N}(\alpha)=p$ and hence $\pi=\alpha$ is a Gaussian prime. And $p=\mathrm{N}(\pi)=\pi \bar{\pi}$.

Proposition 5.7. Up to associates, the Gaussian primes are the following :

- $1+i$ is a Gaussian prime of norm 2.
- For each prime number $p \equiv 1(\bmod 4)$ there are exactly two Gaussian primes π and $\bar{\pi}$ of norm p.
- Each prime number $q \equiv 3(\bmod 4)$ is a Gaussian prime of norm q^{2}.

Proof. All in the list are Gaussian primes. Let α be a Gaussian prime. Then there is a prime p dividing $\mathrm{N}(\alpha)$. In the above list we find a Gaussian prime π dividing p, so $\pi|p| \alpha \bar{\alpha}$. So either π or the Gaussian prime $\bar{\pi}$ divides α, and hence is associate to it. So α is in the above list.

A complete set of non-associate Gaussian primes \mathcal{P}_{i} is a set of Gaussian primes such that for each Gaussian prime π there is exactly one of the four associates in \mathcal{P}_{i}.

Theorem 5.8. Let \mathcal{P}_{i} be a complete set of non-associate Gaussian primes. Every $0 \neq \alpha \in \mathbb{Z}[i]$ can be written as

$$
\alpha=i^{n} \cdot \prod_{\pi \in \mathcal{P}_{i}} \pi^{a_{\pi}}
$$

for some $0 \leqslant n<4$ and $a_{\pi} \geqslant 0$. All but a finite number of a_{π} are zero and $a_{\pi}=\operatorname{ord}_{\pi}(\alpha)$ is the highest power of π dividing α.

Proof. Existence is proved by induction on $\mathrm{N}(\alpha)$. If $\mathrm{N}(\alpha)=1$ then $\alpha=i^{n}$. If $\mathrm{N}(\alpha)>1$, then there is a Gaussian prime π dividing α, so $\alpha=\pi \beta$ for some $\beta \in \mathbb{Z}[i]$. By induction hypothesis β has a factorisation, then so does α.
Suppose now α had two distinct factorisation of the above form

$$
\alpha=i^{n} \cdot \prod_{k} \pi_{k}^{a_{k}}=i^{n^{\prime}} \cdot \prod_{j} \pi_{j}^{b_{j}}
$$

for some $0 \leqslant n, n^{\prime}<4, a_{k} \geqslant 0$ and $b_{j} \geqslant 0$. If a Gaussian prime from our set of non-associate Gaussian primes appears on both sides of this equation, we may divide by it. Therefore, we may assume that each Gaussian prime only appears on one side, i.e. $a_{k} \cdot b_{k}=0$. Suppose there is still a Gaussian prime π_{k} dividing the left-hand side, i.e. $a_{k}>0$ and $b_{k}=0$. So π_{k} divides the right-hand side and hence divides one of its factors. It cannot divide $i^{n^{\prime}}$ as π_{k} is not a unit. So it divides a $\pi_{j}^{b_{j}}$ with $b_{j}>0$, so $k \neq j$. So it divides π_{j}, so there is a γ such that $\gamma \cdot \pi_{k}=\pi_{j}$. Since π_{j} is a Gaussian prime, either γ or π_{k} is a unit. Hence π_{k} and π_{j} are associate. Contradiction.
Hence, after this simplification each side is a power of i. So the factorisation of α is unique.

Pythagorean triples

In this section we'll apply the arithmetic of $\mathbb{Z}[i]$ to solve a classical problem: finding all Pythagorean Triples.
Definition. A Pythagorean triple is a triple (x, y, z) where $x, y, z \in \mathbb{N}$ and $x^{2}+y^{2}=z^{2}$.
Examples: $3^{2}+4^{2}=5^{2}$ and $5^{2}+12^{2}=13^{2}$, so $(3,4,5)$ and $(5,12,13)$ are Pythagorean triples. How do we find all Pythagorean triples? Note that $x^{2}+y^{2}=\mathrm{N}(x+i y)$, so Pythagorean triples come from Gaussian integers of square norm. The easiest way to get a Gaussian integer of square norm is to take the square of a Gaussian integer: $\alpha=(2+i)^{2}=3+4 i$ has norm $3^{2}+4^{2}=\left(2^{2}+1^{2}\right)^{2}=5^{2}$, and $\beta=(3+2 i)^{2}=5+12 i$ has norm $5^{2}+12^{2}=\left(3^{2}+2^{2}\right)^{2}=13^{2}$. More generally, taking the norm of $\alpha=(a+b i)^{2}=\left(a^{2}-b^{2}\right)+2 a b i$ gives

$$
\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}=\left(a^{2}+b^{2}\right)^{2}
$$

so

$$
\left(a^{2}-b^{2}, 2 a b, a^{2}+b^{2}\right) \quad \text { is a Pythagorean triple }
$$

whenever $a>b>0$. Our aim is to show that these are essentially all Pythagorean triples. Note that if (x, y, z) is a Pythagorean triple then so is $(k x, k y, k z)$ for all $k \geqslant 1$, so we may as well only look for primitive Pythagorean triples with $\operatorname{gcd}(x, y, z)=1$, or equivalently $\operatorname{gcd}(x, y)=\operatorname{gcd}(x, z)=\operatorname{gcd}(y, z)=1$.
Secondly, in a primitive Pythagorean triple (x, y, z) we cannot have both x and y odd, since that would imply $z^{2}=x^{2}+y^{2} \equiv 1+1=2(\bmod 4)$ which is impossible. So we might as well assume that x is odd and y is even (interchanging x and y if necessary).

Theorem 5.9. Let (x, y, z) be a primitive Pythagorean triple with y even. Then there exist coprime integers a, b with $a>b>0$ and $a \not \equiv b(\bmod 2)$ such that

$$
x=a^{2}-b^{2}, \quad y=2 a b, \quad z=a^{2}+b^{2} .
$$

Proof. Let $\alpha=x+y i \in \mathbb{Z}[i]$, so $\mathrm{N}(\alpha)=x^{2}+y^{2}=z^{2}$. The idea is to show that α is a square in $\mathbb{Z}[i]$; writing $\alpha=(a+b i)^{2}$ then gives the result.
We have

$$
z^{2}=\mathrm{N}(\alpha)=\alpha \cdot \bar{\alpha}=(x+y i)(x-y i)
$$

We next show that the factors $x+y i$ and $x-y i$ are coprime in $\mathbb{Z}[i]$. If a Gaussian prime π divides both $x+y i$ and $x-y i$ then it divides $2 x=(x+y i)+(x-i y)$ and also divides $2 y i=(x+y i)-(x-i y)$; since x and y are coprime it then divides 2 , so $\pi=1+i$ (times a unit). But $1+i$ does not divide $x+y i$, since $x \not \equiv y(\bmod 2)$.
Hence $x+y i$ and $x-y i$ are coprime in $\mathbb{Z}[i]$. As their product is a square, unique factorisation in $\mathbb{Z}[i]$ implies that each is a square times a unit; using $-1=i^{2}$, each must be either a square or i times a square.
Finally, $x+y i=(a+b i)^{2}$ leads to $x=a^{2}-b^{2}$ and $y=2 a b$, while $x+y i=i(a+b i)^{2}$ leads to $x=-2 a b$ and $y=a^{2}-b^{2}$. Since $x, y>0$ and x is odd we must be in the first case with $a>b>0$, giving the result as stated. The conditions that $\operatorname{gcd}(a, b)=1$ and $a \not \equiv b(\bmod 2)$ both follow from $\operatorname{gcd}(x, y)=1$.

Sums of two squares

In this lecture we will investigate the following related questions:
(i). For which $n \in \mathbb{N}$ can we solve $n=x^{2}+y^{2}$ with $x, y \in \mathbb{Z}$?
(ii). Given $n \in \mathbb{N}$, how many solutions does the equation $n=x^{2}+y^{2}$ have?

These questions can be rephrased in terms of Gaussian integers $\alpha=x+y i$, since $\mathrm{N}(\alpha)=$ $\mathrm{N}(x+y i)=x^{2}+y^{2}:$
(i). Which $n \in \mathbb{N}$ are norms of Gaussian integers $\alpha \in \mathbb{Z}[i]$?
(ii). Given $n \in \mathbb{N}$, how many Gaussian integers $\alpha \in \mathbb{Z}[i]$ have norm n ?

Lemma 5.10. Any prime $p \equiv 1(\bmod 4)$ can be written as a sum of two squares.
Proof. By lemma 5.6 we have $p=\pi \bar{\pi}$ for some Gaussian prime $\pi=x+y i$. Then $p=$ $x^{2}+y^{2}$.

Theorem 5.11. Let $n=a \cdot b^{2}$ be an integer with a square-free. Then n can be written as a sum of two squares if and only if no prime $q \equiv 3(\bmod 4)$ divides a.

Proof. \Leftarrow : For every prime p dividing a, there is a Gaussian prime π_{p} of norm p by Proposition 5.7. Put $x+i y=b \cdot \prod_{p \mid a} \pi_{p}$. Then $x^{2}+y^{2}=n$.
\Rightarrow : Let $n=x^{2}+y^{2}=(x+i y)(x-i y)$. If a prime $q \equiv 3(\bmod 4)$ divides n then, as it is a Gaussian prime by Lemma 5.5, it divides $x+i y$ or $x-i y$. So q divides x and y, hence q^{2} divides n. The statement can now be proved by induction on b.

We will use L-functions to solve the second question, making further use of the Dirichlet character χ_{1} introduced in Chapter 4:

$$
\chi_{1}(n)=\left\{\begin{array}{lll}
+1 & \text { if } n \equiv 1 \quad(\bmod 4) \\
-1 & \text { if } n \equiv 3 \quad(\bmod 4) \\
0 & \text { if } n \text { is even }
\end{array}\right.
$$

The connection with $\mathbb{Z}[i]$ can be seen if we recall how ordinary prime numbers p factorise in $\mathbb{Z}[i]$, which depends on p modulo 4 .
Theorem 5.12. For each $n \in \mathbb{N}$, the number of integral solutions x, y to the equation $n=$ $x^{2}+y^{2}$ is given by $4 \sum_{d \mid n} \chi_{1}(d)$. The number of solutions with $x>0$ and $y \geqslant 0$ is $\sum_{d \mid n} \chi_{1}(d)$.

Remark. To each solution (x, y) corresponding to $\alpha=x+y i \in \mathbb{Z}[i]$, we find three more corresponding to the associates $i \alpha,-\alpha$ and $-i \alpha$, namely $(-y, x),(-x,-y),(y,-x)$. Also, if $x \neq y$ then there are four more solutions coming from $\bar{\alpha}$ and its associates, obtained by interchanging x and y.
Examples: If n is 9 , then $\sum_{d \mid 9} \chi_{1}(d)=\chi_{1}(1)+\chi_{1}(3)+\chi_{1}(9)=1-1+1=1$, and the single solution with $x>0$ and $y \geqslant 0$ is $(x, y)=(3,0)$.
If $n=25$, then $\sum_{d \mid 25} \chi(d)=\chi_{1}(1)+\chi_{1}(5)+\chi_{1}(25)=1+1+1=3$, and solutions are $(x, y)=(3,4),(4,3),(5,0)$.
Suppose now that $n=p$ is a prime number. Then $\sum_{d \mid p} \chi_{1}(d)=\chi_{1}(1)+\chi_{1}(p)=1+\chi_{1}(p)$, which equals 1 when $p=2$ (solution: (1,1)); equals 0 when $p \equiv 3(\bmod 4)$ (no solutions); and equals 2 when $p \equiv 1(\bmod 4)$ (two solutions, differing only in the order of x and y, for example $61=5^{2}+6^{2}=6^{2}+5^{2}$ only).
Example. Find all ways of writing $n=130$ as a sum of two squares.
Proof of Theorem 5.12. Let a_{n} be the number of solutions to $n=x^{2}+y^{2}$ with $x, y \in \mathbb{Z}$, which is the number of elements $\alpha=x+y i \in \mathbb{Z}[i]$ with norm n. Then

$$
\sum_{n \geqslant 1} \frac{a_{n}}{n^{s}}=\sum_{0 \neq \alpha \in \mathbb{Z}[i]} \frac{1}{\mathrm{~N}(\alpha)^{s}} .
$$

By unique factorisation in $\mathbb{Z}[i]$, the latter sum has an Euler product expansion:

$$
\sum_{0 \neq \alpha \in \mathbb{Z}[i]} \frac{1}{\mathrm{~N}(\alpha)^{s}}=4 \prod_{\pi \in \mathcal{P}_{i}} \frac{1}{1-\mathrm{N}(\pi)^{-s}},
$$

where the product is over all prime elements π of $\mathbb{Z}[i]$, choosing one from each set of four associate primes, and the factor of 4 allows for the unit factor in the factorisation of each α. Now we look at the factors for each type of Gaussian prime in turn:
(i). $\pi=1+i$ with $\mathrm{N}(\pi)=2$ contributes a factor $1 /\left(1-2^{-s}\right)$.
(ii). each π with $\mathrm{N}(\pi)=p \equiv 1(\bmod 4)$ contributes a factor $1 /\left(1-p^{-s}\right)$, and there are two such Gaussian primes for each prime $p \equiv 1(\bmod 4)$.
(iii). each $\pi=q \equiv 3(\bmod 4)$ with $\mathrm{N}(\pi)=q^{2}$ contributes a factor of $1 /\left(1-q^{-2 s}\right)$.

Hence our product is

$$
\prod_{\pi \in \mathcal{P}_{i}} \frac{1}{1-\mathrm{N}(\pi)^{-s}}=\left(\frac{1}{1-2^{-s}}\right)\left(\prod_{p \equiv 1 \bmod 4} \frac{1}{\left(1-p^{-s}\right)^{2}}\right)\left(\prod_{q \equiv 3 \bmod 4} \frac{1}{1-q^{-2 s}}\right)=\zeta(s) \cdot L\left(s, \chi_{1}\right)
$$

using an exercise from problem sheet 4 at the end. So we have

$$
\frac{1}{4} \sum_{n \geqslant 1} \frac{a_{n}}{n^{s}}=\zeta(s) \cdot L\left(s, \chi_{1}\right)=\left(\sum_{m \geqslant 1} \frac{1}{m^{s}}\right)\left(\sum_{d \geqslant 1} \frac{\chi(d)}{d^{s}}\right) .
$$

Comparing coefficients:

$$
\frac{1}{4} a_{n}=\sum_{m d=n} \chi_{1}(d)=\sum_{d \mid n} \chi_{1}(d)
$$

Remark. The function

$$
\zeta(s, \mathbb{Z}[i])=\frac{1}{4} \sum_{0 \neq \alpha \in \mathbb{Z}[i]} \frac{1}{\mathrm{~N}(\alpha)^{s}}
$$

is the zeta function of $\mathbb{Z}[i]$; it is analogous to the Riemann zeta function

$$
\zeta(s)=\frac{1}{2} \sum_{0 \neq n \in \mathbb{Z}} \frac{1}{|n|^{s}} .
$$

Remark. Since $a_{n} \geqslant 0$, the formula we proved has the consequence that for each $n \in \mathbb{N}$, the number of divisors of n which are congruent to 1 modulo 4 is greater or equal the number of divisors which are congruent to 3 modulo 4 .

Sums of more squares

In the previous section, we found a formula for the number of integral solutions to $n=x^{2}+y^{2}$ for any given $n \in \mathbb{N}$. In particular this equation has a solution whenever $n=p \equiv 1(\bmod 4)$. Now we know that not every integer is a sum of two squares, can we do any better by taking sums of three squares? Now $3=1^{2}+1^{2}+1^{2}$ and $6=1^{2}+1^{2}+2^{2}$, but 7 is not a sum of three squares. In fact, no integer $n \equiv 7(\bmod 8)$ is a sum of three squares, since all squares are congruent to 0,1 or 4 modulo 8 .
Instead of answering the question "exactly which positive integers are sums of three squares" (which turns out to be quite difficult) we'll move on to four squares, where there is a classical result.

Theorem 5.13 (Lagrange, 1770). Every positive integer is a sum of four squares.
In other words, for every $n \in \mathbb{N}$ there exist $x, y, z, w \in \mathbb{Z}$ (including zero) such that $n=$ $x^{2}+y^{2}+z^{2}+w^{2}$.

Theorem 5.14 (Jacobi). Let $n \geqslant 1$ be an integer. Let A_{n} be the number of solutions $x, y, z, w \in$ \mathbb{Z} to the equation $x^{2}+y^{2}+z^{2}+w^{2}=n$. Then

$$
A_{n}= \begin{cases}8 \sum_{d \mid n} d & \text { if } n \text { is odd and } \\ 24 \sum_{2 \nmid d \mid n} d & \text { if } n \text { is even } .\end{cases}
$$

