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Abstract

In this paper we present a continuum mathematical model of vascular tumour growth

which is based on a multiphase framework in which the tissue is decomposed into four

distinct phases and the principles of conservation of mass and momentum are applied to the

normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of

a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal

influence on the other phases. Two-dimensional computational simulations are carried out

on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and

the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the

need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A

hybrid finite volume/finite element algorithm is used to discretise the continuum model: the

application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance

equations and a finite element scheme with a stable element pair to the generalised Stokes

equations derived from momentum balance, leads to a robust algorithm which does not use

any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite

element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the

source terms of the mathematical model.

Numerical simulations reveal that this four-phase model reproduces the characteristic

pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-

vascularised proliferating tumour cells. The simulations consistently predict linear tumour

growth rates. The dependence of both the speed with which the tumour grows and the

irregularity of the invading tumour front on the model parameters are investigated.

Keywords: cancer modelling; partial differential equations; continuum mechanics; nu-

merical simulations; nonlinear coupling



1 Introduction

Vascular tumour growth is a complex process, characterised by rapid cell proliferation, angio-

genesis and vascular adaptation [27]. Increased rates of cell proliferation are associated with

mutations that promote cell division and/or inhibit natural cell death while angiogenesis and

the co-option of pre-existing blood vessels are stimulated by the production of angiogenic

factors such as vascular endothelial growth factor (VEGF) that are produced by the tumour

cells, often in response to hypoxia. The new and co-opted blood vessels supply the tumour

with the nutrients it needs to thrive and expand [53]. Additionally, the vasculature pro-

vides tumour fragments that break away from the primary tumour with a transport network

to other parts of the body where, if conditions are favourable, the tumour fragments may

establish themselves as secondary tumours or metastases [26].

The spatial composition and growth rate of vascular tumours can vary markedly: some

remain approximately spherical, developing a central necrotic core surrounded by a region

of proliferating cells; others are irregularly shaped, with proliferating tumour cells in close

proximity to densely packed blood vessels and extensive necrosis in avascular regions [22].

Developing and simulating mechanistic models that can explain and reproduce such spatio-

temporal heterogeneity are major goals of mathematical and computational modellers and

present serious technical challenges which this work seeks to address.

In order to place our work in context, we start by reviewing the relevant theoretical

literature. Since the field is expanding rapidly, it is impossible in limited space to describe

adequately all of the key papers. Therefore, for more comprehensive coverage of the literature

describing the mathematical and computational modelling of early avascular and vascular

tumour growth, we direct the interested reader to the excellent reviews by Araujo and

McElwain [5], Roose et al. [75], Tracqui [82], Lowengrub et al. [57] and Preziosi [72] (and

references therein).

Most models of vascular tumour growth are based upon simpler models of avascular tu-

mour growth. Theoretical investigations focussed initially on developing models of avascular

tumour growth for several reasons: fewer processes are involved, data from in vitro experi-

ments is readily available and the tumours are often geometrically “simple”, growing either

as radially-symmetric aggregates in 3D or as circular monolayers in 2D [28, 51]. Further,

what is typically of interest is an equilibrium state for which cell proliferation in nutrient-rich

regions balances cell death in nutrient-starved regions. The resulting models of avascular

tumour growth can be decomposed into two categories: continuum models comprising sys-

tems of partial differential equations [37, 38], and discrete models that treat each cell as

a distinct entity which interacts with its neighbours [23, 60]. Increasingly, the continuum

and discrete approaches are combined to give hybrid models which couple processes acting

at different spatial scales. For example, angiogenesis (the formation of new blood vessels),

which must occur if the tumour is to become vascularised, is often modelled as a discrete
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process in which individual endothelial cells move in response to chemical gradients which

are specified by coupled reaction-diffusion equations (see, for example, [19, 59, 67, 70]). An

excellent review of these approaches can be found in [75].

The earliest spatially-resolved models of vascular tumour growth were formulated as sys-

tems of coupled reaction-advection-diffusion equations. For example, Orme and Chaplain’s

[64] model of the evolution of tumour cell and capillary densities included homogeneous diffu-

sion of both species, taxis of tumour cells up a gradient of capillary vessels and source terms

representing both proliferation and death of tumour cells and blood vessels. The accompa-

nying mathematical and numerical analysis focussed on one-dimensional, radially-symmetric

growth and showed that the system could generate a well-developed tumour, with a central

necrotic core surrounded by an annulus containing blood vessels and proliferating tumour

cells.

In [12], Breward, Byrne and Lewis used a multiphase approach to derive a reaction-

advection-diffusion model to describe the co-evolution of live and dead tumour cells in a

micro-region surrounding a blood vessel which acts as a fixed source of oxygen and is lo-

calised on the boundary of the domain. The velocity field driving cell movement was obtained

by assuming that the cells’ velocity was proportional to the local pressure gradient and ap-

pealing to Darcy’s Law. In later work, Jackson and Byrne [47] extended this multicomponent

reaction-advection-diffusion framework to investigate the impact of the vasculature on tu-

mour drug resistance.

Hogea et al. [46] explicitly incorporated blood vessels into a multicomponent reaction-

advection-diffusion model, which relates the behaviour of healthy cells, tumour cells and

capillaries to the supply of nutrient and angiogenic factor. Their work also exemplifies a

standard procedure, in which the computational domain is divided into distinct regions (here,

inside and outside the tumour), each characterised by a different system of equations, and

the interfaces between them tracked explicitly. In [46] the tumour boundary is tracked using

a level set method. Macklin et al. employed a similar reaction-advection-diffusion approach

to develop a hybrid model [59] in which the transport of chemical species is represented

using a continuum model, and coupled with a discrete simulation of the growth of new blood

vessels. In this model, the cells are assumed to move in response to the local pressure gradient

(Darcy’s law) and, via haptotaxis, the spatial gradient of a non-diffusible chemical such as

laminin or fibronectin which is bound to the extracellular tissue matrix. Hybrid approaches of

this type are becoming increasingly popular because they allow different biological processes

to be represented at scales that are appropriate to a particular simulation, e.g. cells may be

represented as individual entities at one scale while diffusible species are treated as continua.

The hybrid/multiscale nature of [59] derives from the treatment of the vasculature as a

network of discrete branches, rather than as a separate phase in the continuum framework.

A similar hybrid structure was proposed by Zheng et al. [86] but the velocity field for all

of their cells was governed by a Darcy-Stokes law and the computation was carried out by
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combining an adaptive finite element approximation with a level set approach for tracking

the tumour boundary.

In separate work, Alarcón, Byrne and Maini have developed an alternative multiscale

model by embedding a vascular network within a discrete population of healthy and cancer-

ous cells, and used their model to study the effects of blood flow and vascular remodelling on

the evolution of the two cell populations [1, 2, 3]. The model was extended in [67], to account

for changes in the morphology of the vascular network associated with angiogenesis and ves-

sel regression, and in [71], to investigate three-dimensional behaviour and boundary effects.

More recent work involves using the model to study the efficacy of treatment strategies

which combine standard chemotherapeutic approaches with novel ones. The new treatments

involve genetically engineering macrophages to deliver cytotoxic drugs to hypoxic tumour

regions and exploit the tendency of macrophages to localise in such low oxygen regions [68].

Gevertz and Torquato [35, 36] proposed a similar hybrid structure but used a biochemical

model to account for subcellular signalling within the endothelial cells that comprise the

blood vessels. A similar framework was implemented by Billy et al. [11], although they

modelled the endothelial cells with a reaction-advection-diffusion equation.

A series of papers [9, 20, 29, 85] chart the development of an alternative approach to

multicomponent modelling of vascular tumour growth. Here the constitutive laws, used to

define the mass fluxes caused by mechanical interactions between the cells and the velocities

of each component, are derived from thermodynamic principles applied to the free energy

of each component. Models of this type treat tumour cells, host cells and extracellular

water as separate components. The tumour boundary is not explicitly tracked: instead,

Cahn-Hilliard-type equations provide a diffuse interface which must be captured on the

computational mesh. A hybrid version of this approach has also been developed, in which

the reaction-advection-diffusion equations governing the behaviour of the cells and extracel-

lular fluid are coupled to a discrete description of the evolving vascular network [29, 30].

This work also makes a significant contribution in terms of computational modelling. The

majority of computational simulations of continuum representations of tumour growth are

carried out using simple finite difference schemes on uniform, structured, meshes. In order

to carry out two- and three-dimensional simulations in which the diffuse interface is accu-

rately resolved, adaptive meshing and multigrid algorithms have been implemented [20, 84]

to provide efficient simulation software capable of modelling large-scale problems.

As noted in [75], the models mentioned above typically assume that all components or

phases move with the same velocity. In order to relax this constraint, force balances can

be applied to each phase, with inter-phase momentum transfer taken into consideration and

appropriate constitutive laws used to characterise the material properties of each phase.

Such multiphase models provide the foundations for our work, which builds on the models of

avascular and vascular tumour growth proposed by Byrne et al. [15] and Breward, Byrne and

Lewis [13, 14]. The original two-phase model of avascular tumour growth [13, 15] decomposes
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the tissue into a tumour cell phase (treated as a viscous liquid) and an extracellular fluid

phase (an inviscid liquid) and is derived by appealing to the principles of conservation of mass

and momentum for incompressible, inertialess fluids. The two phases interact via exchange

of mass, through oxygen-regulated cell birth and death, and exchanged momentum, through

inter-phase drag. In [14], the reaction-diffusion equation for oxygen is superseded by a third

phase for the blood vessels so that the effects of angiogenesis and vessel occlusion can be

incorporated. Despite restricting attention to one-dimensional mathematical analysis and

numerical simulations, the latter presented on uniform meshes which expand as the tumour

grows, the authors demonstrated that these simple multiphase models can reproduce many

of the characteristic features associated with tumour growth, including the development of

a necrotic core behind an outward-moving rim of proliferating tumour cells.

Similar principles have been used to develop multiphase models to study tumour capsule

formation [48, 58], the impact of external mechanical loading on avascular tumour growth

[17] and the development of tumour cords and fibrosis [74, 81], cell migration due to random

motion and chemotaxis [16] and liver cell aggregation [40]. For example, Roose et al. [76]

developed a two-phase model to analyse the stresses generated by spheroid growth when

the fluid velocity is governed by Darcy’s Law and the tissue stresses described by a linear

poroelastic model. Dembo and coauthors have used similar models to study cell division

[42], neutrophil migration and phagocytosis [44, 45] and cell motility [43]. Other multiphase

models, such as those of Lemon et al. [54, 55], have been specialised for applications in

tissue engineering. In such models a fixed, solid, phase is introduced to represent the porous

scaffold through which extracellular fluid and cells can flow. Osborne, O’Dea and coauthors

[62, 63, 65] have extended these ideas, in order to study tissue growth in a bioreactor through

which viscous fluids are driven by an externally-imposed pressure gradient. In a model of

tissue growth, Araujo and McElwain [6, 7] view the tissue as a linear-elastic material which

interacts with an inviscid fluid, and investigate the genesis of residual stresses in tissue.

Ambrosi and Preziosi [4] place these models in a more general framework which allows for

viscoelastic behaviour of the phases and incorporates the effects of cell adhesion.

The model presented in this paper extends the work of Breward, Byrne and Lewis [13, 14]

by distinguishing between the blood vessels that perfuse the tissue and the diffusible nutri-

ents that they supply. In this way, the vasculature can influence tissue at a distance from

the vessel. We also distinguish between the healthy and tumour cells, allowing interactions

between the growing tumour and the healthy tissue (in most existing multiphase models,

interactions with the normal tissue surrounding the tumour are neglected). A new computa-

tional approach, based on the finite element and finite volume methods, is designed, that can

simulate tumour growth in two dimensions on arbitrary computational domains, and that is

readily extended to three dimensions. The numerical method is inherently mass-conservative

and uses no artificial stabilisation techniques. It differs from the two-dimensional compu-

tational approach of Osborne and Whiteley [66] in both its treatment of the mass balance
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equations and in allowing regions where the phase volume fraction of tumour cells is zero,

including tissue “outside” the tumour. The interface between the cancerous and healthy

tissue is captured in the form of a slightly diffuse moving front rather than a sharp interface

which must be tracked explicitly. Osborne and Whiteley [66] treat this interface as a moving

boundary of their computational domain when simulating avascular tumour growth, a po-

tential difficulty for vascular tumours where the boundary shape is typically less constrained.

The inclusion of healthy cells in the underlying mathematical model also allows more control

of the properties of the surrounding tissue.

The remainder of the paper is organised as follows. In Section 2 we present our four-

phase model for healthy cells, tumour cells, blood vessels and extracellular material. The

numerical algorithm used to approximate the model (a hybrid finite volume/finite element

approach on unstructured triangular meshes in two space dimensions) is outlined in Section

3 and numerical results presented in Section 4 illustrate the behaviour of the model and

the versatility of the numerical method. We show that the model readily reproduces the

characteristic pattern of a necrotic core developing behind a proliferating rim and investigate

the dependence of the tumour growth on various model parameters. The paper concludes in

Section 5 with a discussion of our results and suggestions for further research.

2 Model Development

In this section, we introduce a multiphase model of vascular tumour growth. Following

[13, 14] we assume that the tissue comprises four interacting phases, for normal/healthy

cells, cancer cells, blood vessels and extracellular material. We denote their volume fractions,

velocities and pressures respectively by θi, ~ui and pi (i = 1, . . . , 4) and derive equations for

their evolution by applying to each phase the principles of mass and momentum balance with

appropriate constitutive assumptions. We also consider a single, diffusible species (c), such

as oxygen or glucose, which is supplied by the blood vessels and acts as a source of nutrients

for the normal and cancerous cells. We denote by Ω the domain in which the equations hold

and by Γ its boundary.

2.1 The Mass Balance Equations

All phases are assumed to have the same (constant) density, so mass conservation supplies

the following partial differential equations for the volume fractions θi:

∂θi

∂t
+ ~∇ · (θi ~ui) = qi , i = 1, . . . , Np, (1)

in which Np = 4 is the number of phases. In Equation (1), ~ui are phase velocities and

qi are source/sink terms representing the mass transfer rates between the different phases

(i = 1, . . . , Np) that is associated with processes such as cell birth and death, angiogenesis
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and vessel occlusion (cf. [14]). Following [14], we make the further assumption that the tissue

has no voids so that
Np∑

i=1

θi = 1 . (2)

Equation (2) provides an additional constraint on the system. As we explain below, in

practice, the no-voids condition is used to determine the pressure in the extracellular envi-

ronment.

We also require that total mass is conserved so that any volume lost from one phase, via

a sink term, will be balanced by an equal volume increase in another phase (and vice versa).

Under this assumption we have that

Np∑

i=1

qi = 0 . (3)

In the subsections that follow, we introduce the source and sink terms associated with each

phase.

2.1.1 The Normal and Cancer Cell Phases (θ1, θ2)

We assume that the volume fractions of the healthy and tumour cells (θ1, θ2, respectively)

increase through cell proliferation and decrease due to cell death, with extracellular material

(θ4) supplying the material needed to drive cell growth and proliferation, and both rates

being regulated by the local nutrient concentration. The proliferation rates are assumed to

be monotonically increasing and saturating functions of c, increasing from zero when c = 0,

to a finite maximum k1,i in the limit as c → ∞. The cell death rate for each phase is assumed

to be proportional to the volume fraction of that phase and to decrease monotonically with

c from a maximum value of k2,icc1/cc2 when c = 0 (i.e. maximal necrosis under hypoxia) to a

minimum or basal rate of k2,i as c → ∞. Combining the above assumptions we obtain mass

balance source terms for the healthy and cancer cells of the form

q1 = k1,1 θ1 θ4

(
c

cp + c

)

︸ ︷︷ ︸

cell birth

− k2,1 θ1

(
cc1 + c

cc2 + c

)

︸ ︷︷ ︸

cell death

q2 = k1,2 θ2 θ4

(
c

cp + c

)

︸ ︷︷ ︸

cell birth

− k2,2 θ2

(
cc1 + c

cc2 + c

)

︸ ︷︷ ︸

cell death

. (4)

We remark that the above expressions for q1 and q2 include four rate constants (k1,1, k2,1,

k1,2, k2,2) and three nutrient concentration parameters (cp, cc1, cc2), two of which (cp, cc2)

represent values at which the relevant rates are half-maximal. In Equations (4), the only

distinction made between healthy cells and tumour cells is in the magnitudes of the rate

constants, ki,j. Since tumour cells typically proliferate more rapidly and are less likely to die

under nutrient-poor conditions than normal cells, we suppose that k1,2 ≥ k1,1 and k2,2 ≤ k2,1.
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In order to ensure that the death rate increases as the nutrient concentration decreases, we

assume further that cc1 > cc2. Finally, for simplicity, we have assumed that the threshold

nutrient concentrations, cp, cc1 and cc2, are identical for normal and cancer cells. Sketches

showing how the birth and death rates depend on the nutrient concentration c are presented

in Figure 1.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

c/
(c

p
+

c)

Birth rate is half maximum at c = cp

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

c
(c

c
1
+

c)
/
(c

c
2
+

c)

Baseline apoptosis rate

Necrosis rate is half maximum at c = cc2

(a) (b)

Figure 1: Illustrative sketches showing the dependence of (a) cell birth rate and (b) cell death

rate on the nutrient concentration, c. Parameter values: cp = 0.25, cc1 = 0.2, cc2 = 0.1.

Scaling by the constant multipliers k1,i and k2,i is ignored here.

2.1.2 Blood Vessel Phase (θ3)

The volume fraction of blood vessels increases through angiogenesis and decreases due to

occlusion. Accordingly we suppose that vessels are removed or pruned from the vasculature if

the pressure exerted on them by the surrounding cells (θ1p1 +θ2p2) exceeds the critical value

pcrit (in practice, the vessels first become occluded, then their blood flow declines, reducing

the wall shear stress that they experience and ultimately leading to their regression). Hence

the pruned vessel mass acts as a source in the mass balance for the extracellular material

(see Equation (7). The rate of new vessel formation is assumed to be proportional to the

volume fraction of blood vessels (θ3) and the total volume fraction of the cells (θ1 + θ2),

the cells acting as a source of angiogenic factor (in the absence of a separate diffusible

species such as VEGF). It is assumed that vessel growth is inhibited when there is too little

extracellular material to form new vessels, and that the growth rate increases monotonically

towards a bounded maximum as θ4 increases. We account for the dependence of the rate

of angiogenesis on the local nutrient/oxygen concentration by supposing further that vessel

growth is inhibited when nutrient levels are either low or high, and maximal for intermediate

values of c (in practice, the cells only express the angiogenic factors, such as VEGF, that
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stimulate vessel growth when nutrient levels are between these threshold values). Healthy

cells and tumour cells are assumed to act identically as sources of angiogenic factor.

Combining the above assumptions we obtain the following expression for q3, the mass

balance source term in Equation (1):

q3 = − k3 θ3 H(θ1p1 + θ2p2 − pcrit, ǫ3)
︸ ︷︷ ︸

occlusion

+ k4 (θ1 + θ2) θ3

(
θ4

ε + θ4

) (
c

(ca + c)2

)

︸ ︷︷ ︸

angiogenesis

, (5)

where k3 and k4 are rate constants, ε is the blood vessel volume fraction at which the angio-

genesis rate is half-maximal, ca is the nutrient concentration at which the rate of angiogenesis

is maximal, and

H(p, ǫ) =
1

2

(

1 + tanh
p

ǫ

)

, ǫ ≪ 1 , (6)

is a smooth approximation to the Heaviside step function (see Figure 2).
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Figure 2: Illustrative sketches showing the dependence of (a) vessel occlusion rate on cell par-

tial pressures for pcrit = 0.3 and ǫ3 = 0.2 and (b) angiogenesis rate on nutrient concentration

for ca = 0.05. Scaling by the constant multipliers k3 and k4 is ignored here.

2.1.3 Extracellular Material Phase (θ4)

The extracellular material is a simplistic representation of a phase which includes both the

additional material required to create volume in the other phases, i.e. during mitosis and

angiogenesis, and the material that remains when volume from another phase is lost, i.e.

during apoptosis, necrosis and vessel occlusion. The system is assumed to be closed, with

no external replenishment of resources except that related to balancing fluxes across the

boundary of the computational domain. It follows that the mass source term in (1) for the
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extracellular material phase takes the form

q4 = −q1 − q2 − q3

= − k1,1 θ1 θ4

(
c

cp + c

)

︸ ︷︷ ︸

healthy cell birth

+ k2,1 θ1

(
cc1 + c

cc2 + c

)

︸ ︷︷ ︸

healthy cell death

− k1,2 θ2 θ4

(
c

cp + c

)

︸ ︷︷ ︸

tumour cell birth

+ k2,2 θ2

(
cc1 + c

cc2 + c

)

︸ ︷︷ ︸

tumour cell death

+ k3 θ3 H(θ1p1 + θ2p2 − pcrit, ǫ3)
︸ ︷︷ ︸

vessel occlusion

− k4 (θ1 + θ2) θ3

(
θ4

ε + θ4

) (
c

(ca + c)2

)

︸ ︷︷ ︸

angiogenesis

. (7)

The presence of θ4 in the sink terms, which represent material being supplied to other

phases for processes such as cell birth and angiogenesis (see Equations (4) and (5) for the

complementary source terms), ensures that θ4(~x, t) ≥ 0 given suitable initial conditions (i.e.

0 ≤ θi(~x, 0) ≤ 1 with
∑4

i=1 θi(~x, 0) = 1). Similarly, the source terms relating to cell death

and vessel occlusion all contain a factor of θj where j 6= 4 which further helps to ensure that

θ4 ≤ 1 because, as θ4 → 1−, the no-voids condition forces the volume fractions of the other

phases to approach zero.

2.1.4 Initial and Boundary Conditions

In order to close the mass balance equations (1), θi is prescribed for each phase and for all t ≥

0 on the corresponding inflow section of the boundary, ΓInflow
i . The inflow sections are defined

to be those parts of Γ on which ~ui ·~̂n < 0, where ~̂n is the outward-pointing unit normal to the

boundary. Since the mass balance equations are hyperbolic, with information propagating

along characteristic curves, no condition is required on the remainder of the boundary. Initial

conditions must also be provided on the whole of Ω for these time-dependent equations.

2.2 Momentum Balance

Assuming that the Reynolds number of the flow is low enough to neglect inertial terms,

conservation of momentum can be written in the form

~∇ · (θi σi) + ~Fi = 0 , i = 1, . . . , Np, (8)

in which σi are the stresses in each of the individual phases and ~Fi are the corresponding

momentum sources and sinks. As will be demonstrated, these equations are not, on their own,

enough to determine the velocities ~ui which govern the flow in the mass balance equations

(1). They must be supplemented by a continuity equation for the phase mixture, which

immediately follows from summing (1) to give

Np∑

i=1

~∇ · (θi ~ui) = 0 , (9)
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and appropriately defined constitutive relations for phase pressures.

2.2.1 Constitutive Assumptions

The mechanical behaviour of the tissue is modelled by assuming that each phase behaves

like a viscous fluid, and has associated with it a stress tensor of the form

σi = −pi I + µi (~∇~ui + (~∇~ui)
T) + λi (~∇ · ~ui) I , i = 1, . . . , Np, (10)

in which pi are the phase pressures, and µi, λi are the dynamic shear and bulk viscosities,

respectively. In this work it is assumed that the phases are in local thermodynamic equilib-

rium, so λi = −2
3
µi throughout. The effects of pressure are also included in the momentum

sources in (8), along with terms representing inter-phase drag. This leads to

~Fi = pi I ~∇θi +

Np∑

j=1,j 6=i

dij θi θj (~uj − ~ui) , i = 1, . . . , Np, (11)

in which dij is the drag coefficient associated with the relative movement between phases

i and j. Several alternative approaches can be used to specify the phase pressures that

appear in Equations (10) and (11). For example, in [55] the authors distinguish between

the intraphase pressures that appear in the stress tensors and the interphase pressures that

appear in the momentum source terms, different constitutive assumptions being used to

define each of the pressures. Here, however, for consistency with [14], the phase pressures,

p1, p2 and p3 that appear in Equations (10) and (11) are written in terms of the extracellular

pressure, p4.

In more detail, to close the model, constitutive laws for the phase pressures p1, p2 and p3

must be prescribed. Following [13, 14], we assume that the pressure in the blood vessel phase

is constant, so that p3 = p∗3, where p∗3 is the externally-imposed pressure in the vasculature.

Second, the healthy and tumour cells are assumed to act like isotropic fluids, with additional

cell-cell interactions, so that

p1 = p2 = p4 + Σ(θ) , (12)

where θ = θ1 + θ2 is the total cell volume fraction. For simplicity, the healthy cells and the

tumour cells are assumed to interact with each other in precisely the same manner, though

it would be interesting to examine the effects of modifying their behaviour. The cells have

a natural density θ∗, below which they are so sparsely distributed that they experience no

stress and do not interact. For θ = θ1 + θ2 > θ∗ the cells move to reduce their stress.

Accordingly, the functional form used to define Σ(θ) is [13, 14]

Σ(θ) =

{
Λ(θ−θ∗)
(1−θ)2

if θ ≥ θ∗

0 if θ < θ∗ ,
(13)

where the tension constant, Λ, is a measure of the cells’ affinity for their natural density.

This relationship is illustrated in Figure 3. With p3 = p∗3, constant and p1 = p2 = p4 + Σ(θ),
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it remains to specify the extracellular pressure, p4. Following [14], we exploit the constitutive

assumption that there are no voids within the tissue to determine p4, i.e. Equation (2) is

combined with Equations (1) to obtain Equation (9). The form of Σ(θ) in Equation (13)

helps to keep the cell volume fractions below 1 since it ensures that cells will tend to move

apart as birth causes θ to increase [74].
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Figure 3: Illustrative sketch showing the dependence of the cell-induced pressures, Σ(θ)/Λ,

on the total cell phase volume fraction θ when θ∗ = 0.6. Note that Σ(θ) = 0 for θ ≤ θ∗ and

Σ′(θ) is discontinuous at θ = θ∗.

2.2.2 Boundary Conditions

The system which couples the momentum balance equations (8) with the incompressibility

constraint (9) and the pressure relations (12) requires additional conditions on the boundary

of the domain Γ before the profiles of ~ui and pi can be found.

• For sections of the boundary which represent solid obstacles, ~ui = 0 is imposed for

i = 1, . . . , Np. If the whole of Γ is a solid obstacle, pi must also be specified at one

point in the domain in order to obtain a unique solution.

• For the remaining sections of the boundary, the normal stress σi ·~̂n is specified, where ~̂n

is the outward-pointing unit normal to Γ. Note though that it is not possible to specify

the normal stress around the whole boundary for all phases: ~ui must be specified along

some section of the boundary for at least one phase in order to obtain a unique solution.

2.3 Diffusible Species

The contribution of the diffusible species to the overall volume is assumed to be negligible

and their transport taken to be diffusion-dominated, and to equilibrate with the reaction
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processes on timescales which are considerably shorter (i.e. minutes) than those associated

with changes in the phase volume fractions (i.e. weeks or months). Under these assumptions

[12], the diffusible species are governed by the quasi-steady reaction-diffusion equations of

the form

Dj
~∇2cj + qj = 0 , j = 1, . . . , Nd, (14)

in which cj (j = 1, . . . , Nd) denote the concentrations of the diffusible species. The diffusion

coefficients Dj are assumed constant and the qj represent the net source terms (i.e. sources

− sinks) associated with each species.

2.3.1 Nutrient/Oxygen

The single diffusible species used here, denoted simply by c, represents nutrient supplied by

the vasculature and consumed by both normal and cancer cells, providing them with the

energy that they need, not only to remain alive, but also to proliferate. For simplicity, the

rate at which the two cell types consume nutrient in order to carry out normal, baseline,

activities is assumed to be proportional to the nutrient concentration and their respective

volume fractions. Additional nutrient is consumed by the normal and cancer cells at rates

which are proportional to their proliferation rates (see Equations (4)).

Combining these processes leads to a source term qc in the nutrient diffusion equation

(14) which takes the form

qc = k5 θ3 (cv − c)
︸ ︷︷ ︸

replenishment

− k6,1 θ1 c − k6,2 θ2 c
︸ ︷︷ ︸

baseline consumption

− k7,1 θ1 θ4

(
c

cp + c

)

− k7,2 θ2 θ4

(
c

cp + c

)

︸ ︷︷ ︸

consumption due to cell birth

. (15)

This expression contains five rate constants (k5, k6,1, k6,2, k7,1 and k7,2), and it is assumed

that k7,1/k7,2 = k1,1/k1,2 for consistency with the cell birth terms in (4). The parameter cp is

identical to that used in the cell phase source terms of Equation (4), while cv represents the

assumed constant concentration of the nutrient within the blood vessels. The model could

easily be extended to account for other blood-borne species, such as glucose or drugs.

2.3.2 Boundary Conditions

Equations (14) for the distribution of the diffusible species, cj, can be closed by prescribing

either Dirichlet or Neumann boundary conditions. For the former, cj is specified on the

domain boundary Γ, while for the latter, ~∇cj · ~̂n is specified, where ~̂n is the outward-pointing

unit normal to Γ.
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2.4 Nondimensionalisation

Before presenting simulation results, it is convenient to recast the model in dimensionless

form. Since the phase volume fractions θ1, θ2, θ3 and θ4 are dimensionless (by definition),

we scale only the independent variables, ~x and t, the phase velocities ~ui, the pressures pi,

and the nutrient concentration c. This is done in the following way:

t =
t′

k1,1
, ~x = L0 ~x′ , ~ui = L0 k1,1 ~u′

i , pi = Λ p′i , c = cv c′ , (16)

where primes denote dimensionless variables. The birth rate parameter for healthy cells,

k1,1, is used to scale time, L0 is a typical length scale (taken later to be the initial radius of

the tumour seeded in the healthy tissue), Λ is the cell-cell interaction tension constant (see

Equation (13)) and cv is the nutrient concentration in the blood vessels (see Equation (15)).

2.4.1 Mass Balance Equations

Substituting from Equations (16) in Equations (1) leads to the following evolution equations

for θ1, θ2 and θ3, the phase volume fractions of the cells and blood vessels:

∂θ1

∂t′
+ ~∇′ · (θ1 ~u′

1) = θ1 θ4

(
c′

c∗p + c′

)

︸ ︷︷ ︸

cell birth

− k∗
2,1 θ1

(
c∗c1 + c′

c∗c2 + c′

)

︸ ︷︷ ︸

cell death

,

∂θ2

∂t′
+ ~∇′ · (θ2 ~u′

2) = k∗
1,2 θ2 θ4

(
c′

c∗p + c′

)

︸ ︷︷ ︸

cell birth

− k∗
2,2 θ2

(
c∗c1 + c′

c∗c2 + c′

)

︸ ︷︷ ︸

cell death

, (17)

∂θ3

∂t′
+ ~∇′ · (θ3 ~u′

3) = − k∗
3 θ3 H(θ1p

′
1 + θ2p

′
2 − p∗crit, ǫ

∗
3)

︸ ︷︷ ︸

occlusion

+ k∗
4 (θ1 + θ2) θ3

(
θ4

ε + θ4

) (
c′

(c∗a + c′)2

)

︸ ︷︷ ︸

angiogenesis

,

in which

k∗
2,1 =

k2,1

k1,1
, k∗

1,2 =
k1,2

k1,1
, k∗

2,2 =
k2,2

k1,1
, k∗

3 =
k3

k1,1
, k∗

4 =
k4

cvk1,1
,

c∗p =
cp

cv

, c∗a =
ca

cv

, c∗c1 =
cc1

cv

, c∗c2 =
cc2

cv

,

p∗crit =
pcrit

Λ
, ǫ∗3 =

ǫ3

Λ
. (18)

In what follows, it is convenient to use the no-voids condition to determine the volume

fraction of the extracellular phase so that θ4 = 1− θ1 − θ2 − θ3. The mass balance equation

for θ4 is, however, not redundant: it is used implicitly to determine p4, the pressure in the

extracellular phase. Addition of the mass balance equations for θi (i = 1, 2, 3, 4), combined

with the no-voids condition, yields
∑4

i=1
~∇′ · (θi ~u

′
i) = 0 and it is this equation that we use to
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determine p4 (see Equations (19) below). When imposing boundary conditions for Equations

(17), θi is prescribed for each phase on ΓInflow
i , the sections of Γ for which ~u′

i · ~̂n
′ < 0, where

~̂n′ is the outward-pointing unit normal to the boundary.

It should be noted that the source and sink terms in Equations (17) ensure that the phase

volume fractions remain in the interval [0, 1]. All sink terms which relate to phase θi contain

a factor of θi, thus ensuring θi ≥ 0. All source terms which relate to phase θi contain a factor

of θj , j 6= i, so θi ≤ 1 because of the no-voids condition, i.e. as θi → 1 all other phase volume

fractions (which are constrained to be non-negative) must tend to zero. Equation (7) must

be considered here as well as Equation (17), because θ1, θ2, θ3 ∈ [0, 1] does not necessarily

imply that θ4 ∈ [0, 1]. A key point is that a factor of θ4 is present in all of the sink terms in

Equation (7), which, together with the functional form used for Σ(θ) and the prescription

of suitable initial conditions (i.e. 0 ≤ θi(~x, 0) ≤ 1, with
∑4

i=1 θi(~x, 0) = 1), ensures that

θ4(~x, t) ≥ 0 [74]. For detailed discussions of these and similar issues, the interested reader is

referred to the following articles [21, 31, 73, 74].

2.4.2 Momentum Balance Equations

Equations (8)–(12) transform to give the following equations for the dimensionless phase

velocities ~u′
i and phase pressures p′i:

∑

j 6=i

d∗
ij θi θj (~u′

j − ~u′
i) − θi

~∇′ · (Λ∗ p′i I)

+ ~∇′ · [ θi [ µ
∗
i (~∇′~u′

i + (~∇′~u′
i)

T) + λ∗
i (~∇′ · ~u′

i) I ] ] = 0 , i, j = 1, 2, 3, 4 ,
4∑

i=1

~∇′ · (θi ~u
′
i) = 0 ,

p′1 = p′2 = p′4 + Σ′(θ) , p′3 =
p∗3
Λ

, (19)

in which dij = dji,

d∗
ij =

dij

d12

, Λ∗ =
Λ

d12k1,1L0
2 , µ∗

i =
µi

d12L0
2 , λ∗

i =
λi

d12L0
2 , (20)

where i, j = 1, 2, 3, 4 and j 6= i, and

Σ′(θ) =

{
(θ−θ∗)
(1−θ)2

if θ ≥ θ∗

0 if θ < θ∗ ,
(21)

with θ = θ1+θ2. The simple algebraic relationships between the pressures defined in Equation

(19) can be used to rewrite the remaining equations in terms of ~u′
i and p′4 only. On Γ we

impose either ~u′
i = 0, i = 1, 2, 3, 4 (at a solid obstacle), or we prescribe σ

′
i · ~̂n, as described

in Section 2.2.2.
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2.4.3 Reaction-Diffusion Equation

Finally, the nutrient concentration equation (14), with source terms (15), becomes

D∗
c ∇

′2c′ = θ3 (1 − c′)
︸ ︷︷ ︸

replenishment

− k∗
6,1 θ1 c′ − k∗

6,2 θ2 c′
︸ ︷︷ ︸

baseline consumption

− k∗
7,1 θ1 θ4

(
c′

c∗p + c′

)

− k∗
7,2 θ2 θ4

(
c′

c∗p + c′

)

︸ ︷︷ ︸

consumption due to cell birth

, (22)

in which

D∗
c =

Dc

k5L0
2 , k∗

6,1 =
k6,1

k5
, k∗

6,2 =
k6,2

k5
, k∗

7,1 =
k7,1

cvk5
, k∗

7,2 =
k7,2

cvk5
, (23)

and c∗p is as given in (18). Since this equation does not contain a time-derivative, the timescale

used to nondimensionalise it is arbitrary. Here it has been scaled with k−1
5 , the timescale on

which nutrient exchanges between the tissue and the blood vessels. On the boundary, either

c′ (Dirichlet conditions) or ~∇′c′ · ~̂n′ (Neumann conditions) can be specified, depending on the

details of the problem under investigation. In all cases shown in this paper, ~∇′c′ · ~̂n′ = 0 is

imposed.

3 The Numerical Algorithm

The computational simulations presented in [13, 14] were carried out in one space dimension

using finite differences on a uniform, moving, mesh which grew with the expanding tumour.

Only linear reaction terms were considered in the equations governing the diffusible species.

Even in multiple space dimensions, finite difference schemes are the preferred method for

simulating tumour growth [3, 46, 59]. The boundary of the tumour may be tracked using

a level set method [46, 74, 86], but modelling growth within a complex geometry remains

challenging. A more natural approach is to use finite element methods on unstructured

meshes, which can be tailored to a particular geometry [65, 66, 86].

In this paper we approximate the partial differential equations derived in Section 2 in

two space dimensions on unstructured triangular meshes. These are fitted to the problem

geometry and provide a framework within which non-uniform and adaptive meshes can

be used to improve efficiency. In contrast to [66], where triangular meshes and the same

finite element scheme are used to approximate the momentum balance equations, we use a

conservative, upwind, finite volume scheme to approximate the hyperbolic mass transport

equations and a nonlinear solver for the reaction-diffusion equations. Furthermore, the

interface between the growing tumour and the surrounding healthy tissue is captured as

a diffuse internal front, and does not need to be tracked explicitly either as an internal

interface using a level set method, or as a moving boundary. As a result, it is not necessary

to remesh when the (internal) boundary becomes convoluted. Additionally, no artificial

stabilisation techniques are used.
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The two-dimensional results presented in this paper demonstrate the feasibility of using

multidimensional, multiphase models to simulate tumour growth and to investigate how the

tumour’s spatio-temporal evolution depends on the model parameters.

3.1 Phase Volume Fractions

The scalar hyperbolic equations given by (17) are approximated using a standard cell-centre

finite volume scheme with forward Euler time-stepping. This involves approximating the

integral form of Equations (1),
∫

△

∂θi

∂t
d~x +

∫

△

~∇ · (θi ~ui) d~x =

∫

△

qi d~x , i = 1, . . . , 4, (24)

in which △ represents the control volume over which the integration is carried out (a triangle

of the computational mesh in this case). The unknowns of the discrete system are cell-

average values of the variable θi, and each unknown is updated using an equation derived by

integrating over the corresponding control volume (mesh triangle). Before the integrals are

approximated, the Gauss divergence theorem is applied to the flux integrals in each equation,

giving ∫

△

∂θi

∂t
d~x +

∮

∂△

(θi ~ui) · ~̂n ds =

∫

△

qi d~x , i = 1, . . . , 4, (25)

where ∂△ is the boundary of the control volume △, and ~̂n represents the outward-pointing

unit normal to this boundary (see Figure 4). In this form it is straightforward to construct

approximations which conserve mass, simply by ensuring that the surface integral over an

interior mesh edge is evaluated in the same way in both of the adjacent mesh cells. It is also

straightforward to impose boundary conditions by evaluating integrals over inflow boundary

edges using the specified exterior state (cf. Section 2.1.4). The inflow edges are automatically

detected by using an upwind scheme to approximate the fluxes [56, 80] (see Figure 4).

~u

inflow

inflow

outflow

b)a)

Cell i

~nk

Figure 4: a) A typical triangular mesh cell and its edge normal; b) An illustration of inflow

and outflow edges for a triangular mesh cell.

Once the integrals and time derivatives have been approximated using this cell-centred

approach, each triangle supplies a discrete equation of the form

θi

n+1
= θi

n
−

∆t

|△|

3∑

k=1

(θi
n ~un

i )∗k · ~nk + ∆t (qi
n)∗ , i = 1, . . . , Np, (26)
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in which n indexes the time level, ∆t is the length of the time-step, |△| is the area of the

triangular control volume, and ~nk is the outward-pointing normal to the cell edge opposite

vertex k, scaled by the length of the edge (as illustrated in Figure 4). The asterisks indicate

quantities that have been approximated according to the underlying representation of the

variable θi, which is reconstructed within each cell, given knowledge of the cell-average values

(denoted here by θi) in the nearby cells.

The numerical fluxes (θi ~ui)
∗
k are approximated using a standard upwind approach, with

a limited central difference reconstruction of the θi [8]. This is a simple multidimensional

generalisation of the minmod-limited MUSCL approach [83] which first constructs a linear

representation of the variable within each cell, given knowledge of its values in neighbouring

cells, and then adjusts it by “limiting” the gradient of the reconstruction to prevent unphys-

ical oscillations appearing in the solution. The scheme is second order accurate in space,

except where there are turning points in the solution, where it drops to first order accuracy

in order to avoid creating unwanted new extrema. This is important to ensure that the

numerical solutions retain the property of the mathematical model that θi ∈ [0, 1].

The overall reconstruction is discontinuous across cell edges, so upwinding is used to

choose the appropriate value of θi at the interface. The value of ~ui at the midpoint of the cell

edge (where the numerical flux is nominally evaluated) can be found by interpolation since

the velocity field is approximated using a continuous, piecewise polynomial, representation.

The values of (qi)
∗ are found by using a simple quadrature rule to approximate the volume

integral in (25) and normalising the result by the cell area |△|.

Remark: Mathematically, solving the mass balance equations (1) for all Np phases is

equivalent to using (1) to predict the evolution of the first Np − 1 phases, and the no-voids

condition (2) to calculate the final phase volume fraction. However, the nonlinear nature

of the MUSCL finite volume scheme means that the discrete system does not inherit this

equivalence. In this work, the no-voids condition is used in place of one of the conservation

laws in (1), so that the overall mass/volume of the system is conserved (and to improve the

speed of computation). The consequence of this is that the volume fraction of the ignored

phase (extracellular material) is no longer guaranteed to have the non-oscillatory properties

that the nonlinearities in the numerical approximation are designed to impose. However,

this has had no noticeable effect on our model simulations, and θi ∈ [0, 1] is maintained

without any additional constraints being applied.

3.2 Phase Velocities and Pressures

The coupled system of equations given by (19) can be viewed as a multiphase version of

the equations used to model Stokes flow. In particular, since they are linear in the un-

known variables, ~u′
i and p′4, a standard Galerkin finite element approach can be used to

approximate the system. Here, a stable, Taylor-Hood, element pair is applied, which uses a
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continuous, piecewise quadratic representation for the velocities and a continuous, piecewise

linear representation for the pressures [24, 39]. Equations (8) and (9) then lead to
∫

Ω

wq ~∇ · (θi σi) d~x +

∫

Ω

wq ~Fi d~x = 0 , i = 1, . . . , 4,

∫

Ω

wl

Np∑

i=1

~∇ · (θi ~ui) d~x = 0 , (27)

in which wl and wq are, respectively, the standard linear and quadratic Lagrange test func-

tions. After integration by parts, the first of these equations becomes
∮

∂Ω

wq θi σi · ~̂n ds −

∫

Ω

~∇wq · θi σi d~x +

∫

Ω

wq ~Fi d~x = 0 , i = 1, . . . , 4. (28)

For all degrees of freedom in the interior of the domain the boundary integral is zero because,

for the corresponding test function, wq = 0 on Γ. For degrees of freedom on the boundary

either the normal stress σi · ~̂n is specified, or the equation is replaced by a Dirichlet condition

on ~ui.

The unknown solution is piecewise polynomial and may be written in terms of trial

functions, which are here chosen to be precisely the same as the test functions, so

~ui ≈

Nq∑

k=1

(~ui)k wk
q , p ≈

Nl∑

k=1

pk wk
l , (29)

where Nq and Nl are the numbers of degrees of freedom associated with the quadratic

and linear Lagrange elements, respectively. Each degree of freedom in the discrete system

((~ui)k, pk) has an associated test/trial function with compact support. Integration of the

resulting equations leads to a sparse, linear system of equations which is solved here using

the MUMPS software package [61]. This is a parallel, sparse, direct solver for large, linear

systems of equations (although in this work it is only being used on a single CPU core).

Remark: Care should be taken in situations where θi = 0 for i ∈ {1, 2, 3, 4} because

this will cause at least one of the equations in (19) to become degenerate, creating a singular

system. In practice, any equation associated with a degree of freedom for which θi < Tol

can be treated as though the phase volume fraction is zero, assigning values directly to ~u′
i

instead of trying to include the discretised differential equation in the system to be solved.

The effect of this is to introduce into the domain an artificial moving interface within the

domain which delineates, for a particular phase i, regions in which θi = 0 from regions in

which θi ∈ (0, 1) and on which a zero normal stress boundary condition is implicitly applied.

The chosen value of the tolerance is Tol = 10−10 and numerical experiments have shown

that the simulations are not sensitive to this value once it drops below about 10−3 (results

not presented).

Remark: The use of quadratic Lagrange elements means that information about the

midpoints of each edge is required by the code. It is therefore straightforward to apply the
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finite volume approximation of the mass balance equations (26) on a mesh generated by

dividing each triangular cell into four congruent subtriangles. Since solving for the phase

velocities and pressures is by far the most time-consuming stage of the simulation, using the

fine mesh to provide additional resolution in the representation of the phase volume fractions

does not significantly increase run-times: hence this approach is used here.

3.3 Nutrient Concentration

The quasi-steady-state, reaction-diffusion equation given by (22) is approximated using a

standard Galerkin finite element scheme, with linear elements [24, 39]. This leads to
∫

Ω

wlf Dj
~∇2cj d~x −

∫

Ω

wlf qj d~x = 0 , j = 1, . . . , Nd, (30)

which, after integration by parts, gives the weak form
∫

∂Ω

wlf Dj
~∇cj · ~̂n ds −

∫

Ω

~∇wlf · Dj
~∇cj d~x −

∫

Ω

wlf qj d~x = 0 , j = 1, . . . , Nd,

(31)

where the wlf are now linear test functions defined on the same refined mesh as that used for

updating the phase volume fractions. The boundary integral again disappears for internal

degrees of freedom because, due to the compact support of the test functions, wlf = 0 on Γ.

For degrees of freedom on the boundary, either ~∇cj · ~̂n is specified or the equation is replaced

by a Dirichlet condition on cj. The nutrient is written in terms of the trial functions, i.e.

c ≈

Nlf∑

k=1

ck wk
lf , (32)

and the integral source term in (31) is approximated using an appropriate quadrature scheme.

Since the rest of the scheme is at most second order accurate, no more than second order

accuracy is required in the quadrature. This leads to a nonlinear system of equations (because

qc in Equation (15) is a nonlinear function of c) which is solved using a matrix-free Newton

iteration method [50]. The MUMPS direct solver [61] is again used to solve the linear systems

of equations that arises at each iteration.

3.4 Summary

The numerical algorithm that we use to solve equations (17), (19) and (22) is applied on an

unstructured triangular mesh in which each cell is uniformly divided into four subtriangles

to produce a globally refined mesh. The mixed nature of the governing partial differential

equations motivates the order in which they are approximated on successive time-steps. The

three stages carried out during each time-step are as follows:

1. Given initial values for the phase volume fractions θi and the phase velocities ~u′
i,

update the cell-averaged values of θi, nominally stored at the centres of the cells of the

19



globally refined mesh (and interpolated to provide values at the nodes of the refined

mesh), using a cell-centred MUSCL finite volume scheme (see Equations (24)–(26))

[56, 80]. Equation (17) is used to update the cell and blood vessel phase volume

fractions in time; the no-voids condition (2) is used to update the volume fraction of

the extracellular material (θ4).

2. Given the new values of θi, calculate the values of ~u′
i at the nodes of the refined mesh

(which coincide with the union of the nodes and the edge midpoints of the original

mesh) along with the values of p′4 at the nodes of the original mesh, using a Galerkin

finite element scheme with Taylor-Hood elements (see Equations (27)–(29)) [24, 39].

Use linear interpolation to determine the values of p′4, the pressure of the extracellular

material phase, at the nodes of the refined mesh: the remaining phase pressures p′i can

be found using the algebraic relations given by Equations (19) and (21).

3. Given the new values of θi, calculate the values of c′ at the nodes of the refined mesh

using a Galerkin finite element scheme with linear elements (30)–(32).

Steps 1-3 are used to evolve the system variables from one time-step to the next and can

be repeated to advance the simulation in time. We remark that, since the second and third

steps are independent of each other in this model, the order in which the phase velocities

and nutrient are updated does not matter.

4 Numerical Results

The numerical results presented in this section were obtained by seeding “healthy” tissue

in an equilibrium state with a small number of tumour cells. It is assumed that at the

equilibrium state:

• each phase is spatially uniform with zero velocity (i.e. ~ui ≡ 0, i = 1, 3, 4);

• there are no tumour cells present (i.e. θ2 ≡ 0);

• the volume fraction of healthy cells is such that θ1 = θ∗ = 0.6, the natural cell density,

below which the cells do not interact or experience any stress;

• p3 = p∗3 = 0 and p4 = 0, so p1 = p2 = 0 because θ1 = θ∗.

Equations (17), (2), (19) and (22) then reduce to the system of nonlinear equations given by

θ∗ θ4

(
c′

c∗p + c′

)

− k∗
2,1 θ∗

(
c∗c1 + c′

c∗c2 + c′

)

= 0 ,

− k∗
3 θ3 H(−p∗crit, ǫ

∗
3) + k∗

4 θ∗ θ3

(
θ4

ε + θ4

) (
c′

(c∗a + c′)2

)

= 0 ,

θ∗ + θ3 + θ4 = 1 ,

θ3(1 − c′) − k∗
6,1 θ∗ c′ − k∗

7,1 θ∗ θ4

(
c′

c∗p + c′

)

= 0 . (33)
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Parameter Value Description

k∗
1,2 2.0 † Tumour cell birth rate

k∗
2,1 0.15 Healthy cell death rate

k∗
2,2 0.075 † Tumour cell death rate

k∗
3 0.1 Vessel occlusion rate

k∗
4 0.0029449 Angiogenesis rate

k∗
6,1 0.01 Nutrient consumption rate (healthy cell baseline)

k∗
6,2 0.01 Nutrient consumption rate (tumour cell baseline)

k∗
7,1 0.1 Nutrient consumption rate (healthy cell birth)

k∗
7,2 k∗

7,1 × k∗
1,2 Nutrient consumption rate (tumour cell birth)

c∗p 0.25 Cell birth rate dependence on nutrient

c∗c1 , c∗c2 0.2, 0.1 Cell death rate dependence on nutrient

c∗a 0.05 Angiogenesis rate dependence on nutrient

p∗crit 0.3 Critical pressure for vessel occlusion

ǫ∗3 0.2 Smoothness of occlusion pressure dependence

ε 0.01 Angiogenesis rate dependence on ECM

Λ∗ 0.1 † Cell tension constant

µ∗
i 10.0 † Phase dynamic shear viscosities (i = 1, . . . , Np)

λ∗
i −2

3
µ∗

i Phase bulk viscosities (i = 1, . . . , Np)

d∗
ij 1.0 Interphase drag coefficients (i, j = 1, . . . , Np, j 6= i)

D∗
c 1.0 † Nutrient diffusion coefficient

Table 1: Dimensionless parameter values for the benchmark simulations: † indicates values

which vary in later experiments.

These equations are then solved for the unknown model variables θ3, θ4 and c′, and one

model parameter, chosen arbitrarily here to be the angiogenesis rate constant k∗
4. The

chosen solution must also satisfy θ3, θ4, c
′ ∈ [0, 1] and k∗

4 ≥ 0 to be valid physically. The

solution for the remaining parameter values shown in Table 1 is given by

θ1 = 0.6 , θ2 = 0.0 , θ3 = 0.01749783 , θ4 = 0.3825022 ,

c′ = 0.2532031 , p1 = p2 = p3 = p4 = 0.0 , (34)

with k∗
4 = 0.002944900 (all to 7 significant figures).

4.1 Single Tumour Seeded in a Circular Domain

For the first set of numerical simulations a circular domain of radius 16 was used and covered

by an unstructured, triangular mesh containing 2349 nodes and 4539 elements. At t = 0 a
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small tumour was seeded at the centre of the healthy tissue so that

θ2(x, y, t = 0) =

{

0.05 cos2(πr/2) for r ≤ 1

0 otherwise .
(35)

where r =
√

x2 + y2. To compensate for the addition of tumour cells, the initial distribution

of healthy cells was modified to be

θ1(x, y, 0) = 0.6 − θ2(x, y, 0) , (36)

while all other variables were initialised throughout the domain using the values given in

(34). The boundary conditions were chosen as follows.

• For Equations (19) impose

σ
′
i · ~̂n = 0 , i = 1, 2, 3, and ~u′

4 = 0 (37)

on the whole of Γ. This allows flow of cell and blood vessel phases through the bound-

ary.

• For Equation (22) impose
~∇′c′ · ~̂n = 0 (38)

on the whole of Γ.

• For Equations (17) impose

θi = θi
∞ , i = 1, 2, 3, 4, (39)

on ΓInflow
i , the region of Γ for which ~u′

i · ~̂n < 0 (~̂n being the outward-pointing unit

normal to the boundary).

These conditions are inevitably artificial, in the sense that interactions with tissue outside

the computational domain are neglected. However, numerical experiments have shown that

the choice of boundary condition (e.g. Dirichlet, imposing the equilibrium values from (34),

or Neumann, imposing zero stress or flux) has little effect on the tumour’s growth until the

proliferating rim gets close to the domain boundary. Any cases presented below for which

this is not the case are highlighted.

The values of the remaining parameters are given in Table 1, where we assume that the

tumour cells proliferate and die at, respectively, double and half the rate of their normal

counterparts.

The evolution of the volume fraction of tumour cells under these conditions is shown in

Figure 5. The initial cluster expands rapidly to produce a high density of tumour cells at

the centre of the domain, where the phase volume fraction exceeds the natural cell density,
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i.e. θ2 > θ∗. The tumour then starts to spread outwards and eventually the tumour cells in

the centre start to die, creating a proliferating rim of tumour cells, behind which a necrotic

core develops. This qualitative behaviour is representative of that seen in the majority of

simulations carried out with this model. The mechanisms which generate this characteristic

growth pattern can be inferred from Figures 6 and 7, which show how the corresponding

phase fluxes and pressures evolve, and Figure 8, which shows how the nutrient concentration

develops.

Since the tumour cells are assumed to proliferate more rapidly and die less readily than

healthy cells, at early times tumour cells undergo net proliferation, absorbing extracellular

material as they do so. This causes θ4 to fall locally, reducing the net birth rate of the

healthy cells and leading to their depletion. In addition, the tumour pushes the healthy cells

in front of it as it grows, some of the volume being replaced by extracellular material which

is simultaneously drawn towards the tumour (cf. Figure 6). At the same time, the high

pressures generated by the high density of tumour cells causes vessel occlusion, restricting

the nutrient supply to the interior of the tumour. This further exacerbates the imbalance

between birth and death for the healthy cells whose volume fraction is rapidly driven to zero

(a state from which they never recover).

As the tumour grows, the size of the region in which the blood vessels are occluded

also expands, the angiogenic response being too weak to perfuse the entire tissue, causing

the centre of the tumour to become progressively starved of nutrient. Tumour cells in the

interior then start to die and a necrotic core, consisting mainly of extracellular material,

develops behind a rim of proliferating cells. The healthy cells continue to be pushed by the

advancing tumour rim and replaced by extracellular material, which fuels the growth of the

tumour cells. The proliferating rim also draws extracellular material towards it from inside

the tumour, replacing it with tumour cells which move towards the core where they die due

to lack of nutrient (as illustrated in Figure 6).

The moving front of proliferating tumour cells is characteristically very sharp, and typi-

cally preceded by a small rise in ECM phase volume fraction, with a far smoother transition

behind the front to the necrotic core. The front is not completely circular because the

computational mesh and the discretised initial conditions are not radially symmetric. The

extent of deviation from radial symmetry may be interpreted in terms of the sensitivity of

the system to inhomogeneities in the tissue.

4.2 Parameter Sensitivity Analysis

In order to assess how the rate of tumour growth depends on the values of the model

parameters, the size of the tumour is measured by estimating the distance of the tumour

front from the centre of the computational domain. This is done by calculating Rmax(t), the

furthest distance of the contour θ2 = θ∗ = 0.6 from the origin, and plotting graphs of Rmax(t)

against time (see Figure 9). The growth rates corresponding to the parameter values stated

23



 
Healthy cells: θ1 at t = 100

 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0  
Healthy cells: θ1 at t = 200

 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0  
Healthy cells: θ1 at t = 300

 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 
Tumour cells: θ2 at t = 100
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Blood vessels: θ3 at t = 100
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Extracellular material: θ4 at t = 100
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Figure 5: Snapshots of the evolution of the phase volume fractions: healthy cells, θ1 (top

row); tumour cells, θ2 (second row); blood vessels, θ3 (third row); extracellular material, θ4

(bottom row). Time increases from left to right: parameter values are as in Table 1.
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Healthy cells: θ1~u
′

1
at t = 100 Healthy cells: θ1~u

′

1
at t = 200 Healthy cells: θ1~u

′

1
at t = 300

Tumour cells: θ2~u
′

2
at t = 100 Tumour cells: θ2~u

′

2
at t = 200 Tumour cells: θ2~u

′

2
at t = 300

Extracellular material: θ4~u
′

4
at t = 100 Extracellular material: θ4~u

′

4
at t = 200 Extracellular material: θ4~u

′

4
at t = 300

Figure 6: Snapshots of the evolution of the phase fluxes: healthy cells, θ1~u
′
1 (top row);

tumour cells, θ2~u
′
2 (second row); blood vessels, θ3~u

′
3 (third row); extracellular material, θ4~u

′
4

(bottom row). Time increases from left to right: parameter values are as in Table 1. The

arrows are scaled by the magnitude of the flux vector and all are plotted to the same scale:

the blood vessel phase is not shown because the arrows are not visible at this scale.
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Cell pressure: p1,p2 at t = 100
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ECM pressure: p4 at t = 100
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Figure 7: Snapshots of the evolution of the phase pressures: healthy/tumour cells, p′1 =

p′2 (top row); extracellular material, p′4 (bottom row). Time increases from left to right:

parameter values are as in Table 1. The pressures for the blood vessel phase automatically

vanish and are, therefore, not included.

 
Nutrient: c′ at t = 100
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Figure 8: Snapshots of the evolution of the nutrient concentration, c′. Time increases from

left to right: parameter are values as in Table 1.
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in Table 1 are drawn with a solid black line with small dots. Those parameters marked

with daggers in Table 1 are varied, as indicated in the figure legends. Table 2 shows T12,

the time for the measured position of the tumour front, Rmax(t), to reach a distance of 12

dimensionless units from the centre of the domain, for a selection of the sets of parameter

values used to create the graphs in Figures 9, 10 and 11. The dependence of T12 on the

nutrient diffusion coefficient, Dc, the cell tension constant, Λ, and the tumour cell birth and

death rate parameters, K12 and K22 respectively, is illustrated in Figure 10. Figure 11 shows

the dependence of T12 on the phase viscosities.
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Figure 9: Series of plots showing how the tumour growth rate depends on the nutrient

diffusion coefficient Dc, (left) and the cell tension constant, Λ, (right). Each curve shows the

evolution of Rmax(t) over time.

At the start of each numerical experiment, the time taken for the tumour cell density to

exceed the natural cell density appears to be independent of the material properties of the

tissue. This is indicated in Figure 9 by the coincidence of the growth curves at early times

(until the radius of the tumour reaches approximately one, indicated by the first symbol on

each graph) and is also seen when the viscosities are varied. However, the rate of this initial

stage of growth does depend on the birth and death rates of the tumour cells: faster birth

and/or slower death of the tumour cells causes the initial small, but dense, cluster of tumour

cells to form more rapidly (results not shown).

In all cases the tumour cell volume fraction in the centre of the domain rapidly reaches

a maximum value (typically in the range [0.8, 0.9]) which is maintained in the proliferating

region as the tumour grows. After this initial transient, the speed with which the sharp front

of tumour cells travels remains approximately constant, resembling a steady travelling wave

and suggesting that the tumour growth rate predicted by this model is typically linear.

27



Parameter Parameter values/Times to reach Rmax(t) = 12

Dc 0.01 0.1 1.0 10.0

T12 808 502 304 219

Λ 0.001 0.01 0.1 1.0

T12 1247 727 304 101

k12 1.0 1.5 2.0 4.0

T12 1156 465 304 117

k22
−1 1/0.15 1/0.1 1/0.075 1/0.05

T12 884 438 304 191

µ−1 1/1000.0 1/100.0 1/10.0 1/1.0

T12 1203 563 304 144

Table 2: Times taken to reach Rmax(t) = 12 (denoted by T12) for a selection of the sets of

parameter values used to create the results shown in Figures 9, 10 and 11. The third column

corresponds to the parameter values stated in Table 1.
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Figure 10: Log-log plots showing how T12, the time taken to reach Rmax(t) = 12, depends

on the nutrient diffusion coefficient Dc, and the cell tension constant, Λ, (left) and the

tumour cell birth and death rate parameters, K12 and K22 respectively (right). Note that

the horizontal scale on the left hand graph is log10.
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Figure 11: Log-log plots showing how T12, the time taken to reach Rmax(t) = 12, depends

on the phase viscosities. In the legend, µ represents the case in which all viscosities are

varied but assumed to be identical to each other, µ1, µ2, the case in which both cell phase

viscosities are varied but assumed to be identical to each other and µ4 the case in which only

the ECM phase viscosity is varied. Note that the horizontal scale on the graph is log10.

While the qualitative features seen in Figure 5 persist when the model parameters are

varied, the rate at which the tumour grows and the width of the proliferating rim can change

significantly. The sensitivity of these quantities to the model parameters is discussed in more

detail below.

The moving front remains sharply defined in all of the situations tested here. This

suggests that the model distinguishes clearly between the growing tumour and the exterior

tissue, a view reinforced by the fact that the volume fraction of healthy cells drops rapidly to

zero behind the moving front and never recovers. Hence, we conclude that within this mul-

tiphase modelling framework, it is often reasonable to use the approach proposed in [14, 66]

and to model the tumour separately from its surroundings, with a moving boundary repre-

senting the interface between the tumour and the healthy tissue and appropriate boundary

conditions accounting for the influence of the environment. However, we anticipate that this

would not always be the case: for example, when simulating the elimination of a vascular

tumour in response to a blood-borne drug that targets proliferative cells. In such situations,

the sharp front would most likely be smoothed out in the manner of the transition from the

proliferating rim to the necrotic core behind the moving front in the simulations shown in

Section 4.1.

Varying the nutrient diffusion rate, D∗
c : Both the growth rate of the tumour (cf.

Figures 9 and 10, and Table 2) and the width of the proliferating rim increase as D∗
c is
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increased. This is because higher diffusion coefficients increase the size of the domain of

influence of the blood-borne nutrients. As Figure 12 shows, this increases the net proliferation

rate of the tumour cells, and hence the width of the viable rim. For large values of D∗
c (e.g.

D∗
c = 10.0) the tumour cells remain densely packed behind the rim, with no necrotic core

having developed by the end of the simulations. Further increases in D∗
c cause the length

scales over which diffusion acts to become so large that boundary effects influence the solution

(result not included). Conversely, for small values of D∗
c (e.g. D∗

c = 0.1, 0.01), for which the

proliferating rim is much narrower and the invading front becomes more convoluted (trails of

blood vessels remain within the tumour which can later be reinforced by angiogenesis), the

pressures close to the moving front are lower and, as a result, the front moves more slowly.

Varying the cell tension parameter, Λ∗: Larger values for Λ∗ correspond to cells

that respond more readily to dense packing (when θ > θ∗). The pressures in these tumours

are lower, and their cells correspondingly less densely packed, and they grow more rapidly

(cf. Figures 9 and 10, and Table 2).

Varying the tumour cell birth and death rates, k∗
12 and k∗

22: Figure 10 and Table

2 show that the tumour’s growth rate increases as k∗
12 increases and/or k∗

22 decreases.

Varying the phase viscosities, µ∗
i : In general, increasing the viscosity of any or all

of the phases causes the cell pressure to increase while the tumour’s growth rate slows and

its structure remains unchanged (cf. Figure 11 and Table 2). Additionally, as Figure 13

illustrates, the proliferating rim becomes slightly wider and more circular. The growth rate

is most sensitive to variation in the viscosity of the extracellular material phase and almost

completely insensitive to the viscosity of the blood vessel phase. This remains the case in

situations where the blood vessels take up a much higher proportion of the tissue (results

not shown).

4.3 Interacting Tumours

Since our computational model tracks the moving front of tumour cells on a fixed com-

putational mesh rather than by following a free boundary delineating the tumour from its

surrounding tissue, it is straightforward to seed the virtual tissue with multiple tumours.

To illustrate this versatility, we now use our computational model to simulate the evolution

of a vascular tissue which is initially seeded with two small, circular tumours centred at

(x, y) = (2.5, 2.5) and (x, y) = (−2.5, 0). Accordingly we prescribe

θ2(x, y, t = 0) =







0.05 cos2(πr1/2) for r1 ≤ 1

0.05 cos2(πr2/2) for r2 ≤ 1

0 otherwise .

(40)

where r1 =
√

(x − 2.5)2 + (y − 2.5)2 and r2 =
√

(x + 2.5)2 + y2, and setting θ1 = 0.6 − θ2.
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Healthy cells: θ1 at t = 225
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Tumour cells: θ2 at t = 225
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Blood vessels: θ3 at t = 225
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Extracellular material: θ4 at t = 225
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Figure 12: Snapshots of the evolution of the phase volume fractions: healthy cells, θ1 (top

row); tumour cells, θ2 (second row); blood vessels, θ3 (third row); extracellular material, θ4

(bottom row). Parameter values are as in Table 1, except for the nutrient diffusion coefficient,

which decreases from left to right: D∗
c = 10.0 (left), Dc = 0.1 (middle), Dc = 0.01 (right).

For each value of D∗
c , results are presented at a time for which Rmax(t) ≈ 12.
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Tumour cells: θ2 at t = 150
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Figure 13: Snapshots of the evolution of the tumour cell phase volume fraction, θ2. Parameter

values are as in Table 1, except for the phase viscosities, which increase from left to right:

µ∗
i = 1.0 (left), µ∗

i = 100.0 (middle), µ∗
i = 1000.0 (right), i = 1, 2, 3, 4. For each value of µ∗

i ,

results are presented at a time for which Rmax(t) ≈ 12.

The evolution of the tumour cell volume fraction is depicted in Figure 14 where the two

tumours can be seen to merge, and then to grow as one, eventually producing a tumour

whose structure is similar to that generated when the tissue is initially seeded with a single

cluster of tumour cells (compare Figures 14 and 5).

4.4 Tapered Domain

The final set of numerical simulations are carried out on a tapered domain, formed by cutting

a wedge out of the bottom right hand corner of the rectangle [0, 16] × [0, 4], as illustrated

in Figure 15. The top and bottom boundaries are treated as solid walls, so that at the

boundary nodes ~u′
i = 0 is imposed in (19) for all phases, ~∇′c′ · ~̂n = 0 is substituted in (22).

The boundary conditions imposed at the left and right ends of the domain are the same as

those used in the previous test cases, except that it is no longer necessary to impose ~u′
4 = 0

because of the solid walls elsewhere.

The domain is covered by an unstructured triangular mesh, with 2496 nodes and 4740

cells, and the initially healthy tissue (cf. the values in (34)) is specified by setting θ1(x, y, 0) =

0.6 − θ2(x, y, 0) where

θ2(x, y, t = 0) =

{

0.05 cos2(πr/2) for r ≤ 1

0 otherwise .
(41)

and r =
√

(x − 8)2 + (y − 2)2. As before, we use the parameter values given in Table 1.

The simulation results presented in Figure 16 exhibit behaviour similar to that described

earlier. There is an initial period of rapid growth, after which a necrotic core forms behind

the proliferating rim of tumour cells. The solid walls prevent the tumour from spreading

upwards and downwards, but it continues to spread laterally as time progresses.
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Tumour cells: θ2 at t = 25
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Tumour cells: θ2 at t = 175
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Figure 14: Snapshots of the evolution of the tumour cell phase volume fraction, θ2. Time

increases from left to right and then top to bottom: parameter values are as in Table 1. Two

tumours are seeded in the healthy tissue.
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Figure 15: Geometry and boundary conditions for the tapered domain.
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Figure 16: Snapshots of the evolution of the tumour cell phase volume fraction, θ2, when a

single, circular tumour is seeded in a tapered domain. Time increases from top to bottom:

parameter values are as in Table 1.
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5 Discussion

This paper describes a multidimensional, multiphase model of vascular tumour growth, and

a computational approach for its solution which uses no artificial stabilisation techniques

and is capable of handling irregular geometries. It extends earlier work by Breward, Byrne

and Lewis [13, 14] and has the following features.

• The model includes four phases: two cell types, blood vessels and extracellular ma-

terial. In particular, because it distinguishes between tumour cells and healthy cells,

interactions between the two species can be incorporated. Each phase is assumed to

behave like a viscous fluid. A diffusible nutrient is included (as in [13] but not [14]),

so that the blood vessels can have a non-local influence on the surrounding tissue.

• The tumour’s evolution is simulated within a fixed computational domain and its

boundary is captured on the mesh as a diffuse interface instead of tracking it and

using it as the boundary of the domain, which would be computationally challenging

for the more irregular fronts seen in Section 4. It also allows the tumour to interact

with the normal/healthy cells constituting the surrounding tissue.

• Using a mixed finite volume/finite element approach on unstructured triangular meshes

makes it straightforward to implement nonuniform meshes and solve the governing

equations on complex multidimensional geometries. A Newton solver allows for non-

linear terms to be included in the model.

Both the mathematical model and the numerical approximation generalise straightforwardly

to tetrahedral meshes in three space dimensions. However this would require a parallel

implementation (and appropriate computing resources) to obtain results with high enough

resolution to be informative. Three-dimensional simulations of a simpler multiphase model

have been carried out by Lowengrub, Cristini and coauthors [29, 84, 85]. They were able to

resolve the tumour boundary by applying sophisticated computational techniques (adaptive

multigrid) to a finite difference scheme on block-structured meshes, for a model in which all

of the phase velocities are assumed to be the same.

In Section 4 the model is used to simulate the growth of a tumour initiated by seeding a

small cluster of tumour cells in “healthy” tissue in an equilibrium state. In each case, giving

the tumour cells a higher birth rate and/or a lower death rate led to the rapid appearance of

a small region with a high density of tumour cells which then spread in to the surrounding

tissue. The increased pressures generated by the growing tumour mass caused occlusion of

the blood vessels, inhibiting the supply of nutrient to the interior of the tumour and leading

to the development of a necrotic core behind an outwardly moving, proliferating rim. This

is a characteristic pattern commonly seen in tumour growth.

The model consistently predicted that the tumour radius increases approximately linearly

with time, though the speed with which the front moves depends strongly on the model
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parameters. Increasing D∗
c , the nutrient diffusion coefficient, Λ∗, the sensitivity of the cells

to dense packing, or k12, the tumour cell birth rate, or decreasing k22, the tumour cell death

rate or any of the phase viscosities, all increased the rate of tumour growth.

The mathematical model presented describes physical phenomena using very simple func-

tional forms, which provide a qualitative representation of the expected behaviour, and a

limited number of phases. It is not difficult to propose potential improvements, e.g. elastic

or viscoelastic models for the cells, extensions to investigate response to treatment, more

realistic models of cell metabolism, decomposition of the blood vessels into two phases (for

mature vessels and angiogenic sprouts), and the inclusion of an additional diffusible species

or angiogenic factor which stimulates endothelial cell proliferation and elicits a chemotactic

response from the angiogenic sprouts. Additional diffusible species that distinguish between

metabolites such as oxygen, glucose and lactic acid could be introduced, thereby permitting

an investigation of the impact on the simulated growth dynamics of using more realistic

models of cell metabolism, including the switch from aerobic to anaerobic respiration and

the associated production of lactic acid [25, 33, 34]. Alternatively, additional phases could

be included to represent the extracellular matrix in which the normal and cancerous cells

reside and the lymph network into which excess extracellular fluid drains (and through which

tumour fragments can migrate, or metastasise, to other parts of the body) [52]. The lymph

network evolves in a similar manner to the vascular network, new lymph vessels being stim-

ulated by the production of appropriate growth factors and existing vessels collapsing under

excess pressure [10]. Of particular interest is investigating how the interplay between the

evolving vascular and lymph networks affects the tumour’s development [49]. However, be-

fore any such model can be used to generate quantitative predictions, it will have to be

validated and parameterised against experimental data.

Advances in imaging technology mean that magnetic resonance images are now routinely

used to obtain coarse-grained information about the spatial extent of solid tumours. Such

data, combined with functional images that provide spatially-resolved information on rates

of, for example, oxygen and glucose delivery and consumption are now being integrated

with simple continuum models of solid tumour growth to estimate parameter values that

characterise the tumours. This approach is also being used to predict patient responses to

specific treatment protocols [77, 78, 79]. In future work, we aim to validate and parameterise

multiphase models of the type presented in this paper against such biomedical imaging data.

The computational algorithms used are all standard in other application areas, and known

to have excellent properties when applied to the individual components of the system. How-

ever, this is the first time they have been combined to simulate this type of coupled, multi-

phase model of fluid flow. An upwind “Total Variation Diminishing” (TVD) finite volume

scheme is chosen to approximate the hyperbolic mass balance equations to ensure that (i)

the phase volume fractions remain in the interval [0, 1] without the need for any artificial

smoothing and (ii) mass is conserved. The momentum balance equations lead to a gener-

alised Stokes flow which is approximated using Taylor-Hood finite elements, an inherently
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stable algorithm for finding the phase velocities and pressures. Finite elements are also used

with a Newton iteration to approximate the nonlinear equations governing nutrient diffusion.

These well-understood, robust, algorithms have been chosen to give confidence that

our qualitative interpretation of the simulations is not corrupted by spurious, numerically-

created, artefacts. While the mathematical models remain in the early stages of development

it is unlikely that more sophisticated techniques will be required to improve the order of ac-

curacy of the approximation. However, improvements in speed and efficiency would be

beneficial.

For example, the use of a direct solver on a single processor machine to find the discrete

phase velocities and pressures has restricted the resolution of the mesh and the size of

the computational domain used in the simulations. Direct solvers for large systems are

expensive in terms of both cpu time and memory so, to apply this model on larger domains,

with a wider range of parameter values (to adequately resolve all of the features, such as

the proliferating rim) or in three space dimensions, an iterative approach would be needed.

This would also require investigation of appropriate preconditioners for the system given

by the momentum balance equations. When combined with other techniques for improving

the speed with which simulations can be carried out to a specified accuracy, e.g. adaptive

meshing, multigrid algorithms, parallel implementations, this should lead to a tool which will

help us to fully understand the behaviour of these multiphase models, and hence improve

their design. Additional stabilisation techniques may also be introduced, e.g. the DEVSS

approach proposed by Guénette and Fortin [41] for viscoelastic flows, to further widen the

range of parameter values for which reliable numerical results can be obtained.

In summary, a mathematical model has been presented which describes vascular tumour

growth and allows interaction between the tumour, the vasculature and the surrounding

tissue. It is based on existing multiphase models but the computational model developed

here demonstrates that the framework can be implemented in multiple space dimensions.

There is also considerable scope adapting our model to describe other biomedical applications

in, for example, tissue engineering and wound healing.
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[41] R. Guénette, M. Fortin, A new mixed finite element method for computing viscoelastic

flows, J Non-Newton Fluid, 60:27–52, 1995.

[42] X. He, M. Dembo, On the mechanics of the first cleavage division of the sea urchin egg,

Exp Cell Res, 233:252–273, 1997.

[43] M. Herant, M. Dembo, Form and function in cell motility: From fibroblasts to kerato-

cytes, Biophys J, 98:1408–1417, 2010.

40



[44] M. Herant, V. Heinrich, M. Dembo, Mechanics of neutrophil phagocytosis: Experiments

and quantitative models, J Cell Sci, 119:1903–1913, 2006.

[45] M. Herant, A. Marganski, M. Dembo, The mechanics of neutrophils: Synthetic modeling

of three experiments, Biophys J, 84:3389–3413, 2003.

[46] C.S. Hogea, B.T. Murray, J.A. Sethian, Simulating complex tumor dynamics from avas-

cular to vascular growth using a general level-set method, J Math Biol, 53:86–134, 2006.

[47] T.L. Jackson, H.M. Byrne, A mathematical model to study the effects of drug resistance

and vasculature on the response of solid tumors to chemotherapy, Math Biosci, 164:17–

38, 2000.

[48] T.L. Jackson, H.M. Byrne, A mechanical model of tumor encapsulation and transcapular

spread, Math Biosci, 180:307–328, 2002.

[49] R.K. Jain, R.T. Tong, L.L. Munn, Effect of vascular normalization by antiangiogenic

therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: in-

sights from a mathematical model, Cancer Res, 67:2729–2735, 2007.

[50] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,

1995.

[51] L.A. Kunz-Schughart, Multicellular tumour spheroids: intermediates between mono-

layer culture and in vivo tumour, Cell Biol Int, 23(3):157–161, 1999.

[52] D. Leclers, K. Durand, A. Dutour, G. Barrière, J. Monteil, M. Rigaud, F. Sturtz,

Lymphatic vessels and cancer, Med Sci (Paris), 21(10):839–847, 2005.

[53] W.P. Leenders, B. Kusters, R.M. de Waal, Vessel co-option: how tumours obtain blood

supply in the absence of sprouting angiogenesis, Endothelium, 9(2):83–87, 2002.

[54] G. Lemon, J.R. King, Multiphase modelling of cell behaviour on artificial scaffolds:

Effects of nutrient depletion and spatially nonuniform porosity, Math Med Biol, 24:57–

83, 2007.

[55] G. Lemon, J.R. King, H.M. Byrne, O.E. Jensen, K.M. Shakesheff, Mathematical mod-

elling of engineered tissue growth using a multiphase porous flow mixture theory, J

Math Biol, 52:571–594, 2006.

[56] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University

Press, 2002.

[57] J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S.M. Wise, V.

Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours,

Nonlinearity, 23:R1–R91, 2010.

41



[58] S.R. Lubkin, T.L. Jackson, Multiphase mechanics of capsule formation in tumors, J

Biomech Eng-T ASME, 124:237–243, 2002.

[59] P. Macklin, S. McDougall, A.R.A. Anderson, M.A.J. Chaplain, V. Cristini, J. Lowen-

grub, Multiscale modelling and nonlinear simulation of vascular tumour growth, J Math

Biol, 58:765–798, 2009.

[60] J. Moreira, A. Deutsch, Cellular automation models of tumor development: a critical

review, Adv Complex Syst, 5(2-3):247–267, 2002.

[61] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver,

http://graal.ens-lyon.fr/MUMPS/ [last accessed 6th February 2012].

[62] R.D. O’Dea, S.L. Waters, H.M. Byrne, A two-fluid model for tissue growth within a

dynamic flow environment, Eur J Appl Math, 19:607–634, 2008.

[63] R.D. O’Dea, S.L. Waters, H.M. Byrne, A multiphase model for tissue construct growth

in a perfusion bioreactor, Math Med Biol, 27(2):95–127, 2010.

[64] M.E. Orme, M.A.J. Chaplain, A mathematical model of vascular tumour growth and

invasion, Math Comput Model, 23(10):43–60, 1996.

[65] J.M. Osborne, R.D. O’Dea, J.P. Whiteley, H.M. Byrne, S.L. Waters, The influence of

bioreactor geometry and the mechanical environment on engineered tissues, J Biomech

Eng-T ASME, 132(5):051006, 2010.

[66] J.M. Osborne, J.P. Whiteley, A numerical method for the multiphase viscous flow equa-

tions, Comput Method Appl M, 199:3402–3417, 2010.
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