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AbstractFlux di�erence splitting methods are widely used for the numerical ap-proximation of homogeneous conservation laws where the ux depends onlyon the conservative variables. However, in many practical situations thisis not the case. Not only are source terms commonly part of the mathe-matical model, but the ux can vary spatially even when the conservativevariables do not. It is the discretisation of the additional terms arisingfrom these two situations which is addressed in this work, given that aspeci�c ux di�erence splitting method has been used to approximate theunderlying conservation law. The discretisation is constructed in a mannerwhich retains an exact balance between the ux gradients and the sourceterms when this is appropriate.The e�ectiveness of these new techniques, in both one and two di-mensions, is illustrated using the shallow water equations, in which theadditional terms arise from the modelling of bed slope and, in one dimen-sion, breadth variation. Roe's scheme is chosen for the approximation ofthe conservation laws and appropriate discrete forms are constructed forthe additional terms, not only in the �rst order case (which has been donebefore) but also in the presence of ux limited and slope limited high res-olution corrections. The method is then extended to two-dimensional owwhere it can be applied on both quadrilateral and triangular grids.
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1 IntroductionThere has been much research in CFD into the accurate and e�cient solution ofhomogeneous systems of conservation laws. More recently, as numerical modelsbecome more complicated and the areas of application of these methods widens,it has become important that other aspects of the discretisation be given dueattention. This is certainly true in the �eld of computational hydraulics wherethe modelling can be dominated by the e�ects not only of source terms, but alsoof quantities which vary spatially but independently of the ow variables.It can be argued that the presence of these e�ects warrants the constructionof new numerical schemes which are appropriate to the nature of the equations,not one of the many which have been constructed for the simple, homogeneouscase. However, this work is concerned with how the additional terms shouldbe discretised, given that a speci�c scheme has been used to approximate theux terms. This approach has been taken previously by a number of authors,and applied in a variety of di�erent situations. For example, Smolarkiewicz hasadapted his own MPDATA scheme to solve inhomogeneous equations arising fromgeophysical ows [14], LeVeque has incorporated the modelling of source termsfor shallow water ows within his wave-propagation algorithm [9], and Roe'sscheme [11] has been modi�ed by a number of authors to include source terms,the research of Glaister [6], V�azquez-Cend�on [16], Berm�udez and V�azquez [1] andBerm�udez et al. [2] being of particular relevance to this work.In each of the aforementioned papers discussing Roe's scheme, the discreteform of the source terms has been deliberately constructed along similar lines tothe numerical uxes. This is done to ensure that equilibria which occur in themathematicalmodel are retained by the numerical model, and that in the absenceof additional terms, the conservative uxes are retrieved for accurate modellingof discontinuous solutions. However, all of the previous work deals only withthe �rst order scheme. The intention of this paper is to provide an extension ofthese ideas to higher order Total Variation Diminishing (TVD) versions of Roe'sscheme (using both ux limiting and slope limiting techniques) and to describe asource term approximation which has each of the above properties on all types of3



regular and irregular grids in any number of dimensions. Furthermore, followingon from [4], a new formulation is presented for the discretisation of the ux inthe case where it depends on a spatially varying quantity which is independentof the solution.The shallow water equations have been chosen to demonstrate the e�ectivenessof these new techniques in one and two dimensions, by modelling the e�ects ofa sloping bed and, in one dimension only, the inclusion of breadth variation inan open channel. The one-dimensional discretisation is described �rst, in Section2, for a general system of conservation laws, followed by its application to theshallow water equations and a wide selection of results to show its accuracy. InSection 3 the generalisation to two dimensions, illustrated using unstructuredtriangular grids, is presented and again applied to the shallow water equations.The �nal section contains some brief conclusions obtained from the work.2 One dimensionThe one-dimensional equations representing a system of conservation laws withsource terms may be written U t + F x = S ; (2:1)where U is the vector of conservative variables, F is the conservative ux vec-tor and S includes all of the source terms. In this section it is assumed thatF = F (U); in Section 2.2 the ux will be assumed to depend not only on theconservative variables but also another independent, spatially varying quantity,i.e. F = F (U;B(x)).Using the standard �nite volume approximation of the ux terms in (2.1),combined with a simple, forward Euler discretisation of the time derivative leadsto a di�erence scheme which can be writtenUn+1i = Uni � �t�xi �F �i+ 12 � F �i� 12�+ �t�xi S�i ; (2:2)in which F � represents a numerical ux evaluated at an interface between controlvolumes and S� � R S dx is a numerical source integral over the control volume,4



which has yet to be approximated. For convenience, a cell centre scheme in whichthe control volumes coincide with the mesh cells has been considered throughoutthis work, although the ideas may be applied to other types of scheme in a similarmanner.At �rst sight, the second term on the right hand side of (2.2) looks like adiscrete ux derivative for cell i. However, for the purposes of this work it ismore convenient to consider it from the point of view of the numerical uxesbeing constructed from an approximation to the integral of the ux derivativesover dual cells and providing contributions to the cell updates (�xi comes fromthe integration of the original equations over the control volume).Commonly, S�i is evaluated pointwise, taking the value �xi S(U i), or splitsymmetrically, giving an expression of the formS�i = �xi2 �S(U i� 12 ) + S(U i+ 12 )� ; (2:3)but a more sophisticated approach is sought here, based on the approach ofGlaister [6], which accounts for the form of the numerical uxes.
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Figure 2.1: Numerical uxes and sources for the cell centre scheme.Note that in the absence of source terms the scheme given by (2.2) reducesto a conservative discretisation of the homogeneous system. Also, (2.2) has beenwritten with irregular grids in mind, and as a consequence the mesh spacing�xi = xi+ 12 � xi� 12 relates to the cells, not the nodes (see Figure 2.1).Roe's scheme [11] is one of the most commonly used examples of the conserva-tive �nite volume method mentioned above. This is an upwind scheme which uses5



an approximate Riemann solver to decompose the ux terms into characteristiccomponents by diagonalisation of the homogeneous part of a linearised form ofthe system (2.1), which is U t + ~AU x = 0 ; (2:4)where ~A � @F@U is the linearised ux Jacobian of the system. The Riemannproblems arise at the interfaces between the control volumes (the mesh nodes inthis case) where discontinuities occur in the discrete representation of the solution.Application of Roe's Riemann solver results in a decoupling of the linearisedequations that splits the ux di�erence so that it can be written in a number ofequivalent forms, i.e. at an interface�F i+ 12 = ( ~A�U)i+ 12 = ( ~R ~� ~R�1�U)i+ 12 =  NwXk=1 ~�k~�k~rk!i+ 12 ; (2:5)in which �F represents the jump in F across the edge of a control volume, ~R isthe matrix whose columns are the right eigenvectors ~rk of ~A, ~� is the diagonalmatrix of eigenvalues ~�k of ~A, and the components of ~R�1�U(= �W ) are the`strengths' ~�k associated with each component of the decomposition (W being thevector of characteristic variables of the system). The �nal expression indicateshow the ux di�erence is decomposed into Nw characteristic components (orwaves of the Riemann problem), where Nw is the number of equations of thesystem (2.4). In both (2.4) and (2.5), ~� denotes the evaluation of a quantity atits Roe-average state [11, 5]. This is a special average state of the ow variableswhich is constructed so that (2.5) is always satis�ed for the given system.Having obtained the decomposition (2.5), Roe's scheme for a homogeneoussystem of equations is constructed from (2.2) by taking the numerical uxes tobe F �i+ 12 = 12 (F i+1 + F i)� 12 � ~Rj~�j ~R�1�U�i+ 12 ; (2:6)where j~�j = diag(j~�kj): the source terms have been temporarily ignored. Asimilar expression can be written down for F �i� 12 .Generally, ~� in (2.6) can represent any consistent approximation to the spec-i�ed variables, and the resulting scheme will be conservative. However, forcingit 6



ii� 1 i+ 1�+ ��i� 12 i+ 12Figure 2.2: Wave propagation directions in a control volume.Choosing the Roe-average state (represented by ~�) to satisfy (2.5) means thatthe resulting approximate Riemann solver is an exact solver for this local lineari-sation of the Riemann problem. More importantly, in the context of this work,when (2.5) is combined with (2.6) the nodal update scheme given by (2.2) isequivalent to the uctuation-signal scheme [12] given byUn+1i = Uni � �t�xi �� ~R ~�� ~R�1�U�i+ 12 + � ~R~�+ ~R�1�U�i� 12 �+ �t�xi S�i ; (2:7)in which ~�� = 12(~� � j~�j) : (2:8)This splits the update into contributions related to right-going (+) and left-going(�) characteristics in the decomposition. It follows that the solution is updatedusing only contributions from the wave perturbations of the Riemann problemsat the nodes which enter the cell under consideration, as illustrated in Figure 2.2.It remains to choose an appropriate form for the numerical source term integralS�.2.1 Source termsThis work follows much recent research into source term discretisation, see forexample [5, 6, 1, 4], which has concentrated on the use of a characteristic de-composition of the type shown in (2.5). This similarly projects the source termintegral onto the eigenvectors of the ux Jacobian ~A, so that in its linearised7



form it can be expressed asZ xi+1xi S dx � ~Si+ 12 = � ~R ~R�1~S�i+ 12 =  NwXk=1 ~�k~rk!i+ 12 ; (2:9)where ~�k, the coe�cients of the decomposition, are the components of the vector~R�1~S. Note that the integral approximated in (2.9) is over a dual cell of themesh (associated with the interface i+ 12), and can be easily incorporated withinthe uctuation-signal form of the �nite volume scheme given by (2.7). S�i willbe constructed out of contributions from both ends of the cell, with consistencyassured as long as the whole of each dual cell integral (2.9) is distributed.It is useful (though less so than in higher dimensions) to note here that theanalytical form of the source term can be split up into components which can bediscretised separately, i.e. S = S0 +Xj S1j @S2j@x ; (2:10)so that its integral can be approximated consistently byZ xi+1xi S dx � ~Si+ 12 = 0@�x ~S0 +Xj ~S1j �S2j1Ai+ 12 ; (2:11)and comparison with (2.9) leads directly to the coe�cients ~�k of the characteristicdecomposition of ~Si+ 12 .The terms within the sum on the right hand side of (2.11) may be called uponto balance components of the ux di�erence �F (2.5) so they must be linearisedin the same way to ensure that, for the chosen equilibrium state,Fx � S � 0 ) �F i+ 12 � ~Si+ 12 = 0 (2:12)throughout the domain. This follows because at this equilibrium the decom-positions (2.5) and (2.9) have been constructed to give ~� ~R�1�U = ~R�1~S (oralternatively ~�k~�k = ~�k). Hence ~� still represents the evaluation of a quantity atthe Roe-average state.The �rst term on the right hand side of (2.11) contains only contributionswhich provide no exact balance with the ux derivatives (e.g. bed friction termsin the shallow water equations), so the precise form of their linearisation is not8



prescribed by the above arguments. However, it seems sensible that they shouldalso be evaluated at the same state, given by the Roe-average.As a result of the characteristic decomposition (2.9), the source terms maybe discretised in an `upwind' manner (although, since none of the componentshas an inherent upwind direction, this must be taken from the corresponding uxcomponent). This leads straightforwardly to an appropriate upwind uctuation-signal formulation for the �rst order scheme (2.7) with source terms, given byUn+1i = Uni � �t�xi �� ~R( ~�� ~R�1�U � I� ~R�1~S)�i+ 12+ � ~R( ~�+ ~R�1�U � I+ ~R�1~S)�i� 12 � ; (2.13)in which I� = ~��1 ~��. The correct balance follows immediately from (2.12).It is not immediately clear though, how the discretisation of the source termimplied by (2.13) can be converted into a numerical source integral S�i so thatthe same balance can be achieved within the ux-based form of the scheme (2.2),particularly when it is extended to higher order. Previous attempts have onlyproved successful for �rst order schemes.
ii� 1 i+ 1i� 12 i+ 12F�i� 12 F�i+ 12S�i� 12� S�i� 12+ S�i+ 12 � S�i+ 12+Figure 2.3: Flux and source distribution within a control volume.The di�culties which arise (and the solution to the problem) can be high-lighted by following the transformation of (2.13) into an equation correspondingto (2.2). With a small amount of algebraic manipulation (2.13) becomesUn+1i = Uni � �t2�xi �� ~R( ~� ~R�1�U � ~R�1~S)�i+ 12+ � ~R( ~� ~R�1�U � ~R�1~S)�i� 12 �+ �t2�xi �� ~R(j~�j ~R�1�U � sgn(I) ~R�1~S)�i+ 129



� � ~R(j~�j ~R�1�U � sgn(I) ~R�1~S)�i� 12 � ; (2.14)in which sgn(I) = ~��1j~�j. Since (2.5) and (2.9) hold, and�F i+ 12 +�F i� 12 = (F i+1 + F i)� (F i + F i�1) ; (2:15)it follows that the scheme (2.14) can be simpli�ed toUn+1i = Uni � �t�xi �F �i+ 12 � F �i� 12�+ �t�xi �S�i+ 12� + S�i� 12+� : (2:16)The numerical uxes, F �i+ 12 and F �i� 12 , are precisely those de�ned by (2.6) andthe numerical source term integral of (2.2) is given byS�i = S�i+ 12� + S�i� 12+ ; (2:17)where S�i+ 12� = 12 � ~R(I� sgn(I)) ~R�1~S�i+ 12 = � ~RI� ~R�1~S�i+ 12 (2:18)and S�i� 12+ = 12 � ~R(I+ sgn(I)) ~R�1~S�i� 12 = � ~RI+ ~R�1~S�i� 12 : (2:19)Note that because the numerical source integral cannot, in general, be writtenas a di�erence, nothing similar to (2.15) can be applied to it to allow it to beincluded within the numerical ux (2.6). This means that the balance which issought between ux derivatives and sources in the ux-based scheme can onlybe obtained locally by balancing non-zero uxes through the edges of a controlvolume, and not by setting each edge ux to zero. One important consequenceof this is that the most sensible method of applying the boundary conditions tothe numerical scheme is through the addition of ghost cells, since this requires nofurther correction to maintain the balance which is sought. The distribution ofthe numerical uxes and source term components is shown in Figure 2.3.It is of course possible to overcome the above problem when the source termtakes the form of a derivative. If this is the case the source simply augments theconservative ux in the scheme (2.2), i.e. given S = Gx thenF � ! F � �G� ; (2:20)10



and S� becomes obsolete. In some cases it may also be possible to incorporatesome part of the source term which can be expressed as a derivative within thenumerical ux, and then apply an appropriate discretisation to the remainingcomponent of the source.2.1.1 Flux limited schemesThe approach presented in the previous section is no di�erent to the standardupwind technique for approximating source terms when a �rst order upwind uxdiscretisation is being used [5]. The only new aspect is the way it has beenwritten, splitting the dual cell source integral into two parts. Usually though,accuracy of higher than �rst order is required for practical calculations.The accuracy of Roe's scheme is improved, without introducing spurious os-cillations into the solution, by the application of ux limiting techniques [15, 8].These ensure second order accuracy in smooth regions of the ow, whilst enforc-ing a Total Variation Diminishing (TVD) property. It is achieved by including ahigh order correction term in the numerical ux, which becomes [13]F �i+ 12 = 12 (F i+1 + F i)� 12 � ~Rj~�jL ~R�1�U�i+ 12 ; (2:21)in which L = diag(1 � L(rk)(1 � j�kj)), where �k = ~�k�t=�x is the Courantnumber associated with the kth component of the decomposition, L is a nonlinearux limiter function, as described in [8, 15], andrk = ~�upwindk~�localk : (2:22)It is clear that a corresponding high order correction must also be made to thesource term approximation, and its form can be derived simply by comparing thenumerical sources of (2.18,2.19) with the numerical uxes in (2.6), all of whichhave been split into two parts which are balanced separately. The ux limiter isonly applied to the second part of the numerical ux, so the ux limited numericalsource which maintains the balance achieved by the �rst order discretisation takesthe form S�i+ 12� = 12 � ~R(I� sgn(I)L) ~R�1~S�i+ 12 ; (2:23)11



with a similar expression for S�i� 12+ in (2.17). Note that since (2.23) is an edge-based quantity, it is simple to evaluate with the uxes and include within thenumerical model.At this point it should be emphasised that the TVD condition which the uxlimiter has been constructed to satisfy applies to the homogeneous system of con-servation laws, and the inclusion of source terms means that spurious oscillationsmay appear in the �nal solution. The same is true of the slope limited schemesof the next section. This problem has not been addressed in this work.2.1.2 Slope limited schemesThe same balance is slightly more di�cult to achieve when the high resolutionscheme is constructed using a MUSCL-type slope limiting approach [17]. This isbecause the underlying representation of the solution is now taken to be linearwithin each cell so that (2.15) is no longer true. It can though, be replaced bythe more general expression,�F i+ 12 +�F i� 12 = (FRi+ 12 + F Li+ 12 )� (FRi� 12 + FLi� 12 )� 2(FLi+ 12 � FRi� 12 ) ; (2:24)where the superscripts �R and �L represent evaluation on, respectively, the rightand left hand sides of the interface indicated by the associated subscript (as shownin Figure 2.4). The corresponding numerical ux isF �i+ 12 = 12 �FRi+ 12 + FLi+ 12�� 12 � ~Rj~�j ~R�1�U�i+ 12 ; (2:25)in which the Roe-averages are now evaluated from the reconstructed piecewise lin-ear solution. An appropriate correction must therefore be made to the numericalsource within each cell, and this leads toS�i = �S�i+ 12� + S�i� 12+�� ~S�ULi+ 12 ; URi� 12� : (2:26)The �rst term on the right hand side is evaluated precisely as before, in (2.17),except that the interface values are now those of the MUSCL reconstruction ofthe solution within each cell. ~S is simply the source term integral approximatedover the mesh cell (cf. (2.11)), and hence evaluated at the Roe-average of the leftand right states of the linear reconstruction of the solution within the cell. In12



terms of the approximations (2.12) and (2.11) the extra term can be thought ofas a correction to the integral of the source term over the dual cell arising fromthe linear variation of the approximation.
ii� 1 i+ 1i� 12 i+ 12
~S FRi+ 12FRi� 12S�i� 12+ S�i+ 12 �FLi� 12 FLi+ 12Figure 2.4: Flux and source evaluation for the MUSCL scheme.2.2 Spatially dependent uxesIn some situations the ux may depend on quantities other than the ow variablesand the numerical scheme needs to be modi�ed appropriately. Only one extraspatially varying quantity will be considered here but the approach is easily ex-tended to any number. Returning to Equation (2.1) and taking F = F (U;B(x)),where B varies independently of U , requires a modi�cation to the characteristicdecomposition, so that (2.5) becomes�F i+ 12 = � ~A�U + ~V �i+ 12= � ~R~� ~R�1�U + ~R ~R�1 ~V �i+ 12=  NwXk=1 ~�k~�k~rk + NwXk=1 ~k~rk!i+ 12 ; (2.27)where ~V � @F@B�B and ~k, the coe�cients of the decomposition of this extraterm, are the components of ~R�1 ~V . (2.27) gives a set of Nw equations in Nw +1unknowns, which are taken to be a set of consistent Roe-averaged independentvariables from which ~U and ~B (and all other variables) can be evaluated. Thisleaves one degree of freedom which can be used by enforcing �F � ~S = 0 at an13



appropriate state of equilibrium (cf. (2.11) in which the equilibrium was achievedautomatically using the original averages).Following the same steps as in Section 2 to transform the uctuation-signalscheme to the ux-based scheme, but including this extra term in the ux d-i�erence, leads to precisely the same form for the scheme when approximatingthe homogeneous system as shown in (2.2), but with new expressions for thenumerical uxes, given byF �i+ 12 = 12 (F i+1 + F i)� 12 � ~Rj~�j ~R�1�U + ~R sgn(I) ~R�1 ~V �i+ 12 ; (2:28)in the �rst order case,F �i+ 12 = 12 (F i+1 + F i)� 12 � ~Rj~�jL ~R�1�U + ~R sgn(I)L ~R�1 ~V �i+ 12 ; (2:29)when the ux limited high resolution scheme is being used, orF �i+ 12 = 12 �FRi+ 12 + F Li+ 12�� 12 � ~Rj~�j ~R�1�U + ~R sgn(I) ~R�1 ~V �i+ 12 ; (2:30)for the MUSCL scheme, where the averages are now calculated from the linearlyreconstructed solution. By including this extra term in the numerical ux it ispossible to avoid altering the form of the source term, as was suggested in [10].2.3 Shallow water owsThe shallow water equations have been chosen as the system of equations toillustrate the use of these new techniques. In one dimension, shallow water owthrough a rectangular open channel of varying breadth and bed slope. The e�ectsof bed friction may also be included and, as described in Section 2.1, are simpleto treat within the new framework without disturbing balance between the othersource terms and the ux derivatives. However, since it is this balance which thenew discretisation has been constructed to maintain, friction is not included inthe following discussion. The remaining system can be modelled by the equations0B@ bdbdu 1CAt + 0B@ bdubdu2 + 12gbd2 1CAx = 0B@ 012gd2bx + gbdhx 1CA ; (2:31)which, when compared with (2.1) to �nd U , F and S, ultimately leads to@F@U = 0B@ 0 1gd� u2 2u 1CA ; @F@B = 0B@ 0�12gd2 1CA : (2:32)14



In these equations d is the depth of the ow, h is the depth of the bed below anominal still water level, b = b(x) is the channel breadth, u is the ow velocity,and g is the acceleration due to gravity. These quantities are depicted in Figure2.5. u ubdh� Side view Plan viewFigure 2.5: The shallow water ow variables.Equation (2.31) provides an example which includes source terms and a spatialdependence on channel breadth which is independent of the ow. Furthermore,the balance which has been sought in previous sections is illustrated by the steadystate represented by still water (d � h and u � 0), in which case the system (2.31)reduces to �12gbd2�x = 12gd2bx + gbdhx : (2:33)Previously it has only been possible to maintain this steady state numericallywhen �rst order schemes have been used.The characteristic decomposition (2.27) for the one-dimensional shallow waterequations (2.31) and (2.32) is completely de�ned by~�1 = �(bd)2 + 12~c (�(bdu)� ~u�(bd)) ; ~�2 = �(bd)2 � 12~c (�(bdu)� ~u�(bd))~�1 = ~u+ ~c ; ~�2 = ~u� ~c~r1 = 0B@ 1~u+ ~c 1CA ; ~r2 = 0B@ 1~u� ~c 1CA~1 = � 14g ~c3�b ; ~2 = 14g ~c3�b ; (2.34)15



and it is easily shown that (2.27) is satis�ed exactly when~u = pbRdRuR +pbLdLuLpbRdR +pbLdL ; ~c2 = g  pbRdR +pbLdLpbR +pbL ! ; (2:35)which reduce to the Roe-averages for one-dimensional shallow water ow de-scribed in [5] in the absence of breadth variation (i.e. when bR = bL). Thecorresponding decomposition of the source terms (2.9) then leads to~�1 = 14g ~c3�b+ 12~b~c�h = �~�2 (2:36)In order for (2.18) and (2.19) to maintain the correct balance, i.e.~�k~�k + ~k � ~�k = 0 8k (2:37)or equivalently, ~R �~� ~R�1�U + ~R�1 ~V � ~R�1~S� = 0 (2:38)when the ow is quiescent, ~b is constructed so that it satis�es~b�h = �(bh)� ~h�b ; (2:39)where ~h is evaluated in a similar manner to ~d,~h = pbRdR +pbLdLpbR +pbL ; (2:40)so that d � h ) ~d = ~h throughout the domain. Note that this also requiresthat d and h are reconstructed in the same manner if the MUSCL high resolutionscheme is used.2.3.1 Numerical resultsThe results presented in this section have been chosen to illustrate the improve-ment in the approximation using the new techniques by focusing on the following:� the ability to maintain quiescent ow,� the accuracy of approximations to both continuous and discontinuous steadystate solutions,� the accuracy of simple time-dependent approximations.16



These have been studied using a variety of channel geometries.The geometry for the �rst test case was proposed by the Working GroupOn Dam-Break Modelling [3], and the bed and breadth variation of the channel(of length 1500) are depicted in Figure 2.6. The upwind source term treatmentdescribed in this paper is compared with a much simpler pointwise discretisationsin Figure 2.7 (using a uniform 600 cell grid, so that �x = 2:5), which show graphsof water surface level and unit discharge for the numerical steady states whichresult from quiescent initial conditions (� = d � h = 12:0 and u = 0:0), andapplying simple non-reecting boundary conditions. In this case the initial (stillwater) conditions should be maintained inde�nitely by the numerical scheme.
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Figure 2.6: Breadth (left) and bed (right) variation for the `tidal ow' test case.The comparison is made between �rst order, slope limited and ux limitedschemes combined with pointwise and upwind source term discretisations: in al-l high resolution cases the Minmod limiter [15] has been applied. The upwindsource term discretisations always produce the correct steady state solution, ex-act to machine accuracy and indistinguishable from the exact solution in thegraphs. This is not only true for the �rst order scheme (which has been achievedpreviously) but also for the high resolution TVD schemes using any ux or slopelimiter on any grid in the presence of bed slope and breadth variations. Thepointwise discretisations show small discrepancies (a central discretisation of thesource term was also tried but produced even worse results than the pointwiseapproximation and isn't presented here), most notably in the unit discharge, a17



quantity which depends on the ow velocity. In each case the method describedin Section 2.2 is used to discretise the uxes where the channel breadth varies.The second channel geometry which will be used in this work is de�ned overthe interval [0:0; 3:0] and has a smoothly varying depth and breadth, given byb(x) = 8><>: 1:0 � (1:0� bmin) cos2(�(x� 1:5)) for jx� 1:5j � 0:51:0 otherwise ; (2:41)where bmin is the minimum channel breadth, andh(x) = 8><>: 1:0 � zmax cos2(�(x� 1:5)) for jx� 1:5j � 0:51:0 otherwise ; (2:42)in which zmax is the maximum height of the bed above the level � = 0:0. This hasbeen chosen as a simple channel geometry for which exact steady state solutionsto the one-dimensional shallow water equations are available for comparison [7].The parameters chosen to de�ne the channel here are zmax = 0:1 and bmin = 0:9.A uniform 150 cell grid has been used for each computation.Three ows are compared:� F1 = 0:5, d1 = 1:0, giving purely subcritical ow which is symmetricabout the throat of the constriction (the most narrow point, x = 1:5),� F1 = 0:6, d1 = 1:0, giving transcritical ow with a stationary hydraulicjump downstream of the throat and a critical point at the throat,� F1 = 1:7, d1 = 1:0, giving purely supercritical ow which is symmetricabout the throat.The subscript �1 represents the freestream ow values `at in�nity' which areused in the application of simple characteristic boundary conditions at inowand outow. The results of the comparisons for each of the schemes are shownin Figures 2.8{2.10. The graphs show the variation of total discharge Q throughthe channel, a quantity which should remain constant at the steady state.In each case the upwinded source terms can be seen to model the solution bet-ter than the pointwise evaluation. This is particularly noticeable in the subcritical18
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Figure 2.7: Water surface level and unit discharge for quiescent ow in a channelwith variable bed and breadth, see Figure 2.6, for �rst order (top) and highresolution slope limited (centre) and ux limited (bottom) schemes (t = 1000).19
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case where the latter is unable to attain a symmetric solution. The position andstrength of the hydraulic jump is predicted accurately by all of the schemes, al-though there is a small discrepancy in the discharge at the discontinuity in everycase. Note that in the second order case small oscillations appear in the `up-winded', slope limited solution. These are not prohibited by enforcing the TVDcondition because this only applies to the homogeneous equations, although theyappear in neither the �rst order nor the ux limited results. This indicates thatthe correction term of (2.26) may require modi�cation away from the still watersteady state.In [16] it is shown that, for a `short' channel (of length L, taken here to be1500) and `low-speed' ow, given the initial conditionsd(x; 0) = h(x) ; q(x; 0) = 0 ; (2:43)where q = du and h(x) is indicated in Figure 2.6, and the boundary conditionsd(0; t) = h(0) + �(t) ; q(L; t) =  (t) ; (2:44)then a �rst order approximate solution to the equations (2.31) can be expressedas d(x; t) = h(x) + �(t)q(x; t) =  (t) + �0(t)b(x) Z Lx b(s) ds : (2.45)The quiescent ow case considered earlier corresponds to taking �(t) �  (t) � 0.A time-dependent `tidal' ow test case was suggested in [16] for which�(t) = 4 + 4 sin (t� 10800)�21600 ! (2:46)and  (t) � 0, the asymptotically exact solution being given by (2.45). The`exact' and numerical solutions (all computed on the same regular 600 cell grid)to this problem when t = 10800 are compared in Figure 2.11. The agreementis very close for the �rst order and both of the higher order schemes when theupwind source discretisation is used. The main disadvantage of the higher ordermethod is that there is a much stricter practical bound on the CFL number for23
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Figure 2.11: Water surface level and unit discharge for the tidal ow test casefor �rst order (top) and high resolution slope limited (centre) and ux limited(bottom) schemes. 24



the solution to remain free of unwanted oscillations (a value of 0.1 was used in thesecond order case compared with 0.8 for the �rst order scheme). At higher CFLnumbers the accuracy of the solutions is comparable to the accuracy of thoseobtained with the simpler source term discretisations. This is due to the factthat the TVD condition only applies in the absence of source terms. Note thoughthat, as in the still water test, even though the pointwise source discretisationgives a reasonable approximation to the depth, it is very poor at predicting theow velocity.3 Higher dimensionsThe following analysis is presented for the two-dimensional case but can be ap-plied simply in three dimensions as well. The conservative form of a system ofconservation laws with additional source terms is expressed asU t + Fx +Gy = S ; (3:1)in which there are now two ux vectors, denoted by F = F (U) and G = G(U).The case where the uxes depend on a quantity other than the ow variablesis not presented here, having no obvious application to two-dimensional shallowwater ows, but can be dealt with in a similar manner to the one-dimensionalcase presented in Section 2.2.A combination of a standard �nite volume approximation of the ux terms onan arbitrary polygonal mesh (although only triangular and quadrilateral mesheswill be considered in the results) and a forward Euler discretisation of the timederivative leads to the conservative di�erence scheme,Un+1i = Uni � �tVi NeXl=1 Lil (F �il; G�il) � ~̂nil + �tVi S�i (3:2)where Vi is the area of the chosen control volume, Ne is the number of edges ithas, ~̂nil is the outward pointing unit normal to the edge common to cells i and l(where l represents a generic neighbouring cell) and Lil is the length of that edge(as shown for a triangular mesh cell in Figure 3.1). S� � R Rcell S dxdy is oncemore a numerical approximation to the source integral over the control volume.25



For simplicity the scheme will again be assumed to be a cell centre discretisationin which the control volumes coincide with the mesh cells, although the techniquesmay also be applied to other types of scheme. The following analysis runs alongsimilar lines to that presented in previous sections for the one-dimensional case.G�ilF�ilS�iViLil ~̂nilcell i cell l
Figure 3.1: Numerical uxes and sources for the cell centre scheme.3.1 The �rst order schemeThe numerical uxes which lead to the �rst order Roe's scheme in two dimensionsare given by(F �il; G�il) � ~̂nil = 12(F i + F l; Gi +Gl) � ~̂nil � 12 � ~Rj~�j ~R�1�U�il ; (3:3)in which the eigenvectors and eigenvalues which are needed to construct ~R and~� are now those of the matrix ~Cn = ( ~A; ~B) � ~̂n, where~A � @F@U and ~B � @G@U (3:4)are the linearised ux Jacobians. It can be seen that the numerical ux is similarin form to that used in one dimension (2.6). In particular, ~� again denotes theevaluation of a quantity at its Roe-average state.Since the two-dimensional scheme is based on Riemann solvers oriented per-pendicular to the edges of the grid cells the decomposition also bears a strongresemblance to the one-dimensional case. Once more, as long as the quantities26



denoted ~� are evaluated at the appropriate Roe-average state [11] then the uxdi�erences can be written in the decomposed form�(F;G) � ~̂n = ~Cn�U = ~R~� ~R�1�U = NwXk=1 ~�k~�k~rk (3:5)from which it follows in much the same way as in one dimension that the scheme(3.2) is equivalent toUn+1i = Uni � �tVi NeXl=1 Lil � ~R ~�� ~R�1�U�il + �tVi S�i ; (3:6)where the superscript �� now indicates the incoming characteristics at the ap-propriate edge of the control volume (see Figure 3.2). It is easily seen that thisreduces to (2.7) when restricted to one dimension. li S�il� S�il+ = S�li����� �� edge-cell il
Figure 3.2: Wave propagation directions (left) and source distribution (right)within a triangular cell in two dimensions.As in one dimension the analytical form of the source term can be split intocomponents to be integrated separately (cf. (3.30)) so thatS = S0 +Xj S1j ~r � (Sxj ; Syj ) : (3:7)Hence, integrating over an edge-cell and applying the divergence theorem to theterms within the sum leads naturally to the approximationZ Z3il S dxdy � ~Sil = 0@V3 ~S0 +Xj ~S1j I@3(Sxj ; Syj ) � d~n1Ail ; (3:8)27



in which V3 is the area of the edge-cell. Now, given that the solution has alreadybeen assumed to be constant in each part of the edge-cell for the purposes of theRiemann solver, and hence the ux evaluation, the approximation reduces to~Sil = 0@V3 ~S0 +Xj ~S1j �(Sxj ; Syj ) � ~n1Ail ; (3:9)where ~n is the normal to the edge, scaled by its length, see also (3.31). The termswithin the sum may again be required to balance the ux di�erence, so the sameRoe linearisation is used in their evaluation, and it follows thatF x +Gy � S � 0 ) ��(F;G) � ~n� ~S�il = 0 (3:10)throughout the domain: 3il is the edge-cell corresponding to the edge betweencells i and l, as shown in Figure 3.2. The three-dimensional case is similar, withall the approximations being carried out over a face-cell with the solution beingassumed constant on either side.The two-dimensional source term can now be written as a characteristic de-composition similar to that of the ux di�erence (3.5), i.e. its linearisation cantake the form ~Sil = � ~R ~R�1~S�il = Lil  NwXk=1 ~�k~rk!il : (3:11)Evaluating this at the same Roe-average state as the ux di�erence means thatthe correct balance is attained because, at equilibrium, the decompositions giveL�R�1�U = R�1S. S�i will be constructed out of contributions from each edgeof the cell, with consistency assured as long as the whole of each edge-cell integral(3.11) is distributed.The decomposition has been carried out so that, when (3.6) is combined with(3.11) to giveUn+1i = Uni � �tVi NeXl=1 � ~R(L~�� ~R�1�U � I� ~R�1~S)�il ; (3:12)a precise balance can be achieved when one is sought between the sources andthe ux gradients.The relationship between the two forms of the �nite volume scheme, (3.2) and(3.6), can now be exploited. Substituting for I� in (3.12) givesUn+1i = Uni � �t2Vi NeXl=1 � ~R(L~� ~R�1�U � ~R�1~S)�il28



��t2Vi NeXl=1 � ~R(Lj~�j ~R�1�U � sgn(I) ~R�1~S)�il : (3.13)In addition, it is easily shown thatNeXl=1�(F il; Gil) � ~nil = NeXl=1(F i + F l; Gi +Gl) � ~nil ; (3:14)in which �F il = F l � F i is the jump in F across the lth edge of cell i (andsimilarly for G). Therefore, since ~� indicates evaluation at the Roe-average state,(3.5) holds and (3.13) can be rewritten asUn+1i = Uni � �tVi NeXl=1 (F �il; G�il) � ~nil + �tVi S�i ; (3:15)in which the numerical uxes are given by (3.3) and the numerical source isS�i = NeXl=1 S�il� ; (3:16)where S�il� = 12 � ~R(I� sgn(I)) ~R�1~S�il = � ~RI� ~R�1~S�il : (3:17)These expressions bear a close resemblance to the numerical uxes and can beincorporated into the ux-based scheme in a similar manner. As in one dimensionit is not possible to combine the source term completely with the numerical uxes.3.2 High resolution schemesWhen the accuracy of the scheme is increased by the use of a ux limiting tech-nique the numerical ux takes the form(F �il; G�il) � ~̂nil = 12(F i + F l; Gi +Gl) � ~̂nil � 12 � ~R~�L ~R�1�U�il ; (3:18)and the appropriate discretisation of the source term can be shown to beS�il� = 12 � ~R(I� sgn(I)L) ~R�1~S�il (3:19)by similar arguments to those used in one dimension.For a MUSCL-type slope limited higher order numerical scheme, the numericaluxes take the form(F �il; G�il) � ~̂nil = 12(F Il + F iL; GIl +GiL) � ~̂nil � 12 � ~R~� ~R�1�U�il ; (3:20)29



in which the subscripts �Il and �iL represent evaluation of the piecewise linearreconstruction of the solution on, respectively, the inside and the outside of theedge between cells i and l, relative to cell i (indicated in Figure 3.3), giving newvalues from which the Roe-averages at the interface are calculated. Now, insteadof (3.14) the ux di�erences satisfy the more general expressionNeXl=1�(F il; Gil) � ~nil = NeXl=1(F Il + F iL; GIl +GiL) � ~nil�2 NeXl=1(F Il � F i; GIl �Gi) � ~nil : (3.21)Consequently, the numerical source term appropriate to this type of scheme isgiven by S�i = NeXl=1 �S�il� � ~S(U Il; U i)� ; (3:22)where ~� indicates the evaluation of the source term integral (cf. (3.9)) at theRoe-average of the speci�ed conservative variables (taken from the linear recon-struction at the midpoints of the cell edges) and S�il� is taken directly from (3.17).This can again be considered as applying a higher order correction to the integralof the source term over the edge-cell.cell i cell lIliL
~SS�il�Figure 3.3: Flux and source evaluations for a two-dimensional MUSCL-typescheme on triangles. 30



3.3 Shallow water owsIn two dimensions the shallow water equations including the e�ects of varyingbed slope are obtained by substitutingU = 0BBBBB@ ddudv 1CCCCCA ; F = 0BBBBB@ dudu2 + gd22duv 1CCCCCA ; G = 0BBBBB@ dvduvdv2 + gd22 1CCCCCA ; (3:23)where v is the ow velocity in the y-direction in addition to the variables de�nedfor (2.31), and S = 0BBBBB@ 0gdhxgdhy 1CCCCCA (3:24)into (3.1). The matrix Cn can be calculated simply from these for any edgeorientation.When d � h and u � v � 0 (quiescent ow in two dimensions) the desiredbalance is given by the equations gd22 !x = gdhx ;  gd22 !y = gdhy : (3:25)The discretisation should satisfy (3.25) exactly in this special case.The characteristic decomposition is now carried out on the eigenvectors of thematrix ( ~A; ~B) � ~̂n, which are~r1 = 0BBBBB@ 1~u+ ~cnx~v + ~cny 1CCCCCA ; ~r2 = 0BBBBB@ 0�~cny~cnx 1CCCCCA ; ~r3 = 0BBBBB@ 1~u� ~cnx~v � ~cny 1CCCCCA ; (3:26)in which (nx; ny) = ~̂n and ~c = sg(dR + dL)2 ;~u = pdRuR +pdLuLpdR +pdL ; ~v = pdRvR +pdLvLpdR +pdL : (3.27)The superscripts �R and �L indicate here the evaluation of a quantity on either sideof a cell edge, at its midpoint. The corresponding expressions for the eigenvalues(wave speeds) are�1 = ~unx + ~vny + ~c ; �2 = ~unx + ~vny ; �3 = ~unx + ~vny � ~c ; (3:28)31



and the wave strengths,~�1 = �d2 + 12~c (�(du)nx +�(dv)ny � (~unx + ~vny)�d)~�2 = 1~c ((�(dv)� ~v�d)nx � (�(du)� ~u�d)ny)~�3 = �d2 � 12~c (�(du)nx +�(dv)ny � (~unx + ~vny)�d) ; (3.29)complete the decomposition (3.5).In this case, in order to provide the desired balance, the source term is writtenin the form (3.7), givingS = 0BBBBB@ 0gd0 1CCCCCA ~r � (h; 0) + 0BBBBB@ 00gd 1CCCCCA ~r � (0; h) : (3:30)At �rst glance this seems counterproductive, but it immediately allows the sourceterm integral over an edge-cell to be approximated in a manner which will allowthe discrete balance with the ux integral, i.e. it can be approximated in the form(3.9) via (3.8). This leads to~Sil = Lil0BBBBB@ 0g ~d�hnxg ~d�hny 1CCCCCA ; (3:31)which is used to obtain the coe�cients which are used in the characteristic de-composition (3.11). In this case these are~�1 = 12~c�h ; ~�2 = 0 ; ~�3 = �12~c�h : (3:32)By construction, it follows that ~�k~�k � ~�k = 0 for each k, i.e.~R �L~� ~R�1�U � ~R�1~S� = 0 ; (3:33)when the ow is quiescent, and the numerical balance is assured.3.4 Numerical resultsThe test cases presented in this section are essentially a subset of those de-scribed in Section 2.3.1 for the one-dimensional schemes, but applied to the32



two-dimensional shallow water equations. For the purposes of presentation, com-parisons will be made between breadth-averaged solutions for channel ows andexact solutions to the corresponding one-dimensional problem. These will obvi-ously di�er slightly in the non-quiescent cases due to the simpli�cations inherentin the one-dimensional model but still provide an accurate guide when the cross-ow velocity is small, as it is in the results presented.
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Figure 3.4: Water surface level and unit discharge for the still water test case for�rst order (top) and high resolution slope limited (bottom) schemes (t = 1000).The ability of the new techniques to maintain the still water steady stateis illustrated using the geometry of Figure 2.6 and a triangular grid with 4854cells and 2738 nodes (giving about 300 cells along the channel, roughly half theone-dimensional grid resolution). As in one dimension, the upwind source term33
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Figure 3.5: Water surface level and unit discharge for the tidal ow test case for�rst order (top) and high resolution slope limited (bottom) schemes.
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discretisation maintains still, at water inde�nitely to machine accuracy in boththe �rst order and the high resolution cases, see Figure 3.4. This is true of all ofthe channel shapes which were tested and each of the schemes described earlier inthe text. The pointwise evaluation of the source term is clearly unable to matchthis.Results for the tidal ow test case described in Section 2.3.1 are shown inFigure 3.5 for the same triangular grid. Again, the advantage of using the upwindsource term discretisation is clearly visible and here, unlike in one dimension, theCFL number used to obtain the results is still 0.8. When the source terms areupwinded the results from the high resolution scheme are almost oscillation-free(although it must be remembered that the averaging across the channel breadthdoes produce a small amount of smoothing). Generally, it has been seen that theproperties exhibited by the schemes in one dimension are carried over into higherdimensions.4 ConclusionsIn this paper a new method has been presented for the discretisation of sourceterms when they appear as part of a nonlinear system of conservation laws. Specif-ically, the correct approximation to the source terms is sought, given that aparticular �nite volume scheme has been used for the discretisation of the uxterms. Roe's scheme has been chosen here as the underlying numerical scheme,but the philosophy underlying the source term approximation (that the sourceterms must, in some sense, be discretised in the same manner as the ux deriva-tives) may also be applied to other �nite volume methods. The discretisationbuilds on the work of many previous authors [5, 6, 1, 4], who approximated theirsource terms in a manner which took into account the ux discretisation and, asa consequence, allowed the numerical model to maintain speci�c equilibria whichare satis�ed by the mathematical model. The new aspect of this work is thegeneralisation of these techniques to high order TVD versions of Roe's scheme(using both ux limiters and slope limiters) and to arbitrary polygonal meshesin any number of dimensions. The methods have been designed speci�cally for35



source terms which provide some sort of balance with the ux derivatives. Evenso, the same techniques can easily be applied to other source terms (such as thosewhich model bed friction in the shallow water equations) which do not exhibit aprecise balance, but the advantages over the simple pointwise discretisation areless obvious.The e�ectiveness of these techniques has been illustrated using the one- andtwo-dimensional shallow water equations (the extension to three-dimensional sys-tems of equations is straightforward, though not described here in detail), in whichsource terms are used to model variations in the bed topography and (in one di-mension) channel breadth. Particular attention has been paid to the special caseof still water, and the schemes have been constructed so that they maintain thisstate. In fact, the improved accuracy of the new `upwind' discretisation of thesource terms is also shown in the approximation of other steady state solutions,particularly in one dimension when ux limiters have been used, and to a greatextent by time-dependent test cases as well. The improvement is less marked forslope limited schemes, indicating that a more sophisticated approximation to thesource term may be necessary away from the still water steady state. This hasbeen shown by comparison with a selection of test cases for which exact solutionsare available. The advantages over the commonly-used pointwise discretisation-s are particularly apparent when quantities depending on the ow velocity arecompared. At this stage of the research, the main problem with the new tech-nique (a problem which also applies to the old methods) is in the modelling oftime-dependent problems. Here, in order to avoid spurious oscillations in the highresolution results a low CFL number has to be imposed (0.1 in the cases testedhere), and in some cases the unphysical oscillations cannot be removed complete-ly. This is because the TVD condition which is satis�ed by the scheme is onlyvalid for the homogeneous equations. The possible construction of a TVD condi-tion in the presence of source terms is a topic for future research. In the meantimeit may prove bene�cial to apply a Flux-Corrected Transport approach since it isclear from the techniques presented in this paper how the source terms should betreated for both upwind and Lax-Wendro� schemes, and the �rst order upwindscheme appears to be robust enough to eradicate the unwanted oscillations.36
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