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Abstract

In this paper we investigate pattern formation in a coupled system of reaction-
diffusion equations in two spatial dimensions. These equations arise as a model
of isothermal chemical autocatalysis with termination in which the orders of
autocatalysis and termination, m and n respectively are such that 1 < n < m.
We build on the preliminary work by Leach and Wei (Physica D, 180 (3-4), 185-
209, 2003) for this coupled system in one spatial dimension, by presenting rigorous
stability analysis and detailed numerical simulations for the coupled system in
two spatial dimensions. We demonstrate that spotty patterns are observed over
a wide parameter range.

1 Introduction

In part I of this series of papers, Leach and Wei [4], (hereafter referred to as (I)),
we considered pattern formation in a coupled system of reaction-diffusion equations
in one spatial dimension. These equations arise as a simple chemical model of an
isothermal, autocatalytic reaction scheme with termination. In general, the scheme
may be represented formally by the two steps,

A → B rate k1ab
m, (autocatalytic step) (1)

B → C rate k2b
n, (decay step) (2)

Here a and b are the concentrations of the reactant A and the autocatalyst B respec-
tively, k1 > 0 is the rate constant of the autocatalysis, k2 > 0 is the rate constant
at which the autocatalyst B decays to the inert, stable product C, and m and n are
the orders of the autocatalysis and decay (where we restrict attention to the case
m > n > 1). In (I) it was supposed that the reaction was taking place within a one
dimensional reactor, with the reactant A, whose concentration is fixed outside the
reactor at a uniform, non-zero, concentration, being replenished inside the reactor by
transport through the reactor walls from a well-stirred reservoir. The autocatalyst B
which is initially introduced locally into the expanse of A (which initially is at uniform
concentration), however is unable to pass through the reactor walls.

In this present paper we extend the preliminary work of (I) by considering a two
dimensional spatial domain. A full description of the chemical system, derivation of



the mathematical model and a list of relevant references can be found in (I) and is not
repeated here for brevity. The equations governing the initial-value problem in two
spatial dimensions are, in dimensionless form, from (I),

αt = ∇2α− αβm + µ(1 − α), (3a)

βt = D∇2β + αβm − kβn, x ∈ R
2, t > 0, (3b)

α(x, 0) = 1, β(x, 0) =

{

β0g(x) |x| ≤ σ,
0 |x| > σ,

(3c)

α(x, t) → 1, β(x, t) → 0 as |x| → ∞, t ≥ 0. (3d)

Here α and β are the dimensionless concentrations of the reactant A and the auto-
catalyst B, respectively. The function g(x) is positive and continuous in |x| ≤ σ with
max(g(x)) = 1, on |x| ≤ σ. The initial value problem (3) has five positive dimen-
sionless parameters, the specific details of which are discussed in (I). The parameter σ
measures the spread of the initial input of the autocatalyst, k measures the strength
of the termination step (2) relative to that of the autocatalytic step (1), β0 measures
the maximum concentration of the initial input of the autocatalyst, D measures the
rate of diffusion of the autocatalyst relative to that of reactant whilst µ measures the
strength of transport of reactant A relative to that of the autocatalytic step (1). In
what follows we restrict attention to D ≪ 1 and 1 < n < m <∞ with k, µ, β0, σ > 0.

In this paper we investigate the existence and stability of nontrivial patterns in R2

which can arise in initial value problem (3), when µ > 0. These stationary, stable,
symmetric spotty patterns in the nondimensional concentration of the autocatalyst
β form in the wake of the advancing wave front in the nondimensional concentration
of the reactant α.

Before we state our main results we first introduce some notation and basic results:

The uniform homogeneous stationary states of system (3), (αs, βs) are obtained from
solving the pair of algebraic equations,

αsβ
m
s = µ(1 − αs), αsβ

m
s = kβn

s . (4)

Clearly, (4) admits the trivial solution (1, 0). The remaining uniform stationary states
of (4) can be obtained as follows. On rewriting equations (4) in terms of βs we obtain,

βm
s − µ

k
βm−n

s + µ = 0, (5)

where

αs = 1 − k

µ
βn

s . (6)

Clearly, (5) has two real positive roots, β−
s and β+

s , for µ > µ∗ = (km)m/(m−n)

(m−n)nn/(m−n) ,

where,

0 < β−
s <

[

µ(m− n)

km

]1/n

< β+
s <

[µ

k

]1/n

, (7)

one real positive root, β∗
s =

[

mk
n

]1/(m−n)
for µ = µ∗ and no real positive roots for µ <

µ∗. We note that for µ ≥ µ∗ that 0 < αs < 1 with in particular that 0 < αs = n
m < 1

when µ = µ∗.
We let w be the unique solution of the following problem:

∆yw − wn + wm = 0 in R2, (8a)

w(0) = max
y∈R2

w(y), w(y) > 0 for all y ∈ R2, (8b)

w(y) → 0 as |y| → ∞. (8c)
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By the well-known result of Gidas-Ni-Nirenberg [2], any solution to (8a), w(y), must
be radially symmetric and nonincreasing, i.e., w(y) = w(|y|), wr(r) < 0 for r = |y| > 0.
The existence of a radial solution to (8a) can readily be established via a variational
approach. The uniqueness of radial solution to (8a) is given in [6]. Here the fact that
we are dealing with two-dimensional domain is vital as such solutions may not exist
in three or more dimensions. We note that

w(y) =
cm,n

|y| 2
(n−1)

+O

(

1

|y|
2(m−n+1)

(n−1)

)

as |y| → ∞, (9)

where cm,n is a constant which depends on m and n. We also need to introduce the
following important parameters

L =
D

2π

∫

R2

wm k
1

m−n log[(µD)
1
2 k−

m−1
2(m−n) ], (10)

γ0 =
1

m− n
, (11)

and

L0 =
γγ0

0

(γ0 + 1)(γ0+1)
. (12)

If 0 < L < L0, then there are exactly two solutions to the following algebraic equation

ξγ0(1 − ξ) = L. (13)

We denote these two solutions as ξs and ξl where 0 < ξs < ξl < 1. Further, we note
that

0 < ξs < ξ0 =
γ0

(γ0 + 1)
< ξl < 1. (14)

Associated with ξs and ξl we define

ǫs =

(

µD

k

)
1
2
(

ξs

k

)

(n−1)
2(m−n)

, ǫl =

(

µD

k

)
1
2
(

ξl

k

)

(n−1)
2(m−n)

, (15)

As =

(

k

ξs

)
1

(m−n)

, Al =

(

k

ξl

)
1

(m−n)

. (16)

In the following statements, we drop the superscripts s and l if this leads to no confu-
sion. The parameters (ǫ, A, ξ) satisfy the following relations

1 − ξ =
1

2π

∫

R2

wm Amǫ2 log 1
ǫ ξ

µ
, (17)

µD

ǫ2
= kAn−1 = ξAm−1. (18)

On rescaling equations (3), using the parameters introduced above, via

x̄ =
√
µx, ᾱ(x̄) = α(x), β̄(x̄) =

β(x)

A
, t̄ = kA(n−1)t, τ =

kA(n−1)

µ
= Dǫ2,

(19)
we obtain (on dropping the overbar for ease of notation),

βt = ǫ2βxx − βn + ξ−1αβm, (20)

ταt = αxx + 1 − α− µ−1Amαβm, (21)

which we will work with from now on.
The layout of the paper is as follows. We first consider the existence of two single-

spot steady-state solutions.
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Theorem 1 If
0 < L < L0, (22)

and
ǫ≪ 1, (23)

then there exists two single-spot steady-state solutions (αs
ǫ(x), β

s
ǫ (x)), (αl

ǫ(x), β
l
ǫ(x)) to

(20)-(21) such that

(1) αs(0) ∼ ξs, αl(0) ∼ ξl

(2) βs(x) ∼ w
(

x
ǫs

)

, βs(x) ∼ w
(

x
ǫl

)

(3) 1 − α(x) → 0, β → 0 as |x| → ∞

Remark 2 Unlike the Gray-Scott model where we have linear decay rate n = 1, here
there are two scalings in space ǫs < ǫl. The scalings in space and in functions are
interrelated.

Next we consider the stability of (αs
ǫ , β

s
ǫ ) and (αl

ǫ, β
l
ǫ). On linearizing (20)-(21)

around (αs
ǫ , β

s
ǫ ) (or (αl

ǫ, β
l
ǫ)) we obtain the following eigenvalue problems

ǫ2∆xφ− nβ(n−1)
ǫ φ+ ξ−1mαǫβ

(m−1)
ǫ φ+ ξ−1ψβm

ǫ = λǫφ, (24a)

∆xψ − ψ − µ−1Amψβm
ǫ − µ−1Ammαǫβ

(m−1)
ǫ φ = τλǫψǫ, (24b)

where λǫ ∈ C. Certainly λǫ = 0, (φ, ψ) = (∂βǫ

∂xi
, ∂αǫ

∂xi
), i = 1, 2 are solutions to (24). We

say that (αǫ, βǫ) is linearly stable

(1) If λǫ = 0 then (φ, ψ) ∈ span {( ∂βǫ

∂x1
, ∂αǫ

∂x1
), ( ∂βǫ

∂x2
, ∂αǫ

∂x2
)},

(2) If λǫ 6= 0 then Re(λǫ) < 0.

We say that (αǫ, βǫ) is linearly unstable if there exists an eigenvalue λǫ to (24) such
that Re(λǫ) > 0.

Before stating the stability result, we need to introduce the following definitions.
Let ξ = ξs or ξl and

Γ = 1 − ξ. (25)

For each function φ ∈ C∞
0 (R2)-the set of smooth functions with compact support, we

introduce two norms:

‖φ‖X =

(

∫

R2

(|∇φ|2 + |φ′ |2)
)

1
2

, ‖φ‖Y = (

∫

R2

(|φ|2)) 1
2 . (26)

We now define two spaces we shall work with later on: X is the completion of C∞
0 (R2)

under the norm ‖ · ‖|X , and Y is the completion of C∞
0 (R2) under the norm ‖ · ‖|Y .

It is easy to see that X and Y are Banach spaces. (Here we do not take the obvious
Hilbert space H1(R2) as we have algebraic decay rate.) We also define

L0φ = ∆φ− nw(n−1)φ+mw(m−1)φ : X → Y, (27)

where L0 is invertible from Xs to Ys, where

Xs = X ∩ {φ(y) = φ(|y|)},Ys = Y ∩ {φ(y) = φ(|y|)},

thus L−1
0 w(m−1) exists.

We are now ready to state the following theorem on stability.
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Figure 1: Bifurcation diagram in the case m = n + 1. The dashed line representing
instability, the solid part stable and the dotted section unknown.

Theorem 3 Let (αǫ, βǫ) = (αs
ǫ , β

s
ǫ ) or (αl

ǫ, β
l
ǫ). Assume (22), (23) and further that

τ ∼ 1. (28)

Then we have

(a) (instability): (αl
ǫ, β

l
ǫ) is linearly unstable.

(b) (stability): Assume that

∫

R w
(m−1)L−1

0 w(m−1) >
(2m−n+1− 4

Γ (m−n))2(m+1)(
R

R
wm)

2

2m2(2m−n+3)(m−n)
R

R
w(m+1) ,

then (αs
ǫ , β

s
ǫ ) is linearly stable.

Remark 4 It is also possible to consider τ ∼ ǫγ for some 0 6 γ < 2, as was done in
[11].

We do not have an explicit formula for
∫

R2 w
(m−1)L−1

0 w(m−1), for general m. How-
ever if m = n+ 1, then we have

∫

R2

w(m−1)L0w
(m−1) =

1

m

∫

R2

wm. (29)

Hence we obtain the following corollary.

Corollary 5 Assume that (22), (23) and (28) hold and let Γs = 1−ξs. Then (αs
ǫ , β

s
ǫ )

is linearly stable provided that
Γs > 4 − 2

√
3. (30)

The bifurcation diagram when m = n+ 1 is, via Corollary 5, given in figure 1.

2 Formal arguments and outline of the proofs

We first explain why we rescale to (20)-(21). On rewriting equations (3) in terms of
x̄ = µ1/2x we obtain,

µ−1αt = ∆x̄α− µ−1αβm + (1 − α), (31)

βt = µD∆x̄β + αβm − kβn. (32)

The stationary-state solutions of (31),(32) are obtained from

∆x̄α− µ−1αβm + (1 − α) = 0, (33)

µD∆x̄β + αβm − kβn = 0. (34)

Let us assume the following

β(x̄) ∼ Aw
( x̄

ǫ

)

, ǫ≪ 1, (35)

α(x̄) ∼ α(0), (36)

and

y =
x̄

ǫ
.
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Then we have from (33) ,(34) that

1 − α(0) =
1

2πµ

∫

R2

log
1

|x̄|αβ
m ∼ 1

2πµ
α(0)Amǫ2 log

1

ǫ

∫

R2

wm (37)

and
µD

ǫ2
A∆yw + α(0)Amwm − kAnwn = 0. (38)

Hence we must have

1 − α(0) =
1

2π

∫

R2

wm Amǫ2 log 1
ǫα(0)

µ
, (39)

µD

ǫ2
= kA(n−1) = α(0)A(m−1). (40)

We require a solution to (39)-(40) such that ǫ≪ 1. ¿From (40), we have

α(0) = kA(n−m), A =

(

k

α(0)

)
1

(m−n)

(41)

and

ǫ =

(

µD

k

)
1
2

A− (n−1)
2 . (42)

On substituting (41) and (42) into (39), we obtain after some calculation that

1 = α(0) + Lα(0)−γ0 , (43)

where

L =
D

2π

∫

R2

wm k
1

m−n log[(µD)
1
2 k−

m−1
2(m−n) ], (44)

and

γ0 =
1

m− n
.

We now set α(0) = ξ where ξ must satisfy

ρ(ξ) = ξγ0(1 − ξ) − L = 0. (45)

We note that ρ(0) = ρ(1) = −L < 0 and ρ′(ξ0) = 0 where ξ0 = γ0

(γ0+1) . Hence

ρmax = ρ(ξ0) = ξγ0

0 (1 − ξ0) − L = L0 − L, (46)

where L0 is defined in (12). So ρ(ξ) = 0 has a solution if and only if L < L0. When
L < L0, there are two solutions 0 < ξs < ξ0 < ξl < 1. We now rescale via (19) to
obtain (20) and (21).

We now explain the basic ideas in proving Theorems 1 and 3. For existence, we
use the implicit function theorem: consider the steady-state problem

ǫ2∆xβ − βn + ξ−1αβm = 0, (47)

∆xα+ 1 − α− µ−1Amαβm = 0. (48)

For each fixed β, we can solve for α via (48). Let α = T [β] and

x = ǫy, (49)

then (47) becomes

S[β] = ∆yβ − βn + ξ−1T [β(y)](ǫy)βm(y) = 0, (50)
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we construct solutions to (50) of the following form

β = w + φ, ‖φ‖X is small, (51)

where w is given in (8). On substituting (51) into (50) we obtain

S[β] = S[w + φ] = S[w] + S ′[φ] + N [φ],

where S′[φ] is the first order term and N [φ] represents the higher order terms. We
note that

T [w](0) ≈ ξ,

S[w] = o(1),

and

S′[φ] ≈ ∆yφ− nw(n−1)φ+mw(m−1)φ−m(1 − ξ)

∫

R
w(m−1)φ
∫

R w
m

φ = L[φ].

So if we can show that L is invertible, then by the implicit function theorem, there is
a solution to (50). To show that L is invertible, we have to study both L and L∗ the
conjugate operator of L. For stability, we show in section 2, that if λǫ → λ0 then λ0

satisfies

∆φ− nw(n−1)φ+mw(m−1)φ−m(1 − ξ)

∫

R2 w
(m−1)φ

∫

R2 wm
φ = λ0φ. (52)

We give a proof of the existence theorem 1 in section 4. In section 5 we use the results
of section 3 to prove the stability theorem 3.

3 A study of a nonlocal eigenvalue problem

Let w be the solution of

∆w − wn + wm = 0 in R2, (53)

w(y) > 0 for all y ∈ R2, w(y) → 0 as |y| → ∞, (54)

w(0) = max
y∈R2

w(y). (55)

We state the following lemma on the properties of w.

Lemma 6 There exists a unique solution, called w, to (53)-(55). Moreover w is
radially symmetric and wr < 0 for r = |y| > 0 and the kernel of the following linearized
operator

L0φ := ∆φ− nw(n−1)φ+mw(m−1)φ. (56)

consists of linear combinations of ∂w
∂y1

, ∂w
∂y2

.

Proof: By the well-known theorem of Gidas-Ni-Nirenberg [2], the solution to (53)-(55)
must be radially symmetric. Then the result of [6] shows that w is actually unique.
Then the argument in Lemma 4.2 of [8] proves the last statement.

�

It is easy to see that
L0w = (1 − n)wn + (m− 1)wm, (57)

L0(y · ∇w) = 2wn − 2wm. (58)

Multiplying (57) by y · ∇w, and (58) by w, and integrating over R2, we obtain

∫

R2

w(m+1) =
(m+ 1)

(n+ 1)

∫

R2

wn+1. (59)

7



From (57) and (58), we obtain the following key identities

L0

(

w

(m− n)
+

(m− 1)

2(m− n)
y · ∇w

)

= wn, (60)

L0

(

w

(m− n)
+

(n− 1)

2(m− n)
y · ∇w

)

= wm. (61)

We are now ready to study the following important nonlocal eigenvalue problem which
is essential in the proofs of Theorem 1 and Theorem 3

Lφ = ∆φ− nw(n−1)φ+mw(m−1)φ−mΓ

∫

R2 w
(m−1)φ

∫

R2 wm
wm = λφ. (62)

Remark 7 In the case of n = 1,m = 2, problem (62) has been studied in [10] by
functional analysis approach. Here such approach does not work here. Instead, we use
a continuity approach, which is inspired by [14].

In one dimensional case and n = 1,m = 2, problem (62) has been studied in [1] by
a hypergeometric function approach. Such an approach is no longer working in higher
dimensional case.

We now recall the following Lemma.

Lemma 8 (Theorem 1.4 of [10].) Let n = 1,m = 2. Then we have

∫

R2

(

|∇φ|2 + φ2
)

−2

∫

R2

wφ2+2

∫

R2 wφ
∫

R2 w
2φ

∫

R2 w2
−
(∫

R2 wφ
)2

(∫

R2 w2
)2

∫

R2

w3 ≥ c0dL2(R2)(φ,X1),

(63)
where X1 := span{w, ∂w

∂y1
, ∂w

∂y2
}.

We define a quadratic form

Qm,n[φ] =

∫

R2

(

|∇φ|2 + nw(n−1)φ2
)

−m

∫

R2

w(m−1)φ2 +m

∫

R2 w
(m−1)φ

∫

R2 w
mφ

∫

R w
m

.

(64)
(63) implies, in particular that

Qm,n[φ] > 0 for φ 6≡ 0, when n = 1,m = 2,

since w is a continuous function of n and m (by the uniqueness of w). We now employ
a continuation argument and vary (m,n). It is straightforward to see that

Qm,n[φ] =

(

−
∫

R2

(Lm,nφ)φ

)

,

where

Lm,nφ = ∆φ− nw(n−1)φ+mw(m−1)φ− mΓ

2

∫

R2 w
(m−1)φ

∫

R2 wm
wm − mΓ

2

∫

R2 w
mφ

∫

R2 wm
w(m−1).

(65)
Clearly,

Qm,n is positive definite ⇐⇒ Lm,n has negative spectrum only.

We begin with (n,m) = (1, 2) and vary (n,m). Suppose at some point (n,m), Lm,n

has a zero eigenvalue, that is there exists a φ 6≡ 0 such that

Lm,nφ = ∆φ−nw(n−1)φ+mw(m−1)φ−mΓ

2

∫

R2 w
(m−1)φ

∫

R2 wm
wm−mΓ

2

∫

R2 w
mφ

∫

R2 wm
w(m−1) = 0,

(66)
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which is equivalent to

φ =
mΓ

2

∫

R2 w
(m−1)φ

∫

R2 wm
L−1

0 wm +
mΓ

2

∫

R2 w
mφ

∫

R2 wm
L−1

0 w(m−1). (67)

Now let c1 =
∫

R2 w
(m−1)φ and c2 =

∫

R2 w
mφ. Then we have

c1 =
m

2

∫

R2 w
(m−1)L−1

0 wm

∫

R2 wm
c1 +

m

2

∫

R2 w
(m−1)L−1

0 w(m−1)

∫

R2 wm
c2, (68)

c2 =
m

2

∫

R2 w
mL−1

0 wm

∫

R2 wm
c1 +

m

2

∫

R2 w
mL−1

0 w(m−1)

∫

R2 wm
c2. (69)

Since c21 + c22 6= 0, we have

∣

∣

∣

∣

∣

∣

mΓ
2

R

R2 w(m−1)L−1
0 wm

R

R2 wm − 1 mΓ
2

R

R2 w(m−1)L−1
0 w(m−1)

R

R2 wm

mΓ
2

R

R2 wmL−1
0 wm

R

R2 wm
mΓ
2

R

R2 wmL−1
0 w(m−1)

R

R2 wm − 1

∣

∣

∣

∣

∣

∣

= 0, (70)

which is equivalent to

(
∫

R2

w(m−1)L−1
0 wm − 2

mΓ

∫

R2

wm

)2

−
∫

R2

w(m−1)L−1
0 w(m−1)

∫

R2

wmL−1
0 wm = 0.

(71)
By (61),

L−1
0 wm =

1

(m− n)

(

w +
(n− 1)

2
y · ∇w

)

,

∫

R2

w(m−1)L−1
0 wm =

1

(m− n)

(
∫

R2

wm − (n− 1)

m

∫

R2

wm

)

=
(m− n+ 1)

(m− n)(m)

∫

R2

wm,

(72)
and
∫

R2

wmL−1
0 wm =

1

(m− n)

(
∫

R2

w(m+1) − (n− 1)

(m+ 1)

∫

R2

w(m+1)

)

=
(m− n+ 2)

(m− n)(m+ 1)

∫

R2

w(m+1).

(73)
On substituting (72) and (73) into (71), we obtain that

(

(m− n+ 1)

m(m− n)
− 2

mΓ

)2(∫

R2

wm

)2

− (m− n+ 2)

(m− n)(m+ 1)

∫

R2

w(m−1)L−1
0 w(m−1)

∫

R2

w(m+1) = 0.

(74)
We conclude that
Theorem 9 If for 1 < n < m, we have

∫

R2

w(m−1)L−1
0 w(m−1) >

((2/Γ − 1)n+ (1 − 2/Γ)m+ 1)
2
(m+ 1)

m2(m− n+ 2)(m− n)

(∫

R2 w
m
)2

∫

R2 w(m+1)
, (75)

then
Qm,n[u] > 0 for u 6≡ 0.

Proof: First, (75) holds for n = 1,m = 2. We vary (n,m), starting from (n,m) = (1, 2).
Suppose at some point (n,m), Qm,n is not positive definite. Then Lm,n must have a
zero eigenvalue, which implies (74) must hold which is a contradiction to (75). �

It remains to compute
∫

R2 w
(m−1)L−1

0 w(m−1). In general, this is difficult. We consider
the special case, where

m = n+ 1. (76)

9



Then we have by (60) that

L−1
0 w(m−1) = L−1

0 wn =
1

(m− n)

(

w +
(m− 1)

2
y · ∇w

)

.

Hence
∫

R2

w(m−1)L−1
0 w(m−1) =

1

m(m− n)

∫

R2

wm =
1

m

∫

R2

wm. (77)

Note, via(59), that

∫

R2

wm =

∫

R2

w(n+1) =
(n+ 1)

(m+ 1)

∫

R2

w(m+1). (78)

On substituting (77) and (78) into (75), we have directly that (75) hold if and only if
4 − 2

√
3 < Γ < 4 + 2

√
3.

We now have the following corollary.

Corollary 10 Let m = n + 1 and 4 − 2
√

3 < Γ < 4 + 2
√

3. Then Qm,n[φ] >
0 for all φ 6≡ 0.

On returning to the study of (62) we have the following lemma.

Lemma 11 If Qm,n[φ] > 0 for all φ 6≡ 0, then for all nonzero eigenvalues λ0 6= 0 of
(62), we have

Re(λ0) < 0.

Proof: Let λ0 = λR +
√
−1λI and φ = φR +

√
−1φI . Then on multiplying (62) by

φ̄ = φR −
√
−1φI and integrating over R2, we obtain

−Qm,n[φR] −Qm,n[φI ] = λR

∫

R2

(

|φR|2 + |φI |2
)

, (79)

which yields that λR < 0. �

Finally we consider (62) with λ = 0. We have the following Lemma.
Lemma 12

Kernel(L) = Kernel(L∗) = span{ ∂w
∂y1

,
∂w

∂y2
}, (80)

where L∗ is the conjugate operator of L, namely

L∗φ = ∆φ− nw(n−1)φ+mw(m−1)φ−m

∫

R2 w
mφ

∫

R2 wm
w(m−1). (81)

Proof: Let Lφ = 0. Then

L0φ = m

∫

R2 w
(m−1)φ

∫

R2 wm
wm = C(φ)wm,

L0

(

φ− C(φ)L−1
0 wm

)

= 0,

where

C(φ) = m

∫

R2 w
(m−1)φ

∫

R2 wm
.

Lemma 6 implies

φ−m

∫

R2 w
(m−1)φ

∫

R2 wm

(

1

(m− n)

(

w +
(n− 1)

2
yw′
))

= a1
∂w

∂y1
+ a2

∂w

∂y2
, (82)

for some constants a1 and a2. Multiplying (82) by w(m−1) and integrating over R, we
obtain

(

1 − m

(m− n)

(

1 − (n− 1)

m

))
∫

R2

w(m−1)φ = 0, (83)

10



which implies that
∫

R2

w(m−1)φ = 0,

and hence that φ ∈ span{ ∂w
∂y1

, ∂w
∂y2

)}. Next if L∗φ = 0, then

L0φ = m

∫

R2 w
mφ

∫

R2 wm
w(m−1). (84)

The argument proceeds, after minor modification, that given above with now

L0

(

φ−m

∫

R2 w
mφ

∫

R2 wm
L−1

0 w(m−1)

)

= 0,

φ−m

∫

R2 w
mφ

∫

R2 wm
L−1

0 w(m−1) = βw′.

Since
∫

R2 w
mL−1

0 w(m−1) =
∫

R2 w
(m−1)L−1

0 wm we arrive at the following

∫

R2

wmφ = 0 and φ = β1
∂w

∂y1
+ β2

∂w

∂y2
.

�

Our last theorem concerns instability.
Lemma 13 Let

Γ < Γ0 :=
(m− n)

m− n+ 1
. (85)

Then there exists an eigenvalue λ0 > 0 satisfying

∆φ − nw(n−1)φ+mw(m−1)φ−mΓ

∫

R2 w
(m−1)φ

∫

R2 wm
wm = λ0φ. (86)

Proof: First, we show that the operator L0 has a unique positive eigenvalue µ1 > 0
with the eigenfunction being radially symmetric and positive. In fact, we consider L0

on the space Xs. It is well-known that for n = 1, L0 has a unique positive eigenvalue on
Xs. (See for example Theorem 1.1 of [7].) As we vary n, L0 will have only one positive
eigenvalue until zero becomes an eigenvalue for L0 on Xs, which is impossible. Thus
for all 1 6 n < m, L0 will have a unique positive eigenvalue, which is the principal
one, and hence the eigenfunction can be made positive. Solving (86) is equivalent to

φ = mΓ

∫

R2 w
(m−1)φ

∫

R2 wm

∫

R2

(L0 − λ)−1wm,

h(λ) =

∫

R2

wm − Γm

∫

R2

w(m−1)(L0 − λ)−1wm = 0, λ ∈ (0, µ1).

Note that

h(0) =

∫

R2

wm − Γm

∫

R2

w(m−1)L−1
0 wm =

(

1 − Γ

Γ0

)
∫

R2

wm > 0.

On the other hand, for λ→ µ1, λ < µ1, we have
∫

R2

w(m−1)(L0 − λ)−1wm → +∞ h(λ) → −∞.

By the mean-value theorem, there exists a λ0 ∈ (0, µ1), such that h(λ0) = 0. Such a
λ0 will satisfy (86). �

We conclude this section with the following summary:

11



Theorem 14 Consider the following eigenvalue problem

Lφ := ∆φ− nw(n−1)φ+mw(m−1)φ−mΓ

∫

R2 w
(m−1)φ

∫

R2 wm
wm = λφ. (87)

(1) If λ = 0 and Γ 6= Γ0 then φ ∈ span{ ∂w
∂y1

, ∂w
∂y2

}

(2) If λ = 0 and Γ = Γ0 then φ ∈ span{ ∂w
∂y1

, ∂w
∂y2

, w + (n−1)
2 y · ∇w}

(3) If Γ < Γ0 then there exists a positive λ0 > 0 satisfying (87).

(4) If Γ > Γ0 and

∫

R2

w(m−1)L−1
0 w(m−1) >

((2/Γ− 1)n+ (1 − 2/Γ)m+ 1)2(m+ 1)

m2(m− n+ 2)(m− n)

(∫

R2 w
m
)2

∫

R2 w(m+1)
,

then for any non-zero eigenvalue λ of (87), Re(λR) < 0.

(5) If m = n+ 1 and

4 − 2
√

3 < Γ < 4 + 2
√

3 (88)

then for any non-zero eigenvalue λ of (87), Re(λ) < 0.

(6) If Γ 6= Γ0 then Kernel(L) = Kernel(L∗)=span{ ∂w
∂y1

, ∂w
∂y2

}.

Theorem 14 forms the basis for what follows in this paper. We remark that at Γ = Γ0

the eigenfunction is given by

w0(y) = w(y) +
(n− 1)

2
y · ∇w(y).

We now consider the asymptotic behaviour of w0(y) for |y| ≫ 1. To this end, we let

w(y) = A0γ
− 2

(n−1) +B0γ
s, γ = |y| ≫ 1. (89)

On substituting (89) into equation (8a), we obtain that

s = −2(m− n+ 1)

(n− 1)
,

A0 =

(

2

(n− 1)

)
2

(n−1)

,

B0 =
(2/(n− 1))

2(m−n+1)
n−1

n− (m− n+ 1)2
.

Clearly, if
n > (m− n+ 1)2 (90)

then B0 > 0. Note that this is possible if m = n+ 1 provided n > 4. Clearly,

w0(y) = B0

(

1 + s
(n− 1)

2

)

γs < 0,

for γ ≫ 1. The graph of w0(y) is given in figure 2. We note that (−w0(y)) is a dent
function and will be the eigenfunction responsible for the pulse-splitting for L near L0.
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Figure 2: Graph of −w0(y) against y

4 Construction of single-spot solutions

We fix ξ = ξs, the proof of the other case when ξ = ξl follows that for ξ = ξs and
is not repeated here for brevity. In this section, we construct single-spot solutions to
(20)-(21):

ǫ2∆xβ − βn + ξ−1αβm = 0, (91)

∆xα+ 1 − α− µ−1Amαβm = 0, (92)

α, β > 0, β(x), 1 − α(x) → 0 as |x| → ∞. (93)

We will follow the proofs given in Section 4 of [11]. Since the procedure is similar to
that in [11], we shall highlight the steps and differences briefly. We shall write (91)-(92)
as a nonlocal single equation. Before this, we first note the following Lemma.
Lemma 15 Given β = β(|x|) such that β(x) → 0 as |x| → ∞ then there exists a
unique solution α := T [β](x) such that

∆xα+ 1 − α− µ−1Amαβm = 0, α = α(|x|), α(x) → 1 as |x| → ∞. (94)

Proof: Follows that given in [9] for Lemma 4.1. �

Next, we study T [β], where w is the unique solution of (8). Then we have

1 − T [w](x) =

∫

R2

1

2π
log

1

|z − x|µ
−1AmT [w](z)wm(

z

ǫ
)dz

= (1 + o(1))ǫ2T [w](0)
µ−1Am

2

∫

R2

log
1

|x− ǫy|w
m(y)dy. (95)

Hence

1 − T [w](0) = (1 + o(1))ǫ2 log
1

ǫ
T [w](0)

µ−1Am

2

∫

R2

wm(y)dy.

giving, via (17), that
1 − T [w](0)

T [w](0)
=

(1 − ξ)

ξ
(1 + o(1)).

Hence, we have
T [w](0) = (1 + o(1))ξ. (96)

For x 6= 0, we have

T [w](x) − T [w](0) = −(1 + o(1))ǫ2T [w](0)
µ−1Am

2

∫

R2

(

log
ǫ|z|

|x− ǫz|

)

wm(z)dz

T [w](ǫy)−T [w](0) = (1+o(1))ǫ2T [w](0)
µ−1Am

2

(
∫

R2

log(|y − z|)wm(z)dz

)

= O(ǫ2 log(1+|y|)).
(97)

We now write (91)-(92) as a single equation. On letting x = ǫy, we obtain that

∆yβ − βn + ξ−1T
[

β
(x

ǫ

)]

(ǫy)βm(y) = 0. (98)

We now use the implicit function theorem to solve (98) and to this end, we put

β = w(y) + φ(y), φ ∈ Xs = X ∩ {φ(y) = φ(|y|)}.
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Then (91)-(92) is equivalent to the following

∆yβ − βn + ξ−1T
[

β
(x

ǫ

)]

(ǫy)βm(y) = 0, β = w + φ, φ ∈ Xs. (99)

We rewrite (99) as

Sǫ[w + φ] = ∆y(w + φ) − (w + φ)n + ξ−1T [w + φ](w + φ)m = 0. (100)

Then we have that
Sǫ[w] =

(

ξ−1T [w] − 1
)

wm,

S′
ǫ[w](φ) = ∆yφ− nw(n−1)φ+ ξ−1T [w]mw(m−1)φ+ ξ−1T ′[w](φ)wm,

where T ′[w](φ) = ψ satisfies,

∆ψ − ψ − µ−1Amψwm − µ−1AmmT [w]w(m−1)φ = 0.

We expand as
Sǫ[w + φ] = S′

ǫ[w](φ) + Sǫ[w] + Nǫ[φ], (101)

where Nǫ[φ] represents the higher order terms of φ. We note, via (97), that

(

ξ−1T [w] − 1
)

wm = O
(

ǫ2 log(1 + |y|)wm
)

= o(1), (102)

since

O (log(1 + |y|)wm) = O

(

log(1 + |y|)
(1 + |y|) 2m

(n−1)

)

= O(1).

Similarly to the calculations leading to (97), we have that

ξ−1T [w](ǫy) = ξ−1T [w](0) +O(ǫ2 log(1 + |y|)), (103)

ξ−1T ′[w](φ)(ǫy) − ξ−1T ′[w](φ)(0) = O(ǫ2 log(1 + |y|)), (104)

ξ−1T ′[w](φ)(0) = ψ(0) = −µ−1Am 1

2π

(
∫

R2

log
1

|z|
(

ψwm +mT [w]w(m−1)w(m−1)φ
)

)

= − 1

2π

∫

R2

wmǫ2 log
1

ǫ
µ−1Amψ(0) − 1

2π
µ−1ǫ2 log

1

ǫ
Amm

∫

R2

w(m−1)φ. (105)

Hence

ξ−1T ′[w](φ)(0) =
1
2πµ

−1ǫ2 log 1
ǫA

mm
∫

R2 w
(m−1)φ

1 + 1
2

∫

R2 wmǫ2 log 1
ǫµ

−1Am

= m(1 − ξ)

∫

R2 w
(m−1)φ

∫

R2 wm
. (106)

Clearly, (99) is equivalent to

L[φ] + Sǫ[w] + Nǫ[φ] +O
(

ǫ log(1 + |y|)w(m−1)|φ| + ǫwm log(1 + |y|)
)

= 0, (107)

where

L[φ] = ∆φ − nw(n−1)φ+mw(m−1)φ−m(1 − ξ)

∫

R w
(m−1)φ

∫

R
wm

wm, (108)

Sǫ[w] = O (ǫwm log(1 + |y|)) , (109)

|Nǫ[φ]| ≤ O
(

|φ|(1+σ) + ‖φ‖(1+σ)
X wm

)

. (110)

We are now in need of the following important lemma.
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Lemma 16 If Γ = 1 − ξ 6= Γ0, then the operator L is an invertible map from Xs to
Ys. Moreover L−1 is a bounded operator from Ys to Xs.

Proof: By Fredholm alternatives, we just need to prove that

Kernel(L) ∩Xs = 0, Kernel(L∗) ∩Xs = 0,

where L∗ is the conjugate operator of L. From theorem 14, Kernel(L)=Kernel(L∗) =
span{ ∂w

∂y1
, ∂w

∂y2
}. But ∂w

∂yj
6∈ Xs, j = 1, 2. �

By our assumption Γ = 1 − ξs 6= Γ0 and Lemma 16, L is invertible from Xs to Ys.
Equation (107) is transformed to

φ = G[φ] = −L−1[Nǫ[φ] + Sǫ[w] +O(ǫ(1 + |y|)w(m−1)|φ| + ǫwm(1 + |y|))]. (111)

The existence of φ satisfying (111) now follows from a contraction mapping principle.
More precisely, let

Λ√
ǫ = {φ | ‖φ‖X ≤ ǫµ0}, 1

1 + σ
< µ0 < 1,

Now we show that G is a contraction map from Λ√
ǫ to Λ√

ǫ. In fact

‖G[φ]‖Y ≤ c(‖Nǫ[φ]‖Y +O(ǫ)) ≤ cǫ(1+σ)µ0 +O(ǫ) ≤ cǫ < ǫµ0 ,

by (109)-(110). Similarly, we have that

‖G[φ1] −G[φ2]‖Y ≤ cǫµ0‖φ1 − φ2‖X <
1

2
‖φ1 − φ2‖X ,

for ǫ ≪ 1. By the contraction mapping theorem, there exists a unique φǫ ∈ Λǫµ such
that φǫ = G[φǫ], which implies that there exists a solution to (107) and (99). It is now
straightforward to see that βǫ = w + φǫ, αǫ = T [βǫ] satisfies all the properties stated
in theorem 1.

5 Stability Analysis:Proof of Theorem 3

In this section, we consider the following eigenvalue problems

ǫ2∆xφǫ − nβ(n−1)
ǫ φǫ + ξ−1mαǫβ

(m−1)
ǫ φǫ + ξ−1ψǫβ

m
ǫ = λǫφǫ, (112a)

∆xψǫ − ψǫ − µ−1Amψǫβ
m
ǫ − µ−1Ammαǫβ

(m−1)
ǫ φǫ = τλǫψǫ, (112b)

Here (αǫ, βǫ) = (αs
ǫ , β

s
ǫ ) or (αl

ǫ, β
l
ǫ), constructed in Theorem 1. Our key estimate is

Theorem 14.
We follow the ideas in Section 5 and Section 6 of [11] and mention the necessary

changes. We discuss two cases: large eigenvalues, λǫ → λ0 6= 0, and small eigen-

values, λǫ → 0. In the former case, we derive the nonlocal eigenvalue problem (68),
while in the latter case, we show that λǫ = 0 and (φǫ, ψǫ) ∈ span {(∂βǫ

∂xi
, ∂αǫ

∂xi
), i = 1, 2}.

This then finishes the proof of Theorem 3.
Let us first consider the case when λǫ → λ0 6= 0 (λ0 may be complex). From the

equation (112b), similar to the derivation of (96), we see that

ψǫ(0) =
1

2π

∫

R2

log
1√

1 + τλǫ|x|
×
[

− µ−1Amψǫβ
m
ǫ − µ−1Ammαǫβ

(m−1)
ǫ φǫ

]

dx

=
ǫ2 log 1

ǫ

2π

∫

R

(1 +O(ǫ|y|))
[

− µ−1Amψǫ(0)βm
ǫ − µ−1Ammαǫβ

(m−1)
ǫ φǫ

]
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∼ ǫ2 log 1
ǫ

2π
(1 +O(ǫ))

[

− µ−1Amξ

∫

R

wm − µ−1Am

∫

R

wm−1(y)φǫdy

]

which yields, via (17), that

ψǫ(0) =

(

1 +
(1 − ξ)

ξ

)−1

(−m(1 − ξ))

∫

R2 w
m−1φǫ

∫

R2 wm

=
−mξ(1 − ξ)

ξ + 1 − ξ

∫

R2 w
m−1φǫ

∫

R2 wm
. (113)

Substituting (113) into (112a), and letting ǫ → 0, we obtain the following nonlocal
eigenvalue problem

∆φ0 − nw(n−1)φ0 +mw(m−1)φ0 −mΓ

∫

R w
(m−1)φ0
∫

R
wm

wm = λ0φ0, (114)

where
φ0 = lim

ǫ→0
φǫ,Γ = 1 − ξ

On letting τ = O(1), we have that Γ = m(1 − ξ) + o(1).
Problem (114) has been studied in Theorem 14 of Section 3. By Theorem 14, we

finish the proof of stability and instability of Theorem 3 in the large eigenvalue case.
( It is a delicate issue whether or not an instability of (114) implies an instability of
(112). This can be shown along the lines of the proofs of (3) Theorem 6.1 in [13]. We
omit the details here.)

Next, we consider the case when λǫ = o(1). Certainly, (∂βǫ

∂xj
, ∂αǫ

∂xj
), j = 1, 2 is a

solution to (112) with λǫ = 0. To show the uniqueness, we decompose (φǫ, ψǫ) into
two parts:

(φǫ, ψǫ) =
2
∑

j=1

cj,ǫ(
∂βǫ

∂xj
,
∂αǫ

∂xj
) + (φ⊥ǫ , ψ

⊥
ǫ )

such that

cǫ ∈ C,
∫

R2

[

∂βǫ

∂xj
(φ⊥ǫ ) +

∂αǫ

∂xj
(ψ⊥

ǫ )

]

= 0, j = 1, 2.

Then similar to the proof of (1) of Theorem 6.1 of [13], we show that ψ⊥
ǫ = 0, φ⊥ǫ = 0.

The proof is almost the same. We omit the details here. Interested readers can refer
to [9], [12] for similar arguments.

6 Numerical solutions

Finally, we present numerical solutions to the initial boundary value problem, given by
(3), which support and illustrate the detailed analysis given in the previous sections.
We restrict our attention to the case when m = 3, n = 2, µ = 0.02 and k = 0.1,
and consider two values of the parameter D, namely (a) D = 0.2 and (b) D = 0.015.
The former value of D corresponds to the case when the stable stationary state is left
behind the travelling wave front, while the latter corresponds to the case when the
travelling wave front leaves behind a stable pattern of spots.

Equations (3) were solved using a standard linear Galerkin finite element method
on a triangular mesh [3] for the spatial discretisation.

The temporal derivative is discretised using a combination of implicit time-stepping
for the diffusion terms (to avoid the stiffness inherent in the discrete form of the
second derivatives as the spatial mesh is refined) and explicit time-stepping for the
reaction terms (which are not particularly stiff, but are nonlinear and so would be
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expensive to approximate implicitly). The backward and forward Euler methods have
been employed in this work, using a constant time-step throughout each numerical
experiment, leading to a scheme which is second order accurate in space and first order
accurate in time. This could easily be improved, but is accurate enough to illustrate the
types of solution that these equations can support. Simple Neumann conditions applied
at the outer boundary of the computational domain, weakly imposing ∂α

∂n = ∂β
∂n = 0,

where n indicates the derivative normal to the boundary. This is valid for the numerical
results presented here, but only because t is never large enough for the travelling wave
front to reach the boundary.

The numerical solutions have been obtained on a uniform triangular mesh of 131585
nodes (262144 cells), covering a circular computational domain of radius 250. The
initial data for the experiments is taken to be

α(r, 0) = 1 r > 0

β(r, 0) =

{
(

cos πr
2

)2
0 6 r 6 5

0 r > 5

where r = |x| and we have set σ = 5, β0 = 1 and g(x) =
(

cos π|x|
10

)2

.

For these parameter values we have, via equations (10)–(12), L0 = 1
4 and

L =
D

20π
log(

√
2D)

∫

R2

w3 (115)

with, via (8a),

w(y) =
4

2 + y2

so that
L = 0.4D log(

√
2D) (116)

We now present numerical solutions for the two chosen values of D.

(a) D = 0.2, L ≈ −0.01592 < L0: a permanent form travelling wave solution
develops for t≫ 1 which connects the unreacted state ahead of the wave, (α, β) =
(1, 0), to the fully reacted stable stationary state (αs, βs) (where αs ≈ 0.2599
and βs ≈ 0.3847 correspond, via (6) and (5), to α+

s and β+
s respectively) at

the rear of the wave front, via a series of progressively weaker waves which are
generated at the centre of the domain and follow the initial front. Figures 3
and 4 show the development of the pattern, giving the profiles of α and β at
times t = 600, 1200, 1800, and 2400. The final snapshot clearly shows the strong
initial travelling wave front two smaller peaks (of β) following it. The solution
at the centre of the domain eventually settles down to the fully reacted stable
stationary state.

(b) D = 0.015, L ≈ −0.00457 < L0: a permanent form travelling wave solution
develops for t ≫ 1 which leaves in its wake a stable pattern of spots. The early
evolution of the solution is shown in close-up in Figure 5, which exhibits a similar
pattern of spot replication as the solution shown in Figure 3 of [5], though the
equations and the initial conditions differ slightly. The initial wave front breaks
in to eight spots (instead of the four in [5]), each of which then splits again.

Figures 6 and 7 show the later development of the pattern, giving the profiles of α
and β at times t = 600, 1200, 1800, and 2400. There is some initial repositioning
as new spots are created: eight of the sixteen spots seen in the last snapshot
in Figure 5 move back towards the centre of the domain, while the other eight
continue to move out and split again.
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Figure 3: Plots of α for the travelling wave solutions at various times t, using parameter
values m = 3, n = 2, D = 0.2, µ = 0.02 and k = 0.1.
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Figure 4: Plots of β for the travelling wave solutions at various times t, using parameter
values m = 3, n = 2, D = 0.2, µ = 0.02 and k = 0.1.
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Figure 5: Close-up plots of β for the travelling wave solutions at various times t, using
parameter values m = 3, n = 2, D = 0.015, µ = 0.02 and k = 0.1. Only values of
β > 0.5 are shaded – paler shading indicates higher solution values.

It is clear, though, by t = 2400 that the pattern behind the travelling wave front
has settled down to a series of stationary spots which are approximately equidis-
tributed over the fully reacted region of the domain. We note that the regularity
of the pattern is entirely due to the regularity of the underlying computational
mesh. This was constructed by dividing the circular domain in to quadrants and
then recursively subdividing these quadrants into four. The pattern is dictated
by the initial division into four, the effects of which can be seen clearly in all
of the pictures. A different mesh would produce a different pattern but retain
(approximately) the size and spacing of the spots. The reason for this is that the
numerical problem is only approximately radially symmetric: the circular do-
main is being represented by a series of triangles and it is the asymmetries that
occur in the representation of the initial conditions and the partial derivatives
which trigger the pattern formation. Even if the problem was approximated on a
two-dimensional radially symmetric mesh, similar patterns would arise through
the effects of rounding error in the numerical calculations.

We note that as D increases to Dc (a bifurcation point which depends on the
problem parameters) the amplitudes of the spots in α and β decrease until, at D = Dc,
the stationary state (α+

s , β
+
s ) becomes stable and the permanent form travelling wave

now leaves this stable stationary state behind the wave front (and an intermediate
region of damped oscillations).

7 Summary

In this paper we have demonstrated, both by detailed stability analysis and by numer-
ical integration, that spotty patterns develop in initial value problem (3) over a wide
parameter range. The pattern we observe forms in the nondimensional concentration
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Figure 6: Plots of α for the travelling wave solutions at various times t, using parameter
values m = 3, n = 2, D = 0.015, µ = 0.02 and k = 0.1.
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Figure 7: Plots of β illustrating the propagating spot solutions at various times t,
using parameter values m = 3, n = 2, D = 0.015, µ = 0.02 and k = 0.1.
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of the autocatalyst β and forms in the wake of the travelling wave in the nondimen-
sional concentration of the reactant α. This circular travelling wave in α propagates
out from the initiation site, local to the origin in the two dimensional spatial domain,
converting the unreacted state (α = 1) ahead of the wave to the fully reacted state
(α = αs) at the rear of the wave. The situation for β is entirely different in that the
initial distribution of β quickly divides into spots which grow and propagate outwards
from the initiation site in the wake of the travelling wave in α. Each of these spots
in turn divide to form two spots which grow and move away from each other. This
process continues until the spots fill the spatial domain. Far enough away from the
wave front the spots settle down into a regular, equidistant pattern. This process is
very similar to cell division. Similar patterns have been observed in other mathemat-
ical models arising from chemical and biological systems and in experimental studies
(see for example [5]).

Theoretically, by introducing the parameter L in (10) and the critical value L0 in
(10), it is shown that there are two single pulse steady states in the range of L < L0

and ǫs < ǫl << 1. For τ = Dǫ2 small, it is shown that one of the single-pulse solution
is stable for large set of parameters (m,n), and the other single-pulse solution is always
unstable. A nonlocal eigenvalue problem (62) was derived rigorously and theoretical
rigorous results are obtained on the stability of such nonlocal eigenvalue problems.
Such nonlocal eigenvalue problem is new and more difficult than the one derived in
the Gray-Scott model. For example, the hypergeometric function method used in [1]
does not work here. We discovered that in some parameter range of (m, n) (??),
an eigenfunction corresponding to zero eigenvalue is found to have dent shape. We
have shown numerically that this eigenfunction may be responsible for self-replicating
patterns. Several important questions are left. For example, in the case of large τ ,
Hopf bifurcations can occur. It remains largely open to characterize the stability and
instability of the nonlocal eigenvalue problem (62) for general parameter (m,n). We
have not touched the problem of finite domain case.
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