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1 Introduction

Over the last ten years a family of cell vertex finite volume methods for the solution of the
two-dimensional scalar advection equation has evolved known as multidimensional upwind
fluctuation distribution schemes [1]. For the approximation of steady state flows on unstruc-
tured triangular grids these have reached a degree of maturity whereby the multidimensional
schemes reproduce most of the advantages of upwind schemes in one dimension: smooth, sec-
ond order accurate solutions and rapid convergence to the steady state without the necessity
for additional artificial viscosity.

Unfortunately, all of the upwind distribution schemes developed for steady state prob-
lems are only first order accurate for time-dependent flows. In this paper an approach to
creating monotonic high resolution fluctuation distribution schemes will be described which
combines the well known PSI and Lax-Wendroff schemes in a manner which generalises the
flux-corrected transport approach [1]. The new method includes a fluctuation redistribution
step in which the distribution coefficients are altered in such a way as to avoid the creation of
new extrema by the nodal updates whilst retaining conservation and as much of the accuracy
of the original scheme as possible.

2 Steady state schemes

Consider the two-dimensional scalar advection equation,

ut + fx + gy = 0 or ut + ~λ · ~∇u = 0 , (2.1)

where ~λ =
(

∂f
∂u

, ∂g
∂u

)T

defines the advection velocity. The fluctuation associated with this

equation is the cell-based quantity given by

φ = −

∫ ∫

△

~λ · ~∇u dxdy =

∮

∂△

u~λ · d~n , (2.2)

where ~n represents the inward pointing normal to the boundary of the cell.

The quantity φ is evaluated within each cell under an appropriate linearisation [1] and
distributed it to the nodes of the grid. A simple forward Euler discretisation of the time
derivative leads to an iterative update of the nodal solution values which is generally written
[1] as

un+1
i = un

i +
∆t

Si

∑

∪△i

αj
iφj , (2.3)
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where Si is the area of the median dual cell for node i, αj
i is the distribution coefficient which

indicates the appropriate proportion of the fluctuation φj to be sent from cell j to node i,
and ∪△i represents the set of cells with vertices at node i. Conservation is assured as long
as

∑

i

αj
i = 1 ∀j , (2.4)

i.e. the whole of each fluctuation is sent to the nodes. The distribution coefficients for the
PSI and Lax-Wendroff schemes may be found in [1].

3 Limiting by fluctuation redistribution

Fluctuation redistribution is a generalisation of the flux-corrected transport (FCT) technique
for cell vertex fluctuation distribution schemes and can be described along the lines of [3] in
the following six steps:

1. Compute the Low order Element Contributions (LEC) from the PSI scheme.

2. Compute the High order Element Contributions (HEC) from the Lax-Wendroff scheme.

3. Calculate the Antidiffusive Element Contributions (AEC) given by

AEC = HEC − LEC . (3.1)

4. Compute the updated low order solution,

uL
i = un

i +
∑

∪△i

LEC ∀ i . (3.2)

5. Correct the AEC to each vertex in a manner such that conservation is retained and the
new solution (as defined in step 6) has no extrema not also found in either uL

i or un
i , so

AECk → Ck
T × AECk where 0 ≤ Ck

T ≤ 1 . (3.3)

6. Calculate the final solution update,

un+1
i = uL

i +
∑

∪△i

AECk . (3.4)

The limiting procedure of step 5 is designed to make AECk as large as possible without
introducing new extrema or knowing in advance the nodal updates due to the high order
scheme in adjacent cells. It involves the following calculations:

• Evaluate in order the quantities

u∗
i =

{

max
min

(uL
i , un

i )

u∗
T =

{

max
min

(u∗
1, u

∗
2, u

∗
3)

u
max

min

i =
{

max
min

u∗
T ∀ T ∈ ∪△i , (3.5)

the last of which give the extreme values of the solution at each node i beyond which
the updated solution is not allowed to go.
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• Define

P±

i =
∑

∪△i

max
min

(0,AEC)

Q±

i = u
max

min

i − uL
i (3.6)

and subsequently

W±

i =

{

min (1, Q±

i /P±

i ) if P+
i > 0, P−

i < 0
0 if P±

i = 0 ,
(3.7)

a nodal limiting factor for the antidiffusive contribution which ensures that the new
solution value at node i does not violate the prescribed bounds.

• Finally calculate bounds on each element/vertex limiting factor from the nodal limiting
factors at those vertices

Ck
T ≤

{

W+
i if AECk > 0

W−

i if AECk < 0 .
(3.8)

The above limiting is applied to the difference between the element contributions of the two
underlying schemes which are easily constructed from the explicit fluctuation distribution
scheme [2]. It remains to choose the values of the Ck

T .

3.1 The distribution point

Consider a single grid cell in isolation: the distribution point is defined to be the point whose
local area coordinates are the distribution coefficients of the scheme for that triangle. The
movement of the distribution point is equivalent to the redistribution of the fluctuation within
the triangle.

3.2 The equivalent equation

The diffusion vector represents the displacement of the distribution point from the centroid of
the triangle (the distribution point of a symmetric central scheme). A scheme with diffusion
vector ~d has the second order equivalent equation

ut + ~λ · ~∇u = ~d · ~∇(~λ · ~∇u) , (3.9)

in which the right hand side represents the numerical diffusion of the distribution scheme and
this equation can be used to analyse the accuracy of the method.

The diffusion vector of the Lax-Wendroff scheme is ~d = 1
2
∆t ~λ and can be introduced into

the equivalent equation by rewriting (3.9) as

ut + ~λ · ~∇u =
~λ∆t

2
· ~∇(~λ · ~∇u) +

(

~d −
~λ∆t

2

)

· ~∇(~λ · ~∇u) . (3.10)

Hence, any choice of ~d such that

~d −
~λ∆t

2
⊥ ~∇(~λ · ~∇u) = ~∇ut (3.11)
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will not alter the second order error term in the approximation, so the corresponding distri-
bution scheme should be second order accurate for the given local data. Therefore, moving
the distribution point perpendicular to the local value of ~∇(~λ · ~∇u) should not change the
order of accuracy of the local discretisation.

It is important to note here that ~∇ut in (3.11) can be approximated locally using the
unlimited high order update (which has already been calculated as part of this FCT-type
limiting procedure). This allows the overall algorithm to remain compact.

3.3 The monotonicity region

In the limiting procedure described earlier the bounds on the element/vertex contributions
in (3.8) define a region, as illustrated in Fig. 1.

3
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2

Figure 1: A monotonicity region (shaded dark grey) for the distribution point based on the
PSI and Lax-Wendroff schemes.

By considering a general FCT-type algorithm, in which the monotonic scheme is written
in terms of low order (LO) and high order (HO) updates, the distribution coefficients can be
expressed as

α1 = αLO
1 + β1

(

αHO
1 − αLO

1

)

,

α2 = αLO
2 + β2

(

αHO
2 − αLO

2

)

,

α3 = αLO
3 + β3

(

αHO
3 − αLO

3

)

, (3.12)

in which the βk are limiting coefficients.
The bounds constructed in (3.8) can easily be translated into restrictions on the limiting

coefficients since βmax
k = Ck

T . In general

βmin
k ≤ βk ≤ βmax

k , k = 1, 2, 3, (3.13)

which describes three pairs of ‘tramlines’ parallel to the edges of the triangle, the dotted lines
in Fig. 1. (Here, βmin

k = 0.) The region for which the bounds in (3.13) are satisfied is shaded
dark grey in the figure. Placing the distribution point anywhere within this shaded area, the
monotonicity region, ensures that the subsequent nodal updates will not create any new local
extrema at the next time level and as a result imposes stability on the scheme.
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Note that FCT, for which

β1 = β2 = β3 = min
k=1,2,3

βmax
k , (3.14)

will position the distribution point at the intersection of the straight line joining the Lax-
Wendroff and PSI distribution points with the boundary of the monotonicity region, as shown
in Fig. 1.

3.4 Fluctuation redistribution

The calculation of the limited distribution coefficients takes the following form:

• Find the line passing through the high order distribution point perpendicular to the
locally constructed value of ~∇ut (i.e. a contour line of ut).

• Calculate the position of the point in the monotonicity region closest to the line defined
above and take this to be the distribution point of the limited scheme. If the line inter-
sects the region then take the point of intersection closest to the high order distribution
point.

The new distribution point is indicated by an asterisk in Fig. 1.

4 Results

The first test case involves the circular advection of the ‘cone’ given by the initial conditions

u =

{

cos2(2πr) for r ≤ 0.25
0 otherwise

(4.1)

where r2 = (x+0.5)2+y2, with velocity ~λ = (−2πy, 2πx)T around the domain [−1, 1]×[−1, 1],
the solution being continually set to zero at each of the inflow boundaries. The initial profile
should be advected in a circle without change of shape until it returns to its original position
when t = 1.0. Both this and the next problem has been solved on regular quadrilateral grids
divided into triangles by alternating diagonals.

Figure 2: Solution for the rotating cone test case with the PSI scheme (left) and limited
second order scheme (right).

Solutions obtained on a 64 × 64 grid are shown in Fig. 2 for the PSI and limited high
resolution schemes. After one revolution the PSI scheme has reduced the height of the peak
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from 1.0 to 0.32 and is extremely diffusive, particularly in the streamwise direction. For the
new scheme the peak value remains as high as 0.76.

The practical order of accuracy of the scheme has been investigated using the advection
of an initial profile given by the double sine wave function

u = sin(2πx) sin(2πy) , (4.2)

with velocity ~λ = (1, 2)T over the domain [0, 1] × [0, 1]. Periodic boundary conditions are
applied.

In Fig. 3 the fluctuation redistribution scheme can be seen to remain close to the unlimited
Lax-Wendroff scheme on each of the grids. The numerical order of accuracy in the L∞ norm
on the finest grid is 2.0 for the Lax-Wendroff scheme with or without fluctuation redistribution
but only 0.72 for the PSI scheme and 0.68 for a high resolution cell centre upwind scheme.
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Figure 3: L∞ errors for the double sine wave test case.

5 Conclusions

In this report the problem of achieving high order accurate numerical solutions to the two-
dimensional scalar advection equation using upwind fluctuation distribution schemes on tri-
angular grids has been addressed. A fluctuation redistribution technique has been described
which combines the PSI and Lax-Wendroff schemes to attain monotonic, high resolution
solutions. Flux-corrected transport is a special case.

The result is a fast, accurate and robust fluctuation distribution scheme based on multidi-
mensional upwind techniques for the solution of the scalar advection equation. Furthermore,
it should be straightforward to extend these schemes to nonlinear systems of equations in the
same manner as in the steady state case [4] and to three dimensions.
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