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AbstractSome techniques for improving the accuracy of multidimensional up-wind 
uctuation distribution schemes for the scalar advection equation arecompared. One involves the construction of a consistent Petrov-Galerkin�nite element scheme which is equivalent to the 
uctuation distributionscheme when mass-lumping is applied. Another uses a predictor-correctortechnique to improve the approximation. In both cases monotonicity is im-posed using a 
ux-corrected transport approach. A third method is thendescribed which combines the second order accurate Lax-Wendro� schemewith the PSI scheme via a 
uctuation redistribution step which ensuresmonotonicity (and which is a generalisation of the FCT approach for 
uc-tuation distribution schemes). Furthermore, the concept of a distributionpoint is introduced, leading to a `preferred direction' for the limiting proce-dure. Extensive numerical results are presented for each of these schemes.
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1 IntroductionOver the last ten years a family of cell vertex �nite volume methods for the so-lution of the two-dimensional scalar advection equation has evolved known asmultidimensional upwind 
uctuation distribution schemes [3]. For the approxi-mation of steady state 
ows on unstructured triangular grids these have reacheda degree of maturity whereby the multidimensional schemes reproduce most ofthe advantages of upwind schemes in one dimension: smooth, second order ac-curate solutions and rapid convergence to the steady state without the necessityfor additional arti�cial viscosity.Unfortunately, all of the current upwind distribution schemes are only �rst or-der accurate for time-dependent 
ows. Recently, this problem has been addressedwith some success in [6] in which the schemes have been equated with upwind�nite element algorithms, but only at the expense of inverting a full mass matrix.An alternative method, which takes the form of a predictor-corrector scheme, willbe described for improving the accuracy of the approach for approximating un-steady solutions of the scalar advection equation. Both of these techniques leadto spurious oscillations in the solution close to steep gradients unless some formof limiting procedure is applied. Hence they are combined with a 
ux-correctedtransport technique [5] to ensure monotonicity.In this report a more sophisticated approach to enforcing monotonicity (ofwhich 
ux-corrected transport is a special case) will be described which can beapplied to any cell vertex 
uctuation distribution scheme, such as the second orderaccurate Lax-Wendro� scheme [3]. The new method consists of a 
uctuationredistribution step in which the distribution coe�cients are altered to avoid thecreation of new extrema by the nodal updates whilst retaining conservation.The concept of a distribution point will be described and related to mono-tonicity conditions derived from the local solution. Furthermore, the equivalentequation will be used to construct a preferred direction for the movement of thedistribution when the redistribution is applied. Extensive numerical results willthen be presented to demonstrate the e�ectiveness of the new techniques.In Section 2 the multidimensional upwind schemes currently used for solv-3



ing steady state problems are described. This is followed in Sections 3 and 4by descriptions of the consistent �nite element method proposed in [6] and apredictor-corrector approach based on MacCormack's scheme. The next sectiondescribes the 
ux-corrected transport technique for imposing monotonicity on�nite element and 
uctuation distribution schemes while in Section 6 a new ap-proach is suggested based on the notion of 
uctuation redistribution. Resultsare presented for two time-dependent scalar advection test cases in Section 7 andsome conclusions are drawn at the end.2 A Steady State SchemeConsider the two-dimensional scalar advection equation,ut + fx + gy = 0 or ut + ~� � ~ru = 0 ; (2:1)where ~� = �@f@u ; @g@u�T de�nes the advection velocity. The 
uctuation associatedwith this equation is the cell-based quantity given by� = � Z Z4 ~� � ~ru dxdy= I@4 u~� � d~n ; (2.2)where ~n represents the inward pointing normal to the boundary of the cell. Inmany cases � can be evaluated exactly under an appropriate (conservative) lin-earisation of the equation (2.1) [3], in which case it can be written� = �S4b~� �d~ru ; (2:3)where S4 is the cell area and the symbol b� indicates an appropriately linearisedquantity. For linear advection ~� is constant so a conservative linearisation can beconstructed simply by assuming that u varies linearly over each triangle with thediscrete solution values stored at the nodes and continuity across the edges [3].The numerical scheme is constructed from a discretisation of the integratedform of (2.1) by evaluating the quantity � of (2.3) within each cell and thendistributing it to the nodes of the grid. Combining this technique with a simpleforward Euler discretisation of the time derivative leads to an iterative update of4



the nodal solution values which can be writtenun+1i = uni + �tSi X[4i �ji�j ; (2:4)where Si is the area of the median dual cell for node i (one third of the totalarea of the triangles with a vertex at i), �ji is the distribution coe�cient whichindicates the appropriate proportion of the 
uctuation �j to be sent from cell jto node i, and [4i represents the set of cells with vertices at node i.2.1 The PSI SchemeThe distribution coe�cients �ji are chosen so that the resulting scheme is con-servative, linearity preserving (second order accurate at the steady state) andpositive (monotonic). The word monotonic is slightly ambiguous when used in atwo-dimensional context but will be used from now on to denote a scheme whichdoesn't create spurious extrema at the new time level.The PSI scheme [3] has all of the above properties and is de�ned as follows:1) For each triangle locate the downstream vertices, i.e. those for whichb~� � ~ni > 0 ; (2:5)where ~ni is the inward pointing normal to the edge opposite vertex i.2a) If a triangle has a single downstream vertex, node i say, then that nodereceives the whole 
uctuation, soui ! ui + �tSi � ; (2:6)while the values of u at the other two vertices remain unchanged.2b) Otherwise, the triangle has two downstream vertices, i and j say, and the
uctuation is divided between these two nodes so thatui ! ui + �tSi ��i ;uj ! uj + �tSj ��j ; (2.7)where ��i + ��j = �. 5



The 
uctuations in (2.7) are de�ned as the limited quantities,��i = �i � L(�i;��j) ;��j = �j � L(�j;��i) ; (2.8)where �i = �12 b~� � ~ni(ui � uk) ; �j = �12 b~� � ~nj(uj � uk) ; (2:9)in which k denotes the remaining (upstream) vertex of the triangle and Ldenotes the minmod limiter function,L(x; y) = 12(1 + sgn(xy)) 12(sgn(x) + sgn(y))min(jxj; jyj) : (2:10)The scheme is globally positive and therefore stable, the appropriate restrictionon the time-step being �t � SiPj2[4i max�0; 12c~�j � ~nji� : (2:11)
~� ~�Upwind Lax-Wendro�2 nodes 3 nodes 3 nodes 3 nodes

Figure 2.1: The stencils of the PSI scheme and the Lax-Wendro� scheme.The above algorithm is second order accurate only at the steady state. Thisis not surprising since the limiter in step b) above is taking the contributions �iand �j (2.9) due to the �rst order N scheme [3] and redistributing the 
uctuationbetween the two downstream vertices (along the out
ow edge) which, in somesense, is giving second order accuracy in the cross-stream direction. The schemeis only �rst order accurate in the streamwise direction (in fact on a regular gridwith edges aligned with the 
ow it reduces to the one-dimensional �rst orderupwind scheme) but at the steady state this is irrelevant because the solution6



is constant parallel to the streamlines. This is illustrated further in Figure 2.1which shows the stencil of the upwind scheme and this has only two nodes in thestreamwise direction but three for cross
ow.In the following sections the PSI scheme will be modi�ed to improve its ac-curacy for approximating time varying solutions of the two-dimensional scalaradvection equation on triangular grids.2.2 The Lax-Wendro� Distribution SchemeThe Lax-Wendro� scheme [3] does not have the restricted stencil of the PSIscheme and this allows it to attain second order accuracy. In fact it is the uniquesingle step second order accurate 
uctuation distribution scheme on triangles witha compact stencil (as in Figure 2.1). The distribution coe�cients in (2.4) whichlead to this scheme are �ji = 13 + �t4S4j ~� � ~nji ; (2:12)where S4j is the area of the jth cell and ~nji is the scaled inward pointing normalto the edge of triangle j opposite the vertex at node i. The limit on the time-stepat a node i for the stability of this scheme is taken to be�t � 2 minj2[4i 0@ S4jmaxl=1;2;3 �j~� � ~njl j�1A ; (2:13)where l covers the vertices of each cell in the local patch surrounding the node.2.3 Area weighting of Nodal UpdatesThe accuracy of low order 
uctuation distribution schemes (such as PSI) can beimproved slightly by altering the weighting of the nodal updates in a mannerwhich ensures that linear initial data on an arbitrary grid remains linear aftereach time-step [1].Given linear data, (~� � ~ru) is constant throughout the domain so the generalnodal update (2.4) takes the formun+1i = uni + �tSi X[4i �jiS4j K ; (2:14)7



where K = �~� � ~ru. Therefore, replacing Si in (2.14) by P[4i �jiS4j gives thesame increment at each node and hence the data remains linear at the new timelevel. The resulting nodal update isun+1i = uni + �tP[4i �jiS4j X[4i �ji�j : (2:15)Note that this modi�cation has no e�ect on the conservative nature of the dis-tribution scheme. In fact, on regular grids in which six triangles surround eachinterior node the two schemes (2.4) and (2.14) are the same. It can also be shownthat the area weighting of (2.14) leaves the Lax-Wendro� scheme unaltered.3 The Finite Element ApproachAny 
uctuation distribution scheme, such as the PSI scheme described above, canbe equated with a mass-lumped Petrov-Galerkin �nite element scheme, and inone dimension it is well known that using a consistent �nite element formulationgenerally leads to a signi�cant increase in spatial accuracy over the correspondingmass-lumped scheme. For example, applying a consistent mass matrix to the �rstorder upwind scheme increases its spatial accuracy to third order in one dimension[6], so a similar improvement might be hoped for in the two-dimensional case.In the previous section it was assumed that the approximate solution u wascontinuous and varied linearly over each triangle with the discrete values beingstored at the nodes. In �nite element terms this means that the solution can bewritten u(x; y; t) = NnXi=1 ui(t)!i(x; y) ; (3:1)where Nn is the number of grid nodes and !i(x; y) are the standard linear trialfunctions. It remains to choose the test functions so that the mass-lumped schemeis equivalent to the chosen 
uctuation distribution scheme.In [6] an SUPG-type test function is adopted. This takes the form i = !i +X[4i �ji �j ; (3:2)where �j takes a value of 1 on cell j and zero elsewhere, and �ji are coe�cientscorresponding to the contribution of cell j to node i and are yet to be determined.8



Forcing the equivalence of the mass-lumped Petrov-Galerkin scheme to the
uctuation distribution scheme (2.4) requires that the test functions  i should bechosen to satisfy � Z Z4j  i ~� � ~ru dxdy = �ji�j ; (3:3)where �ji are the distribution coe�cients of (2.4). Combining this with the factthat the 
uctuation is given by�j = � Z Z4j ~� � ~ru dxdy ; (3:4)implies that the coe�cients in (3.2) are de�ned by�ji = �ji � 1�j Z Z4j !i ~� � ~ru dxdy : (3:5)From (3.3) and (3.5) it can be seen that a pure Galerkin �nite element dis-cretisation with linear test and trial functions ( i = !i) leads straightforwardlyto �ji = 0 and a distribution coe�cient for the equivalent �nite volume scheme ofthe form (�ji )G = 1�j Z Z4j !i ~� � ~ru dxdy : (3:6)Thus, (3.5) implies that the general form of the test functions is given by i = !i +X[4i(�ji � (�ji )G)�j ; (3:7)where the �ji are the distribution coe�cients pertaining to the chosen 
uctuationdistribution scheme [3].The use of piecewise linear trial and test functions means that the �nite ele-ment integrals are easy to evaluate. In particular (3.6) becomes(�ji )G = 13 ; (3:8)and consequently  i = !i +X[4i ��ji � 13��j : (3:9)The consistent mass matrix for this scheme can now be assembled from theindividual element contributions which take the formMk = fmi;jgk = Z Z4k  i !j dxdy ; (3:10)9



in which i and j represent global node indices and k is the cell index. The nonzerocomponents are easily calculated to beMk = S4k3 0BBBBB@ 12 + �k1 � 13 14 + �k1 � 13 14 + �k1 � 1314 + �k2 � 13 12 + �k2 � 13 14 + �k2 � 1314 + �k3 � 13 14 + �k3 � 13 12 + �k3 � 13 1CCCCCA ; (3:11)where �ki is the distribution coe�cient associated with the ith vertex of the kthcell, so the assembled mass matrix is given byM = fmi;jg = NcXk=1Mk ; (3:12)where Nc is the number of grid cells. The scheme therefore takes the formNnXj=1mi;jdujdt = �X[4i �ki �k for i = 1; :::; Nn ; (3:13)where Nn is the number of grid nodes.The mass matrix M is not symmetric so in the experiments which follow itsinversion is carried out using the GMRES(40) algorithm, which is described indetail in [10, 11]. The right hand side of (3.13) is precisely that of the 
uctuationdistribution approach and mass-lumping leads to a scheme of the formSiduidt = �X[4i �ki �k for i = 1; :::; Nn ; (3:14)so combining this with a forward Euler time discretisation is equivalent to (2.4).3.1 High Order Time-AccuracySecond order accuracy in time is achieved using the implicit discretisation [4] M�t � �J! (Un+1 � Un) = Rn ; (3:15)in which M is the assembled mass matrix, U is the vector of nodal variables andR is the vector of nodal residuals (i.e. the right hand side of (3.13)). J = @R@U isthe linearised Jacobian and may be evaluated numerically using@Ri(Un)@Unj � Ri(Un + �1j)�Ri(Un)� ; (3:16)10



where 1j is the vector of zeros with 1 in the jth entry and � is a small parameter(taken here to be 10�10).When � = 0 in (3.15) the temporal discretisation is �rst order (forward Euler).Second order accuracy is achieved by choosing � = 12 which gives a Crank-Nicolsonalgorithm. Note that the matrix �M�t � �J� in (3.15) is generally no more expen-sive to invert than the mass matrix on its own, so implicit time-stepping canbe used to allow larger time-steps to be taken with a negligible increase in thecost. In practice though, it has proved to be di�cult to signi�cantly increase thetime-step without a dramatic loss of accuracy in the solution.4 A Predictor-Corrector ApproachA second technique which has been widely used in one dimension to createschemes with high order accuracy is the predictor-corrector approach. This hasthe advantage over the consistent �nite element scheme in that no matrix inver-sion is necessary.The predictor-corrector approach is demonstrated simply in one dimension byMacCormack's scheme [7] for the scalar advection equation,ut + fx = 0 : (4:1)The �rst (predictor) step of the algorithm calculates and stores the update dueto the standard �rst order upwind scheme, which for @f@u > 0 is given byui = uni � �t�x(fni � fni�1)= uni + �t�x�i�1=2 ; (4.2)where � represents the one-dimensional 
uctuation.The corrector step is applied to cancel out the leading order error terms inthe �rst order approximation of the predictor step. One way to achieve this is totake a backward space di�erence given byui = ui � �t�x(fi+1 � fi)= ui � �t�x�i+1=2 ; (4.3)11



where f = f(u), and then to average the two updates, so that the �nal schemetakes the form un+1i = 12(ui + ui)= uni � �t2�x((fni � fni�1) + (fi+1 � fi))= uni � �t2�x(�i�1=2 + �i+1=2) : (4.4)In the case of linear advection, f = �u where � is a constant and so on auniform grid one can de�ne � = ��t�x so that (4.4) becomesun+1i = uni � 12�(1� �)(uni+1 � uni )� 12�(1 + �)(uni � uni�1)= uni + �t�x �12(1� �)�i+1=2 + 12(1 + �)�i�1=2� ; (4.5)which is precisely the Lax-Wendro� scheme written in �nite di�erence and 
uc-tuation distribution form respectively.Equivalently, the corrector stage (4.3) can be constructed from a reversal ofboth the temporal and spatial discretisations such thatui = ui + �t�x(fi+1 � fi) ; (4:6)which is very similar to (4.3) and is equivalent to upwinding backwards in time.This approximation provides a correction to the predicted update which leads toa scheme of the form un+1i = ui + 12(uni � ui) ; (4:7)cf. (4.4). As before this reduces to the Lax-Wendro� scheme (4.5) for linearadvection on a uniform grid.Now consider the multidimensional case. The predictor step can be any(preferably monotonic) 
uctuation distribution scheme,Si(ui � uni ) = �tX[4i �ji�j ; (4:8)so here it is chosen to be the PSI scheme described in Section 2. The correspondingbackward space di�erence is easily obtained by reversing the sign of b~� in thecalculation of the distribution coe�cients �ji so thatSi(ui � uni ) = �tX[4i �ji�j ; (4:9)12



and taking the average of the two updates givesun+1i = 12(ui + ui)= uni + �t2Si X[4i ��ji�j + �ji�j� : (4.10)If the corrector step is thought of in terms of reversing the temporal discretisationthen the second stage becomesSi(ui � ui) = �tX[4i �ji�j ; (4:11)and, as in one dimension, it leads to an equivalent update ofun+1i = ui + 12(uni � ui) : (4:12)The similarity of the predictor-corrector scheme to the two-dimensional Lax-Wendro� scheme can be illustrated by considering some simple examples of linearadvection on regular grids such as those shown in Figure 4.1.012 3 4 56 12 3 4 560 uaubuc~� ~�dx ~ruFigure 4.1: Examples of the equivalence of the predictor-corrector method witha Lax-Wendro� scheme.In the �rst case the data is arbitrary but the advection velocity is aligned withone set of grid edges. Simple analysis shows that the predictor-corrector updatefor the central node is given byun+1i = uni � 12�(1 � �)(un5 � un0 )� 12�(1 + �)(un0 � un2) ; (4:13)which is simply a one-dimensional Lax-Wendro� scheme where� = ~� � (~n12 + ~n23)�t2S0 = j~�j�tdx ; (4:14)in which dx is the distance between nodes 2 and 0 and S0 is the area associatedwith the central node. 13



The second example shown in Figure 4.1 uses data whose gradient is perpen-dicular to one set of grid edges but the advection velocity is now arbitrary. Thepredictor-corrector scheme again reduces to a Lax-Wendro� style update, thistime taking the formun+1i = uni � 12�(1 � �)(unc � unb )� 12�(1 + �)(unb � una) ; (4:15)where now � = ~� � ~n20�tS0 = j~�jcos��tdx ; (4:16)and � is the angle between ~� and ~ru. In this case the two-dimensional Lax-Wendro� scheme of (2.12), also reduces to (4.15) while each of the fully upwindschemes leads to a form of �rst order upwinding, i.e.un+1i = uni � �(unb � una) ; (4:17)in which � is as in (4.16).4.1 A Single Step SchemeThe above formulation does not result in a single step 
uctuation distributionscheme as it did in one dimension (4.5) but it does provide hints as to how such agoal might be achieved. For example, distribution coe�cients may be evaluatedas follows:� Calculate the distribution coe�cients �ji for the chosen 
uctuation distri-bution scheme, say the PSI scheme.� Reverse the direction of the 
ow (but not the sign of the 
uctuation) andcalculate a second set of distribution coe�cients �ji .� Apply a Lax-Wendro� style redistribution along the two edges which jointhe upstream node(s) to the downstream node(s), so if two vertices (2 and3 say) are initially downstream then�j1 ! 12(1� �2)�j2 + 12(1� �3)�j3�j2 ! 12(1 + �2)�j2�j3 ! 12(1 + �3)�j3 ; (4.18)14



whereas if only one vertex is downstream (vertex 1) then�j1 ! 12(1 + �2)�j2 + 12(1 + �3)�j3�j2 ! 12(1 � �2)�j2�j3 ! 12(1 � �3)�j3 ; (4.19)where �i = b~��~li�tS4 and~li is the edge opposite vertex i taken in the downstreamdirection.This scheme is still conservative since it remains true that�j1 + �j2 + �j3 = 1 8 j ; (4:20)and it reduces to the predictor-corrector scheme (and hence Lax-Wendro�) whenthe 
ow is parallel to the edges of a regular grid. Its major advantage over thetwo stage scheme is that of speed. However, in practice the scheme describedabove lacks robustness and is far less reliable than the Lax-Wendro� scheme.5 Flux-Corrected Transport TechniquesAs it stands, none of the above higher order algorithms is monotonic so spuriousoscillations can appear in the numerical solutions. In the case of the predictor-corrector and Lax-Wendro� schemes these are, as expected, usually to be foundimmediately upstream of steep 
ow gradients.A simple and widely used approach to the imposition of monotonicity ona scheme is the 
ux-corrected transport (FCT) technique [5, 12] which will bedescribed here in the context of 
uctuation distribution schemes. In the nextsection a more sophisticated approach will be described which can be applied tothe single step Lax-Wendro� distribution scheme.Flux-corrected transport requires a combination of two numerical schemes, alow order monotonic scheme, taken here to be the PSI scheme of Section 2, anda high order (non-monotonic) scheme to which the smoothing is to be applied,such as those described in Sections 3 and 4. In the �nite element and 
uctuationdistribution contexts FCT requires that each scheme be written in a form which15



isolates the contribution from each individual grid cell to the nodes of the grid. Anantidi�usive cell contribution is then calculated by taking the di�erence betweenthe high order and low order contributions, and this is limited in such a wayas to prohibit unwanted extrema in the solution whilst retaining as much of theantidi�usive component as possible. As a result, the high order scheme shoulddominate the algorithm in smooth regions of the 
ow while the scheme may wellreturn to �rst order in regions where the solution gradient is high.The FCT algorithm is described by the following six steps:1. Compute the Low order Element Contributions (LEC) from the mass-lumped PSI scheme.2. Compute the High order Element Contributions (HEC) from the consistentPSI scheme, the predictor-corrector scheme or the Lax-Wendro� scheme.3. Calculate the Antidi�usive Element Contributions (AEC) given byAEC = HEC� LEC : (5:1)4. Compute the updated low order solution,uLi = uni +X[4i LEC 8 i : (5:2)5. Correct the AEC in a manner such that the new solution (as de�ned in step6) has no extrema not also found in either uLi or uni , soAECc = CT �AEC where 0 � CT � 1 : (5:3)6. Calculate the �nal solution update,un+1i = uLi +X[4i AECc : (5:4)The limiting procedure of step 5 is designed to make AECc as large as possiblewithout introducing new extrema or knowing in advance the nodal updates dueto the high order scheme in adjacent cells. It involves the following calculations:16



� Evaluate in order the quantitiesu�i = nmaxmin (uLi ; uni )u�T = nmaxmin (u�1; u�2; u�3)umaxmini = nmaxmin u�T 8 T 2 [4i ; (5.5)the last of which give the extreme values of the solution at each node ibeyond which the updated solution is not allowed to go.� De�ne P�i = X[4i maxmin (0;AEC)Q�i = umaxmini � uLi (5.6)and subsequentlyR�i = 8><>: min (1; Q�i =P�i ) if P+i > 0; P�i < 00 if P�i = 0 ; (5:7)a nodal limiting factor for the antidi�usive contribution which ensures thatthe new solution value at node i does not violate the prescribed bounds.� Finally calculate each element's limiting factor from the nodal values at itsvertices so that CT = minvertices8><>: R+i if AEC > 0R�i if AEC < 0 : (5:8)The above limiting is applied to the di�erence between the element contributionsof the two underlying schemes.In the case of the low order PSI scheme the splitting into element contributionsis simple since the vector of nodal residuals Rn is assembled from the aforemen-tioned element contributions and it is clear from (3.14) that a single componenttakes the form Ri = X[4i �ki �k = X[4iRki ; (5:9)a simple sum of element contributions. Thus, the fact thatML�nUL = �Rn ; (5:10)17



in which ML is the lumped mass matrix and the symbol �n(�) = (�)n+1 � (�)nrepresents a time di�erence, implies that the element contribution from cell k tonode i can be written LECki = ML�1 (�ki �k) 1i ; (5:11)in which 1i is the zero vector with ith component 1. ML is a diagonal matrix sothat all of the inversion operations are local.In the predictor-corrector case, precisely the same analysis applies to the highorder scheme when it is derived from the average of a forward and a backwardspace di�erencing except that the de�nition of the residual has changed, cf. (4.10).The high order element contribution is de�ned byHECki = 12ML�1��ki �k + �ki �k� 1i ; (5:12)so that the antidi�usive element contribution evaluated in step 3 of the FCTalgorithm is straightforward to calculate and the limiting can then be applied.The consistent �nite element scheme cannot be treated in the same mannerbecause although it is true thatMC �nUH = �Rn ; (5:13)the consistent mass matrix MC is not diagonal so inverting it results in eachcomponent of the residual (5.9) having a global e�ect on the nodal updates.Instead, it is noted thatML�nUH = Rn + (ML �MC)�nUH ; (5:14)from which it immediately follows that the antidi�usive terms can be written as�nUH ��nUL = ML�1(ML �MC)�nUH ; (5:15)so the individual element contributions are given byAECk = ML�1 (ML �MC)k �nUH ; (5:16)where the subscript k on the right hand side indicates the kth elementmass matrixas de�ned in (3.11). Now (5.16) de�nes the antidi�usive element contributions aslocal quantities so the limiting procedure described earlier can proceed.18



FCT techniques are applied to the implicit time-stepping of (3.15) in preciselythe same manner. The low order scheme is once more taken to be the explicitmass-lumped PSI scheme and the high order scheme is the implicit consistentPSI scheme. The above analysis is then repeated, replacing the consistent massmatrix by the corresponding matrix for the implicit scheme, i.e.MC ! MC + ��tJ : (5:17)The residual R from which the Jacobian J = @R@U is calculated has already beenwritten in terms of element contributions in (5.9) and it follows that the elementcomponents of J can be assembled from the derivativesJki;j = X[4i @Rki@Uj for j = 1; :::; Nn : (5:18)Since each residual component Rki depends only on the solution values at thevertices of its own cell, denoted here by the superscript k, J reduces to an assemblyof 3 � 3 components in the same manner as MC and the new matrix of (5.17)can thus be treated in the same way during the FCT stage of the algorithm.6 Limiting by Fluctuation RedistributionFCT has proved to be an extremely successful technique for limiting 
uxes toimpose monotonicity but a loss of accuracy relative to the high order scheme,particularly noticeable when checking the error in the L1 norm, is unavoidableat turning points in the solution. In the 
uctuation distribution framework a farmore 
exible technique for imposing accuracy is to redistribute the 
uctuation asdistributed initially by the high order scheme.The Lax-Wendro� scheme, as given by (2.12), is a single step 
uctuationdistribution scheme and it is possible to combine it with the PSI scheme viaredistribution to ensure monotonicity with a minimal loss of accuracy. The tech-nique will be described below and FCT will be shown to be a special case of thisnew limiting technique. 19



6.1 The Distribution PointA useful geometric interpretation of 
uctuation distribution schemes is given bythe concept of a distribution point. Consider a single grid cell in isolation: thedistribution point is de�ned to be the point whose local area coordinates arethe distribution coe�cients for that triangle. Unless stated otherwise, it will beassumed from now on that the distribution coe�cients are non-negative (true forboth the Lax-Wendro� and PSI schemes) so that the distribution point is withinthe cell. Figure 6.1 shows typical distribution points for the two schemes whichwill be considered in this section. Note that the distribution point will lie on theout
ow edge (or at the downstream vertex of a cell with one in
ow edge) of thetriangle when the scheme is fully upwind.
23 01 1 23 0~d = ~��t2 ~dFigure 6.1: The position of the distribution point for the Lax-Wendro� scheme(left) and in the two-target case for a fully upwind scheme, e.g. PSI (right).The relationship between the distribution coe�cients and the local area coor-dinates can be written explicitly using the numbering of Figure 6.1 as�1 = Area 230Area 123 ; �2 = Area 310Area 123 ; �3 = Area 120Area 123 ; (6:1)from which it is obvious from this that�1 + �2 + �3 = 1 ; (6:2)so the scheme is conservative, and that �k � 0 as long as the distribution pointremains within the triangle. 20



It is useful to note that the movement of the distribution point is equivalent tothe redistribution of the 
uctuation within the triangle. Furthermore, moving thedistribution point parallel to an edge is equivalent to keeping the proportion ofthe 
uctuation being sent to the opposite vertex constant, i.e. the redistributionis taking place between the two nodes on that edge.6.2 The Equivalent EquationThe di�usion vector ~d labelled in Figure 6.1 represents the displacement of thedistribution point from the centroid of the triangle (the distribution point of asymmetric central scheme). It can easily be shown by geometric arguments thatthe distribution coe�cients of any scheme de�ned locally by the di�usion vector~d are given by �ji = 13 + 12S4j ~d � ~nji : (6:3)The relationship with the Lax-Wendro� scheme is obvious and comparison with(2.12) immediately gives ~d = ~��t2 (6:4)in this case, as noted in Figure 6.1.Further, a scheme with di�usion vector ~d can be shown [9] to have the secondorder equivalent equationut + ~� � ~ru = ~d � ~r(~� � ~ru) ; (6:5)in which the right hand side represents the numerical di�usion of the distributionscheme and can be used to analyse the accuracy of the method.The di�usion vector of the Lax-Wendro� scheme (6.4) can be introduced intothe equivalent equation by rewriting (6.5) asut + ~� � ~ru = ~��t2 � ~r(~� � ~ru) + 0@~d� ~��t2 1A � ~r(~� � ~ru) : (6:6)The �rst term on the right hand side of (6.6) represents the numerical di�usionof the Lax-Wendro� scheme, which is second order accurate, while the secondterm provides additional dissipation which decreases the accuracy of the scheme.21



Hence, any choice of ~d such that~d� ~��t2 ? ~r(~� � ~ru) (6:7)will not alter the second order error term in the approximation, so the corre-sponding distribution scheme should be second order accurate for the given localdata. Therefore, moving the distribution point perpendicular to the local valueof ~r(~� � ~ru) should not change the order of accuracy of the local approximation.It is important to note here that the second order derivative in (6.7) can beapproximated locally by a �rst order derivative since~r(~� � ~ru) = ~rut (6:8)and ut can be approximated simply from the unlimited high order update using~rut = 1�t(~run+1 � ~run) : (6:9)This avoids calculating the second order spatial derivative that appears in (6.7)directly and the overall algorithm remains compact since it still involves onlylocal operations.6.3 The Monotonicity RegionOne of the stages of the FCT algorithm of Section 5 involves constructing boundson the antidi�usive element contributions to the cell vertices. In (5.8) the boundfor a cell is taken to be the most restrictive of those at its three vertices. How-ever, in the context of 
uctuation distribution schemes this is not necessary andseparate bounds can be considered at each vertex. Thus, in the notation of (5.8),CkT = minvertices8><>: R+i if AEC > 0R�i if AEC < 0 ; (6:10)where node i corresponds to vertex k of triangle T . These bounds can be usedto construct a monotonicity region within each triangle, an example of which isshown in Figure 6.2.By considering a general FCT-type algorithm, in which the monotonic schemeis written in terms of low order (LO) and high order (HO) updates, the distribu-22
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1 2�3 = 1

�1 = �max1 �1 = 0
PSILWFCT ~rut = constant�2 = 1�2 = �max2�2 = 0 �3 = 0�3 = �max3

�1 = 1~� ~��t2 *
Figure 6.2: A monotonicity region for the distribution point based on the PSIand Lax-Wendro� schemes.
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tion coe�cients can be expressed as�1 = �LO1 + �1 ��HO1 � �LO1 � ;�2 = �LO2 + �2 ��HO2 � �LO2 � ;�3 = �LO3 + �3 ��HO3 � �LO3 � ; (6.11)in which the �k are limiting coe�cients. In the situation considered here, �k = 0leads to the PSI coe�cients while �k = 1 returns the Lax-Wendro� scheme. Forsimplicity, the limiting coe�cients will be required to satisfy 0 � �k � 1 untilotherwise speci�ed. These bounds are illustrated by dashed lines in Figure 6.2.The grey-shaded area in the diagram highlights the region of the triangle withinwhich placing the distribution point will satisfy these bounds.Conservation requires that�1 + �2 + �3 = 1 ; (6:12)so �1 ��HO1 � �LO1 �+ �2 ��HO2 � �LO2 �+ �3 ��HO3 � �LO3 � = 0 : (6:13)The three terms on the left hand side of (6.13) represent, depending on one'spoint of view, either the displacement of the distribution point from that of thePSI scheme (in terms of area coordinates) or the additional contributions fromthe 
uctuation to the corresponding vertices of the cell.The bounds constructed in (6.10) can easily be translated into restrictions onthe limiting coe�cients since �maxk = CkT . In general(0 = )�mink � �k � �maxk ; k = 1; 2; 3; (6:14)which describes three pairs of `tramlines' parallel to the edges of the triangle,the dotted lines in Figure 6.2. The region for which these bounds are satis�edsurrounds the PSI distribution point and is shaded dark grey in the �gure. Placingthe distribution point anywhere within this shaded area, the monotonicity region,ensures that the subsequent nodal updates will not create any new local extremaat the next time level and as a result imposes stability on the scheme.Note that the perpendicular distance of each tramline from its parallel celledge depends linearly on the corresponding � and that � = 0 de�nes a line24



passing through the low order distribution point while � = 1 corresponds to theparallel line through the high order distribution point. The aforementioned lineardependence implies that FCT, for which�1 = �2 = �3 = mink=1;2;3�maxk ; (6:15)will position the distribution point at the intersection of the straight line joiningthe Lax-Wendro� and PSI distribution points with the boundary of the mono-tonicity region. 3
1 2�3 = 1PSILW ~rut = constant�3 = �max3�2 = 1 �2 = �max2�2 = 0�2 = �min2�3 = 0FCT �1 = �min1 = 0�1 = 1�1 = �max1~� ~��t2�3 = �min3 *

Figure 6.3: An extended monotonicity region for the distribution point based onthe PSI and Lax-Wendro� schemes.The bounds described above may be relaxed to allow � < 0 or � > 1, leading toa much larger monotonicity region. For example, restrictions on the antidi�usiveelement contributions may be constructed as follows:� De�ne P�i and Q�i as in (5.6) - although the low order update uLi couldbe calculated using the PSI scheme with maximal time-step - but now take25



nodal limiting factors of(R�i )max = 8><>: Q�i =P�i if P+i > 0 ; P�i < 00 if P�i = 0 ; (6:16)and (R�i )min = 8><>: �Q�i =P�i if P+i > 0 ; P�i < 00 if P�i = 0 : (6:17)� Calculate cell-vertex limiting factors fromCkT = 8><>: (R+i )max if AEC > 0(R�i )max if AEC < 0 ;CkT = 8><>: (R+i )min if AEC > 0(R�i )min if AEC < 0 : (6.18)These are the �maxk of (6.11).An example of an extended monotonicity region is shown in Figure 6.3. Note thatalthough this increase in 
exibility should improve the accuracy of the scheme itmay well also allow the limited scheme to be less di�usive than the Lax-Wendro�scheme or let the distribution point move beyond the cell.6.4 Fluctuation RedistributionIt is clear from the previous sections that it is possible to control the stability andaccuracy of a 
uctuation distribution scheme by manipulation of the distributionpoint or, equivalently, redistribution of the 
uctuation.In particular, two schemes have been described, one having second order ac-curacy (Lax-Wendro�) and the other being monotonic (PSI), which can be com-bined to produce a scheme with improved properties. In essence this involvesconstructing the monotonicity region of Section 6.3, then �nding the distribu-tion point within this region which minimises the error term according to theequivalent equation (6.6), and redistributing the 
uctuation so as to place thedistribution point here. When the limiting is applied the distribution point ismoved from its high order position towards its low order position along somepath which minimises any loss of accuracy until the distribution satis�es thelocal monotonicity constraints. 26



The path along which the distribution point travels is dictated by the `pre-ferred direction' (perpendicular to ~rut) which is suggested by (6.6). Given thatthe dominant error term of the scheme is proportional to some approximation to0@~d � ~��t2 1A � ~r(~� � ~ru) ; (6:19)the following algorithm is suggested:� Use the PSI scheme to construct a low order, monotonic update.� Construct the monotonicity region surrounding the low order distributionpoint using the bounds on the cell!vertex contributions de�ned by either(6.10) or (6.18).� Calculate the high order updates due to the Lax-Wendro� scheme.� Find the line passing through the high order distribution point perpendic-ular to the locally constructed value of ~rut (i.e. a contour line of ut).� Calculate the position of the point in the monotonicity region closest to theline de�ned above. If the two intersect then take the point of intersectionclosest to the high order distribution point.� Find the limiting coe�cients �k which place the distribution point in thisposition and hence calculate the limited antidi�usive cell!vertex contribu-tions.� Add the limited antidi�usive contributions to the low order updates.The limited distribution points are indicated by asterisks in Figures 6.2 and 6.3.Note that when the contour line does not intersect the monotonicity region thelimited distribution point will be at a corner of the region.7 ResultsNumerical experiments have been carried out to test the schemes described inthis report. The �rst case presented here is the advection of an initial pro�le27



given by the double sine wave functionu = sin(2�x) sin(2�y) ; (7:1)with velocity ~� = (1; 1)T over the domain [0; 1] � [0; 1]. This problem has beensolved on three types of grid each of which is illustrated in Figure 7.1. Periodicboundary conditions are applied.A B CFigure 7.1: The three grid types used for the numerical experiments.Figure 7.2 shows two solutions to the above problem obtained on a 64 � 64type B grid, one obtained using the standard PSI scheme, (2.6) and (2.7), andthe second including the area weighting of the nodal updates described in Section2.3. Not only does the area weighted scheme advect the shape of the initial pro�lemuch better but the resulting solution is also slightly smoother. Further evidenceof this improvement in accuracy, particularly in the L1 norm, is provided inTable 1 which shows the errors in the solution at t = 1:0 and compares themwith the Lax-Wendro� scheme of (2.12). As expected the last of these is by farthe most accurate since it is one order of accuracy higher than the other two.Scheme L1 L2 L1 Peak valuePSI 0.1914 0.2109 0.3707 0.629Area weighted PSI 0.1849 0.2023 0.2864 0.714Lax-Wendro� 0.0131 0.0143 0.0215 0.998Table 1: Error norms of solutions for the double sine wave problem at t = 1:0 ona 64� 64 type B grid.The next comparison presented is of all the schemes without the applicationof any post-processing limiting procedure. A detailed accuracy study has been28



Figure 7.2: Solutions for the double sine wave test case.29



carried out for each of the schemes under consideration and the results for thedouble sine wave test case described above are shown in Figure 7.3. dt=dx takesthe value of 0.08 throughout for this test case.Error estimates in the L2 norm for the solution when t = 1 are shown for�ve di�erent schemes. The errors in the L1 and L1 norms showed very similarbehaviour. The least accurate method is the PSI scheme which can be seen inpractice in Table 2 to not even attain �rst order accuracy on any of the threeregular grids shown in Figure 7.1. The Lax-Wendro� scheme consistently achievessecond order accuracy on each of the grids and gives similar answers for eachcase. The predictor-corrector scheme is less reliable. On the type A grid it iscomparable to Lax-Wendro� but on grid B the error actually increases as thegrid is re�ned (hence the lack of an entry in the table). The consistent �niteelement scheme based on PSI and combined with implicit Crank-Nicolson time-stepping does indeed exhibit third order accuracy on grid A, but reduces to lessthan second order on the other two types of grid. In fact, on grid C it ceasedto be the most accurate of the schemes considered. For comparison, the resultsare pictured in Figure 7.3 alongside those of a cell-centre upwind �nite volumescheme which combines a linear reconstruction algorithm with the MLG limiter[2]. The Lax-Wendro� scheme is signi�cantly more accurate on all but grid Aand even here it achieves a higher order of accuracy, although it should be notedthat the cell-centre scheme includes a limiter which makes it monotonic.Scheme Grid A Grid B Grid CPSI 0.66 0.75 0.81Lax-Wendro� 2.01 2.01 2.01Predictor-corrector 2.01 - 1.61Consistent PSI 2.96 1.84 1.84Cell-centre FV 1.84 0.92 1.52Table 2: L2 orders of accuracy of the unlimited schemes on the three grid typescalculated when dx = 1=128.The improvement in accuracy is illustrated evenmore dramatically by a second30
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Figure 7.3: L2 errors for the double sine wave test case on the three di�erenttypes of grid.
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test case. It involves the circular advection of the `cone' given by the initialconditions u = 8><>: cos2(2�r) for r � 0:250 otherwise (7:2)where r2 = (x + 0:5)2 + y2, with velocity ~� = (�2�y; 2�x)T around the domain[�1; 1] � [�1; 1], the solution being continually set to zero at each of the in
owboundaries. The initial pro�le should be advected in a circle without change ofshape until it returns to its original position when t = 1:0.In the numerical experiments the ratio dt=dx = 0:04. Three solution pro�lesobtained on a 64 � 64 type B grid are shown in Figures 7.4 and 7.5 using theschemes without limiters being applied. After one revolution the PSI schemehas reduced the height of the peak from 1.0 to 0.32 and is extremely di�usive,particularly in the streamwise direction. The Lax-Wendro� scheme keeps theheight of the peak at 0.82 but oscillations are obvious in the wake of the cone sothat some form of limiting procedure is clearly necessary. Less clear is a smallphase lag which positions the peak slightly downstream of its correct position.Qualitatively, the predictor-corrector scheme gives very similar results, a smallphase lag with downstream oscillations. From now on only the Lax-Wendro�scheme will be considered since it is far more reliable (as indicated in Table 2),usually more accurate and computationally less expensive. When the consistentmass matrix and Crank-Nicolson time-stepping are introduced for the PSI schemesmall oscillations can be seen in front of the pro�le, although the cone is now at94% of its original height - the best of the solutions shown. It should be notedthough that the nature of the test case, in which the advection velocity changesthrough a full 360� signi�cantly reduces the size of the oscillations in this lastcase.The same test case is illustrated on the same grid in Figures 7.6, this timefor schemes which have had monotonicity conditions imposed on them via theapplication of limiters. The oscillations have now disappeared from both theLax-Wendro� scheme (combined with the 
uctuation redistribution techniquedescribed in Section 6) and the consistent PSI scheme (with FCT) although thepeak values of the solution have been reduced to 0.76 and 0.87 respectively. They32



Initial conditions/exact solution

PSI scheme

Figure 7.4: Solutions for the rotating cone test case.33



Lax-Wendroff scheme

Consistent PSI scheme

Figure 7.5: Solutions for the rotating cone test case.34



are compared with the cell-centre upwind MLG scheme [2], Figure 7.7, whichis also monotonic but the peak value here is only 0.62 after one revolution. Itshould be noted, though, that the cell-centre scheme performs considerably betteron grids of type A or C and is then comparable with the limited Lax-Wendro�scheme.The practical order of accuracy of the monotonic schemes can be investigatedusing the double sine wave test case. Table 3 shows error estimates which aretypical of the test case. The monotonicity constraint has little e�ect on theerror approximations in the L1 and L2 norms but the 
uctuation redistributiontechnique is signi�cantly better than a standard FCT approach when the L1norm is considered although some loss of accuracy is still incurred.Scheme L1 L2 L1 Peak valueLax-Wendro� 0.0131 0.0143 0.0215 0.998Lax-Wendro� + FCT 0.0132 0.0144 0.0263 0.996Lax-Wendro� + FR 0.0129 0.0143 0.0230 0.998Consistent PSI 0.0009 0.0011 0.0041 0.999Consistent PSI + FCT 0.0010 0.0015 0.0124 0.994Table 3: Error norms of solutions to the double sine wave problem at t = 1:0 ona 64� 64 type B grid.The e�ectiveness of the new method is also illustrated in Figure 7.8, particu-larly on the �ner grids. The 
uctuation redistribution scheme remains close to theunlimited Lax-Wendro� scheme on each of the grids while the FCT solution dete-riorates on the �ner grids for both the Lax-Wendro� and consistent PSI schemes.It is interesting to note that the numerical order of accuracy in the L1 norm onthe �nest grid is 2.0 for the Lax-Wendro� scheme with or without 
uctuationredistribution, but reduces to 1.28 when FCT is used, while FCT reduces theorder of accuracy of the consistent PSI scheme from 1.57 to 0.97. In the L1 andL2 norms little di�erence is detected in the error from that of the non-monotonicscheme on any of the grids, although typically 
uctuation redistribution is moreaccurate than FCT on the �ner grids. 35



Lax-Wendroff with monotonicity

Consistent PSI with FCT

Figure 7.6: Monotonic solutions for the rotating cone test case.36



Cell-centre upwind scheme

Figure 7.7: Monotonic solutions for the rotating cone test case.
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Finally, the schemes have also been compared on distorted grids. The gridshown in Figure 7.9 is a random perturbation of a 64�64 type B grid in which eachinterior node has been moved by a distance of at most dx=2 in both coordinatedirections. As expected, the accuracy deteriorates with the irregularity of thegrid. Table 4 should be compared with Table 3 to see the loss in accuracy, whichis considerably worse in the case of FCT particularly in the L1 norm. Typically,on the �nest perturbed grids, the order of accuracy is no worse than 1.8 for the
uctuation redistribution algorithm, which matches the order of the unlimitedLax-Wendro� scheme, while applying the FCT algorithm gives considerably worseresults.
Figure 7.9: The perturbed 64 � 64 grid.Scheme L1 L2 L1 Peak valueLax-Wendro� 0.0149 0.0165 0.0359 1.001Lax-Wendro� + FCT 0.0161 0.0188 0.1045 0.975Lax-Wendro� + FR 0.0151 0.0172 0.0847 0.985Table 4: Error norms of solutions to the double sine wave problem at t = 1:0 ona 64� 64 type B grid. 38



8 ConclusionsIn this report the problem of achieving high order accurate numerical solutionsto the two-dimensional scalar advection equation using upwind 
uctuation dis-tribution schemes on triangular grids has been addressed.Three approaches have been compared: a �nite elementmethod [6], a predictor-corrector algorithm and the Lax-Wendro� scheme [3]. The consistent �nite ele-ment scheme has been shown to achieve third order accuracy on some regular gridsbut it involves the inversion of a mass matrix. The predictor-corrector schemeis much faster but not particularly robust whereas the single step Lax-Wendro�distribution scheme is second order accurate on all of the grids considered. It isusually more accurate than the predictor-corrector scheme (they are equivalentin some situations) and on some regular grids it even improves on the consistent�nite element scheme.Each of the above approaches is not inherently monotonic. However, thisproperty may be imposed using an FCT approach as described in this report.In the case of the Lax-Wendro� scheme, though, a more sophisticated approachhas been devised which involves a redistribution of the 
uctuation. Bounds onthe contributions to each node are calculated in a similar manner to those usedin FCT and the distribution coe�cients are then altered so that these boundsare satis�ed. A study of the equivalent equation of the scheme reveals thatthere is also a preferred direction for the movement of the distribution point -the point which geometrically represents the local distribution - which shouldimprove the retention of second order accuracy even when the limiting is applied.Flux-corrected transport is a special case of 
uctuation redistribution.In practice, the Lax-Wendro� scheme with the additional 
uctuation redis-tribution step has proved to be second order accurate in each case tested here.This is not true of FCT for which the L1 error deteriorates rapidly as the grid isre�ned. The result is a fast, accurate and robust 
uctuation distribution schemebased on multidimensional upwind techniques for the solution of the scalar advec-tion equation. Furthermore, it should be straightforward to extend these schemesto nonlinear systems of equations in the same manner as in the steady state case39
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