University of Leeds
SCHOOL OF COMPUTING
RESEARCH REPORT SERIES
Report 2008.77

Data Structures for Visualising Semi-Structured
Adaptive Mesh Refinement Data

by

M E Hubbard

April 2008

Abstract

A variety of algorithms exist for approximating partial differential
equations on adapted meshes which retain some partial structure (e.g.
via overlaying structured sub-meshes — quadrilateral in two dimen-
sions, hexahedral in three). The resulting data is commonly stored
at the centres of the computational cells, which means that when
this data is being visualised there is no explicit connectivity between
the points at which the information is supplied. This report presents
a simple method for creating this connectivity so that the data can
be visualised using the full range of techniques available in standard
packages, without resorting to crude “fixes”.

1 Introduction

A commonly used tool in the approximation of partial differential equations
is adaptive meshing. This process can take many forms but one of the most
popular is based on overlaying regions of a structured mesh with a series of
finer structured meshes (refined in a uniform, but possibly anisotropic, man-
ner) to give a hierarchy of embedded Cartesian meshes of differing resolutions
on which the mathematical equations can be approximated. An example of
such a method is the adaptive mesh refinement (AMR) technique originated
by Berger and Oliger [2], updated by Berger and Colella [1], and developed
further by Quirk [3], amongst others. Figure 1 illustrates a typical structure
of a two-dimensional mesh created using one of these approaches.

This AMR method is designed so that the meshes are, to all intents and
purposes, overlaid and not connected. The majority of the communication
which takes place between mesh cells is carried out through their edges, but
information about the solution is typically stored at the centres of the mesh
cells. This makes it very awkward to accurately visualise the solution data,
because there is no global connectivity to allow the data to be easily interpo-
lated. This report describes a simple approach to creating this connectivity
in a unique manner, in two or three dimensions, so that the data is stored
in a format which will facilitate the use of the full capabilities of standard
visualisation tools.

Figure 1: An example two-dimensional AMR mesh: the data is stored at the
centres of the quadrilateral cells (they don’t have to be squares). The thicker
lines represent the boundaries of the individual meshes.

2 Alternative Data Structures

There are many different approaches which can be used to convert the type
of AMR grid deployed here to a structure which can be used to visualise
the data. A few of these are listed below, although all of them are, to some
degree, unsatisfactory.

1. Reconstruct the data in each cell using the surrounding information.

e Standard techniques will generally give a discontinuous representation
of the data between cells. The simplest approach would assume that
the solution is piecewise constant and hence assign the cell-centre value
to the whole cell and use this as part of the visualisation process. This
covers the whole domain but isn’t particularly accurate and the discon-
tinuities across the cell boundaries can interfere with understanding.
Higher order representations are possible, but can be expensive and
wouldn’t necessarily provide a clearer visualisation of the data.

2. Project the cell-centre data on to the underlying coarse mesh and inter-
polate the result using the inherent structure in the new dataset.

e This covers the whole domain but will inevitably compromise the ac-
curacy of the visualisation, possibly to a point where it is no longer

informative, since information will only be shown at the coarsest reso-
lution available.

3. Assign the average of the surrounding cell-centre data to each mesh node.

e The nodal connectivity is simple to obtain, though the issue of hanging
nodes (ones which occur on an edge/face of a neighbouring cell rather
than at a vertex, and which appear at the interfaces between coarse
and fine meshes) means that the shapes of the nodal areas/volumes,
over which the interpolation for the visualisation would be carried out,
would not be known in advance. It also requires appropriate weightings
to be applied within the averaging procedure and smooths the data,
losing precision. Again, the whole domain is covered.

4. Interpolate the cell-centre data on each structured mesh independently,
ignoring the parts which are overlaid by finer meshes.

e This would cover the whole domain except for gaps at interfaces be-
tween meshes.

5. Triangulate/tetrahedralise a set of vertices defined by the cell-centres and
use the resulting mesh for visualisation.

e This provides a connectivity and ensures that it is the original data
that is being visualised. However, not only is this expensive in terms
of time, it will also result in a mesh which has a considerably larger
number of cells than the original. This is unnecessarily inefficient.

The major obstacle to producing a useful data structure is the lack of any
explicit connectivity across interfaces between different levels of mesh reso-
lution in the AMR grid. However, this can be overcome.

2.1 A Semi-Structured Approach

The algorithm presented here produces a single unstructured quadrilateral or
hexahedral mesh, where the nodes are the original cell-centres. The lack of
structure arises from the fact that mesh edges are allowed to be degenerate,
1.e. have zero length, but this does not matter as long as the visualisation
tool can cope with interpolation over cells whose vertices are allowed to be
coincident.

Figure 2: Possible cell shapes in two dimensions: with degenerate edges
highlighted by dashed lines (left), and showing the actual cell shape (right).

The first step involves constructing a global numbering of the cells of the
adapted mesh. Once this has been carried out, the algorithm can then be
described as follows.

Consider a background mesh which covers the whole computational domain
at the finest resolution required. For each internal node of that fine, struc-
tured, Cartesian mesh, five steps are executed.

(i) Find the fine mesh cells (8 in 3D, 4 in 2D) with that node as a vertex.

(ii) For each of these cells, find the finest cell of the adapted mesh which
contains it.

e This simply requires interrogation of the mesh structure and is
straightforward because the AMR data structure means that the
position of every cell of the adapted mesh can easily be found
in terms of a global cell index for a structured Cartesian mesh
covering the whole domain, whatever the level of refinement.

(iii) Consider these cell-centres as vertices of a cell (hexahedral in 3D,
quadrilateral in 2D) in a new, global, unstructured mesh.

(iv) Check this new cell for degeneracy, i.e. zero “volume”. This can be done
by comparing it against the possible non-degenerate cases, illustrated
for two dimensions in Figure 2 and for three dimensions in Figures 3 and

4

A E, G, H and K require anisotropy

‘ J requires anisotropy or
— double refinement

Figure 3: Possible cell shapes in three dimensions with degenerate edges of
hexahedra highlighted: hidden edges are indicated by dashed lines, degener-
ate edges by dotted lines. Arrows indicate that the second topology can be
obtained from the first through the degeneration of one edge.

4: a degenerate edge is defined to be one for which both vertices appear
in the same cell of the adapted mesh (and are therefore associated with
the same cell-centre data value). However, a simpler way to check (with
appropriate simplifications for two dimensions) is to

a. assign integer coordinates (41, +1, 1) appropriately to each ver-
tex of the cell, forming a representative cube;

b. search through the edges of that cell and, for any edge which has
both vertices in the same cell of the adapted mesh, i.e. a degen-
erate edge, collapse it so that the coordinate for that direction is
0 for both vertices;

c. for the resulting cell, calculate

=z <o) (5

d. if V =0 then the cell is degenerate and can be ignored, otherwise
it should be included in the new mesh.

A simple example of a degenerate cell is one whose vertices are all
contained in the same cell of the adapted mesh: the representative
cube collapses to a point and can be ignored (case d in Figure 5).

(v) If the cell is degenerate then ignore it; otherwise include it in the con-
nectivity of the new mesh as a hexahedron/quadrilateral (which may
have coincident vertices).

The bulk of the work is involved in steps (ii) and (iv).

Figure 5 shows the four configurations which result in degenerate cells.
Note that it is impossible to have exactly three vertices of a face of the cell
in the same cell of the adaptive mesh: this will always force the fourth vertex
to be in the same cell, so all the other configurations of degenerate edges
can be ignored. They automatically become one of configurations I or J in
Figures 3/4 or b, c or d in Figure 5.

Remark: It is worth noting here that the algorithm described above was
constructed and implemented before noticing that exactly the same effect
could be obtained by storing the information in a tree-based data structure

G and | have the same
connectivity

Jand K have the same
connectivity

Figure 4: Possible cell shapes in three dimensions with degenerate edges
collapsed: hidden edges are indicated by dashed lines and hidden vertices
by empty circles (other vertices by filled circles). Arrows indicate that the
second topology can be obtained from the first through the degeneration of
one edge. Note that the vertices of the quadrilateral faces are not necessarily
coplanar.

Figure 5: Possible degenerate cell shapes in three dimensions with degenerate
edges of hexahedra highlighted: hidden edges are indicated by dashed lines,
degenerate edges by dotted lines.

(quadtree- or octree-based if a refinement factor of 2 is used isotropically at
each stage). The coarse mesh itself acts as the root node of the tree, with each
of its cells forming a branch. Each adapted cell at a given level of refinement is
then linked to the cell in the level above that it overlays (the AMR algorithm
guarantees that this will always exist). Given that each coarse mesh cell
knows its neighbours and that each refined cell knows its position within the
cell it overlays, this tree structure can easily be searched to find neighbouring
cells at different levels of refinement, thus replacing the need to have the
explicit connectivity sought after above. Such a structure would also provide
far greater flexibility, since it would be simple to ignore specific levels of detail
without having to recreate the connectivity from scratch. This is currently
under investigation but has yet to be implemented, so it is not clear that it
would be fast enough to be a viable option for visualising large datasets. An

initial attempt to assess the viability of such a data structure was made in
[7].

2.2 Two Dimensions

The two-dimensional case is simple because only two legitimate cell topologies
exist in the new mesh, as shown in Figure 2. Either all 4 vertices are in
different cells or a neighbouring pair of vertices are in the same cell. Every
other combination is either impossible (if two diagonally opposite vertices
are in the same cell then the other two must be as well) or results in a
degenerate cell which need not be included in the mesh. Figure 6 shows
an example of the results obtained when the algorithm has been applied in
two space dimensions. Note the apparently triangular cells at the interfaces
between different grid levels.

Figure 6: Example of the two-dimensional algorithm being used to visualise
the flooding of a circular island by a tidal wave [5, 8]. The water surface and
the bed topography are shown.

2.3 Three Dimensions

The three-dimensional case is more complicated because it involves a larger
number of legitimate cell topologies. All of these are illustrated in Figures
3 and 4. It should be noted that, in practice, only configurations A, B, C,
D, F, I and J will occur (and J requires the possibility that interfaces can
occur between meshes which differ by more than one level of refinement).
Configurations E, G, H and K require the possibility that meshes at the
same level of refinement are refined anisotropically and variably across the
domain. While anisotropy may be allowed (using different refinement factors
in different directions), each level of mesh refinement invariably uses the
same directional factors over the whole computational domain, otherwise the
benefits of the structure are lost. Figure 7 shows an example of the results
obtained when the algorithm has been applied in three space dimensions.

3 Summary

A simple algorithm has been presented which will convert an adaptive mesh,
formed by a hierarchy of embedded structured meshes (or cells) in which the
information is stored at (nominally) the cell-centres, into a single unstruc-
tured mesh which can be used for visualising the data properly.

It will not work for genuinely unstructured meshes because their con-
nectivities is not known a priori. Also, if the information is stored at the
cell vertices (as it commonly is), simpler methods are available for dealing
with the hanging nodes. It has been applied in a variety of two- and three-
dimensional situations to visualise coastal engineering and atmospheric data
[4, 5, 6, 8.

It is also noted that the use of a tree data structure could achieve the same
result but provide more flexibility. This is currently under investigation, to
see whether it might be fast enough to be a useful approach for visualising
the very large datasets which can be produced by the simulation software.

References

[1] M.J.Berger and P.Colella, Local adaptive mesh refinement for shock
hydrodynamics, J. Comput. Phys., 82:67-84, 1989.

10

North Pole

XX
Q
7,
©9 N [‘o
@ A 2
o (22
K \ N {? /o
5 | N >3
QW
o
() : / . 3

a

Equator

Figure 7: Example of the three-dimensional algorithm being used to visualise
the advection of potential vorticity in the atmosphere over one quadrant of
the northern hemisphere [6].

11

2]

3]

M.J.Berger and J.Oliger, Adaptive mesh refinement for hyperbolic par-
tial differential equations, J. Comput. Phys., 53:482-512, 1984.

J.J.Quirk, An adaptive algorithm for computational shock hydrodynam-
ics, PhD thesis, College of Aeronautics, Cranfield Institute of Technol-
ogy, 1991.

M.E.Hubbard, Adaptive mesh refinement for three-dimensional off-line
tracer advection over the sphere, Int. J. Numer. Methods Fluids, 40:369—
377, 2002.

M.E.Hubbard and N.Dodd, A 2d numerical model of wave run-up and
overtopping, Coastal Engineering, 47(1):1-26, 2002.

M.E.Hubbard and N.Nikiforakis, A three-dimensional, adaptive,
Godunov-type model for global atmospheric flows, Mon. Weather Reuv.,
131(8):1848-1864, 2003.

D.E.Tate, Visualisation of water wave simulations, Final Year Project
Report, School of Computing, University of Leeds, 2007.

A.T.Wilde, Visualisation of tsunami simulations, Final Year Project Re-
port, School of Computing, University of Leeds, 2006.

12

