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It is a fact of life that you rarely get something for nothing. In CFD

there is a balance which needs to be struck between the speed and the

accuracy of a method. To get results quickly and cheaply it is inevitable

that the solution will be of questionable quality and budgets restrict the

accuracy which can be achieved, so a compromise is often necessary.

However, it is usually the case that the faster methods are able to model

smooth 
ows quite adequately and only fail when confronted with more

complex 
ow features such as shocks or vortices, which occur in relatively

small regions of the entire 
ow domain. Therefore, it should be possible

to use a simple and fast scheme for the majority of the 
ow, and more

appropriate ones for local phenomena.

This report documents a preliminary study in which such a method is

used to model the one dimensional Euler equations. It is demonstrated that

a domain decomposition approach can be used to gain signi�cant savings

with little or no loss of accuracy.
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This is a brief report on the work done in one dimension, in preparation for

the multidimensional work to be completed for the DRA funded contract,

, which

is aimed at examining the possibility of using di�erent schemes to model di�erent

features in the same 
ow.

This preliminary work has been carried out for two main reasons

to familiarise the author with the theory of Roe's scheme in one dimension

before moving on to more dimensions with increased complexity.

to study the e�ects of, in particular, dividing the 
ow domain into separate

regions, each of which uses a scheme appropriate to the 
ow there. This

can be done in this simpli�ed environment before attempting to implement

such changes in higher dimensions.

Usually the 
ow is fairly smooth in a large proportion of the region, so a very

simple approach can be used in the modelling. In this report two `simple' schemes

are considered: a central di�erencing scheme, with arti�cial di�usion added to

endow it with a limited amount of stability, and Lax-Wendro�. It should be

possible to use other schemes which could improve the modelling of the 
ow,

but these are generally more complicated and expensive to use, and the question

arises as to whether it is worth bothering to use the simpler scheme at all if it

isn't signi�cantly cheaper than the alternative.

However, both of the above schemes are inadequate for modelling 
ow fea-

tures such as shocks, so it is necessary to use a more appropriate method. These

features are only found in relatively small regions of the 
ow, so it may be possi-

ble to model them using a much better, but far more computationally expensive

method without signi�cantly increasing the overall run time. In one dimension,

the method used is Roe's upwinding scheme which is known to give a very good

shock de�nition. The expense of this method comes from the use of an approxi-

mate Riemann solver, which decomposes the 
uctuation in each cell into waves,

which are then distributed individually in an upwind sense. This is not required

for either the central di�erencing or Lax-Wendro� schemes.

This, though, raises a number of other points, such as how to monitor the

regions where the more complicated scheme is to be used, and what the e�ects of

the interfaces between the regions using di�erent schemes are. It is these points

in particular that this study in one dimension is intended to clarify.

In two and three dimensions there are many other complications, the most

signi�cant of which is probably the choice of wave decomposition model to be

used. Until recently, Roe's scheme has been extended to higher dimensions, with
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a reasonable amount of success, using an operator splitting technique. However,

it has long been known that these methods are incapable of properly modelling

certain 
ow features, such as shear and shocks not aligned with the mesh. There

is much work being carried out at present to produce a truly multidimensional

wave decomposition model [3, 7, 10, 11], but it is by no means clear which will

prove to be the best. It may even be that in this domain decomposition method,

di�erent models need to be used for di�erent 
ow features. The work will be done

solely on unstructured triangular or tetrahedral meshes.

The result will hopefully be a `hybrid' scheme incorporating the best of both

worlds; having accurate modelling of the 
ow where it is needed but producing

answers quickly and cheaply.

In the next section, a brief description is given of the three schemes used

in this study, Roe's scheme, central di�erencing and Lax-Wendro�, and their

application to the one dimensional Euler equations. Section 3 describes the re-

sults obtained for a number of test cases, used initially to validate the individual

schemes, and then to evaluate the domain decomposition approach, using

di�erent schemes in di�erent regions. Finally, section 4 gives a summary of the

results and conclusions drawn from the study.
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The work discussed in this report is a brief study of the e�ects of domain decom-

position in one dimension. This is being used to gain an insight into the work, in

a simpli�ed environment, before it is extended to more dimensions. In this way,

problems related to the use of two di�erent schemes in a single 
ow domain can

be solved, before the introduction of the 
uctuation distribution scheme and the

wave decomposition model necessary for multidimensional upwinding, neither of

which can be considered to be perfected. This section gives a brief description of

the three schemes used in this study.

The �rst of the three schemes used here is upwinding and, in particular, Roe's

scheme is used for solving the Euler equations. The scheme is most easily de-

scribed in conjunction with a single, scalar conservation law, the one dimen-

sional linear advection equation

+ = 0 (1)

and the upwinding scheme applied to this gives

=
�

�
( ) (2)

It is explicit and �rst order accurate, and for 0 it is stable for CFL numbers

=
�

�
1 (3)

For 0 it is unconditionally unstable. In this case, a `left hand' version of the

scheme is required

=
( )�

�
( ) (4)

which is again stable for 1.

The Euler equations are a nonlinear system of conservation laws

+ ( ) = (5)

where in one dimension

= = +

( + )

(6)

in which is density, is velocity, is pressure and is the total energy, related

to the other variables by an equation of state which, for a perfect gas, is

=
1
+

1

2
(7)
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The method used here to solve this system is Roe's scheme, which is described

in detail from a theoretical point of view in [8, 9], and from a computational

point of view in [12]. This method involves the decomposition of the 
uctuation,

( )� � , in each cell, on to the eigenvectors of the Jacobian matrix, ~, of

( ), where and are the 
ux vectors at the right and left hand nodes of the

cell respectively, � is the time step and � is the cell width. The 
uctuation

can then be distributed to increment the nodal values of , being subtracted from

the left node if the corresponding eigenvalue is negative, or from the right node

if it is positive. Thus, the nodal update formula can be written

=
�

�
+ (8)

where and are the positive and negative eigenvalues of the local Jacobian

matrix, ~, is the corresponding eigenvector and is the wave strength. In

e�ect, the Euler equations have been locally linearised and decoupled leaving

three independent linear advection problems to be solved in each cell.

An interesting point in the solution of this problem is the introduction of a

parameter vector

=

1

(9)

where is the enthalpy. This has the useful property that each component of

and is merely quadratic in the components of , so transforming into these

variables simpli�es the algebra a great deal. It has also been suggested that these

parameter vector variables might have other desirable properties, and that it may

be advantageous to solve the Euler equations in these variables rather than the

conserved variables.

There are in fact two ways of constructing Roe's linearisation. The �rst,

mentioned above, uses the analogy of solving an approximate Riemann problem

within each cell, assuming the variables to be piecewise constant in space, and

develops the linearisation from there. A second derivation, developed afterwards

and favoured in more recent papers on the subject [1, 2], considers the parameter

vector variables to be piecewise linear in space. The latter has the advantage of

being readily generalised to higher dimensions.

In one dimension, Roe's scheme is easily extended to give second order ac-

curacy with monotonicity by the use of anti-di�usive terms and 
ux limiters. A

description of the theory of 
ux limiters can be found in [5], while their implemen-

tation is described in [12]. In the course of this work the minmod, van Leer and

superbee limiters were all used, but only the results produced using the van Leer

harmonic mean were presented because the di�erences were negligible. The same
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two references also give a thorough description of entropy conditions, necessary

to ensure the correct treatment of sonic points by removing the possibility of the

scheme picking up a spurious, entropy violating solution.

A detailed description of the extension of Roe's upwinding scheme to two

dimensions can be found in [13], and [2] gives a brief description of its extension to

three dimensions. A more general view of multidimensional upwinding techniques

is given in [14]. Information on the wave decomposition model is more di�cult to

�nd [3, 10, 11], as this is the least understood aspect of these schemes and there

seems to be no general consensus as to the best model.

The �rst `cheap' scheme chosen for this study is central di�erencing. It is being

used because it is simple and very fast, and since it will only be used in smooth

parts of the 
ow, it doesn't matter that it isn't the best scheme available. It is

an explicit scheme with second order accuracy, but on its own is unconditionally

unstable. Therefore, a small amount of arti�cial di�usion is required to gain

sensible results. If the scheme is applied to the linear advection equation then it

looks like

=
�

2�
( ) +

�

(� )
( 2 + ) (10)

in which the parameter regulates the amount of arti�cial di�usion being used.

The main problem with this scheme is that, due to the necessary inclusion

of arti�cial di�usion, a new tuning parameter, , has been introduced which is

problem dependent and, as such, undesirable. Even at its optimal value, the

maximum CFL number achievable which still retains stability is signi�cantly less

than one (the CFL stability limit for Roe's scheme), and in the de Laval nozzle test

case used here, a value of only 0 4 could be used, thus reducing the savings made

by using the simpler scheme. This problem suggests that it might be necessary to

use another method as the cheap scheme. However, this alternative must still be

signi�cantly faster than Roe's scheme, otherwise it is simpler to use the superior

method everywhere.

Central di�erencing is easily extended to the Euler equations since no decom-

position of the 
uctuation is necessary. In order that it is compatible with Roe's

scheme, it can be thought of in terms of distributing the 
uctuation within each

cell. This is most easily shown by writing the scheme as

=
�

2�
( ) +

�

(� )
( )

�

2�
( )

�

(� )
( ) (11)
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which illustrates how central di�erencing can be thought of as a 
uctuation dis-

tribution scheme where half the 
uctuation is sent to each of the left and right

nodes of the cell. It also shows that the arti�cial di�usion term is dealt with

just as simply. The only slight problem is the calculation of the time step, which

involves �nding the value of the largest eigenvalue, , of the local Jacobian

matrices of ( ), so

� =
�

(12)

where is the CFL number. However, this only requires the calculation of , the

velocity of the 
ow, and , the local speed of sound, since the eigenvalues of the

Jacobian are known to be , and + .

The third and �nal scheme used here is Lax-Wendro�. It is being considered as an

alternative cheap scheme for modelling the smooth parts of the 
ow, despite the

seemingly greater computational expense, because it doesn't have the problems

of central di�erencing mentioned above. Applied to the linear advection equation

the scheme looks like

=
�

2�
( ) +

1

2

�

�
( 2 + ) (13)

It is again explicit and second order accurate but is stable for CFL numbers

1 1 (14)

a great improvement on central di�erencing. Lax-Wendro� also has the advan-

tages of not having the extra tuning parameter, .

The extension of the scheme to the Euler equations is again relatively straight-

forward. As with the derivation of Equation 13, the `Lax-Wendro� trick' is used

to express the time derivatives in terms of space derivatives

= = = ( ~ ) = ( ~ ) (15)

where ~ is the Jacobian matrix of ( ). This can then be substituted into the

Taylor series expansion for , giving

= � +
(� )

2
( ~ ) (16)

The appropriate central di�erences can now be chosen to approximate the space

derivatives to give the Lax-Wendro� scheme. Using simple algebraic manipulation

the scheme can be written

=
�

2�

�

�
~ ( )

�

2�
+

�

�
~ ( ) (17)
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This shows how the scheme can be formulated in terms of the distribution of

a 
uctuation within each cell, with each node getting a contribution from the

left and the right cells. This makes the scheme compatible with Roe's scheme at

interfaces in the domain decomposition environment. As with central di�erencing,

the calculation of the time step again involves determining, , the largest

eigenvalue of the local Jacobian matrices of ( ), so

� =
�

(18)

where is the CFL number.

There are many variations of the Lax-Wendro� scheme designed to speed it

up by avoiding the calculation of the matrix ~, and multiplying by it. However,

none of these have been used here, and this should be taken into account when

considering the speed of the method compared with Roe's scheme. It should also

be noted that throughout this study, global time stepping has been used, and

convergence of all of the schemes to the steady state solution could be accelerated

enormously by the use of local time stepping techniques.

The de Laval nozzle test case presented in this report provides one dimensional

nozzle 
ow with a variation in cross-sectional area. This requires a modi�cation

to the Euler equations in one dimension which takes the form of a source term

+ = (19)

where

=

0

0

(20)

and is the cross-sectional area of the nozzle, = , = and = . Thus

we are now solving for the conserved variables multiplied by the cross-sectional

area of the nozzle.

A comprehensive description of how the source term is incorporated into Roe's

scheme can be found in [4]. Essentially the extra term is decomposed, along with

the 
uctuation, on to the eigenvectors of the matrix, ~, and each component

is distributed as before. When central di�erencing is used, then a cell averaged

value of the source term is distributed simply by sending half each to the left and

right nodes of the cell.

The extension of the Lax-Wendro� scheme is slightly more complicated in

that the introduction of the source term a�ects the `Lax-Wendro� trick', giving
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a di�erent expression for the �rst and second derivative terms in the Taylor

expansion, so

= � ( ) +
(� )

2
( ~( )) + (21)

and each of the derivative terms here is then approximated using central di�er-

ences as with the homogeneous equations.

For all three of the above schemes, the boundaries are treated using a com-

bination of Riemann invariant boundary conditions and extrapolation boundary

conditions, depending on the speed and direction of the 
ow.

The approach to using two schemes in a single 
ow domain is treated very simply

here. At every time step, each cell is designated as using either Roe's scheme or

central di�erencing/Lax-Wendro�. There is no special treatment given to cells

at the interface between the two schemes - something which may have to change

in the future by introducing some form of parameter smoothing between the two

regions.

Two methods are used to specify the cells which will use Roe's scheme. The

�rst simply designates a number of cells which will use Roe's scheme throughout

the calculation. The second method uses a monitor which 
ags cells with a

high density gradient at each time step. This is intended to pick out shocks as

they develop and use the appropriate scheme for them. The velocity magnitude

gradient has also been suggested as a monitor [14] but hasn't been used here.
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1

Initially, Roe's scheme was used with three standard test cases

Sod's shock tube problem [8]. This is a straightforward problem used simply

to test the program.

Woodward and Colella's blast tube problem [15]. This highlighted the need

to extend Roe's scheme to second order in order to accurately model strong

interacting shocks. This is not so important when converging to a steady

state solution.

Converging cylindrical shock [4]. This involved the inclusion of a source

term in the Euler equations in a similar way to that required for 
ow with

area variation.

Brief results are shown in Figures 1, 2 and 3, which agree satisfactorily with those

presented by other authors.

However, all of these test cases are time dependent problems and are of limited

use for considering cases where time stepping is used as a means of converging to a

steady state solution. Therefore, a fourth test case was used for studying domain

decomposition. This is a one dimensional nozzle 
ow on the interval 1 1

with the cross sectional area taken [6] to be

( ) = 1
1

10
(1 + cos ) (22)

This is known as a de Laval nozzle. In all the results presented here the interval

is spanned by 200 cells.

Initially, a completely subsonic case was studied where the freestream Mach

number = 0 4, which gives a smooth 
ow, symmetric about = 0. This

immediately highlighted the problem of how much arti�cial di�usion is necessary

to obtain a converged solution with central di�erencing. If the value of is

too small or too large then the scheme is unstable except for very small CFL

numbers. After some experimenting, a value of = 0 006 was chosen, allowing

a CFL number of 0 4 to be used. Figure 4 shows how the arti�cial di�usion

is needed to smooth out oscillations produced at the boundaries. The pictures

show the solution after 200 time steps (not converged) using di�erent amounts

of arti�cial di�usion. In the �rst two cases, where = 0 0 and = 0 001, the

solution blows up after a few more time steps, but in the third case, = 0 006, a

converged solution was obtained, Figure 6.

This suggested that, since the boundary seemed to be the source of the os-

cillations, then it may be necessary to use Roe's scheme here instead of central
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di�erencing. Also, in this study the boundaries are treated using a simple Rie-

mann invariant boundary condition which is far better suited to the upwinding

scheme. The results of using Roe's scheme at the boundary are shown in Figure

5. Here, the same subsonic test case was run again for 200 time steps, but using

Roe's scheme in the ten cells at either end of the domain, while the rest of the

region used central di�erencing. There are now two interfaces, where adjacent

cells use di�erent schemes. These are the sources of oscillations which are, if

anything, worse that those produced by the boundaries. In the case where no

arti�cial di�usion was used, the solution blew up after only 130 iterations, but

as before, increasing the value of slowly removes the oscillations, until with

= 0 006, a converged solution could be obtained, Figure 7. It should be noted

here that every �gure after 7 shows solutions which have converged to machine

accuracy, the residuals have fallen to below 10 , and from now on the use

of central di�erencing also implies that this particular value of arti�cial di�usion

is being used, unless otherwise stated.

Figures 6 and 7 show the converged solutions, using central di�erencing ev-

erywhere, and using Roe's scheme at the boundaries only, compared with the

results of using Roe's scheme everywhere. It is slightly worrying that the solu-

tions do not coincide, even in this subsonic case. This appears to be because the

introduction of arti�cial di�usion alters the solution of the problem at conver-

gence to steady state, and suggests that an alternative scheme might have to be

used, even if it is a little more expensive. Because of this, the same case was run

using Lax-Wendro�, and the results of this are shown in Figure 8 compared with

those of Roe's scheme. There is no longer any visible di�erence between the two

sets of results and the actual di�erence in Mach number is of the order of 10

throughout the domain, a great improvement on central di�erencing.

The subsonic case has no other features which suggest the need to use Roe's

scheme rather than central di�erencing/Lax-Wendro�, so a second case was used

which involved increasing the freestream Mach number to = 0 5 to produce

transonic 
ow with a strong shock downstream of the nozzle throat.

A comparison of the results obtained by using Roe's scheme only and central

di�erencing only is shown in Figure 9. Again the results are slightly di�erent, as

expected, with the shock produced using central di�erencing being weaker, fur-

ther upstream and a little smeared. Obviously a better treatment of the shock is

needed than central di�erencing can provide, so a monitor was used to detect the

shock as it appeared in the calculation by 
agging cells with a high density gradi-

ent. Figure 10 shows the converged results when Roe's scheme was used in these

cells and central di�erencing everywhere else. In fact, since the shock is captured

across two cells, Roe's scheme is only used in these, so the interfaces between the

two schemes are extremely close to the shock, and they have introduced wiggles
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in the solution both upstream and downstream of the shock. However, the use of

Roe's scheme has sharpened the shock, even though it is still too far upstream.

In an attempt to remove the wiggles a second run was carried out which used

Roe's scheme in the 
agged cells and in two more cells on either side (six cells in

total). Figure 11 shows that this reduced the wiggles signi�cantly, although they

can still be detected at the interfaces, and even though the shock is again very

sharp, it is still in the wrong place. A third run, shown in Figure 12, which used

Roe's scheme in �ve additional cells on either side of the shock hardly reduced

the wiggles any more. It simply moved them further from the shock (with the

interfaces), and the problem with the shock position remained.

The positioning of the sharpened shock too far upstream seems to be due to

the fact that central di�erencing, used for the majority of the 
ow, gives a slightly

di�erent steady state solution to Roe's scheme. Thus, rather than moving the

shock to the correct position, using Roe's scheme only in a small region merely

sharpens the shock in its previous position. This is also indicated by repeating

the second `hybrid' run above with a larger amount of arti�cial di�usion, = 0 01.

This has the e�ect of increasing the size of the wiggles at the interfaces and of

moving the sharpened shock even further upstream, Figure 13.

The same test case was then run using Lax-Wendro� instead of central dif-

ferencing, in the hope of producing improved results. Figure 14 shows the com-

parison of the results for Roe's scheme only and Lax-Wendro� only. This already

looks more promising since the shock is now in the same place for both schemes,

despite the oscillations characteristic of the Lax-Wendro� scheme. As with cen-

tral di�erencing, a monitor was then introduced to detect cells with a high density

gradient, and Figure 15 shows the result of using Roe's scheme only in the cells

spanning the shock. This now compares very favourably with the results obtained

from using Roe's scheme in the whole domain, although there is a small discrep-

ancy just upstream of the shock. This di�erence has been removed simply by

using Roe's scheme in four additional cells next to the shock, two upstream and

two downstream. Figure 16 shows that the wiggles at the shock have completely

disappeared and, as in the subsonic case, there is no longer any visible di�erence

between the two sets of results.

In the results described above, central di�erencing is only about three times

as fast, per time step, as Roe's scheme, so because of the di�erence in their CFL

limits (but otherwise similar convergence rates), a saving of only about 25% is

gained by using the simpler scheme. In the `hybrid' runs, Roe's scheme was used

in such a small proportion of the domain that the saving was still about 20%

over using Roe's scheme everywhere. Lax-Wendro�, however, can use a similar

CFL number to Roe's scheme and is more than twice as fast per time step, an

advantage which is maintained in the `hybrid' runs and would be increased by us-
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ing a two-step Lax-Wendro� scheme. This, in fact, makes Lax-Wendro� slightly

faster than central di�erencing overall. It should be noted that all these times

have been obtained using a very general code in which computational overheads

become increasingly signi�cant as the schemes become simpler. Also, in two and

three dimensions the di�erence in speed will become far more marked, as the mul-

tidimensional upwinding scheme is much more complex than its one dimensional

counterpart.

An alternative to the domain decomposition method used above would be

to use central di�erencing or Lax-Wendro� to obtain a reasonably converged

solution, and then use this as the starting point for a second calculation using

Roe's scheme everywhere. This removes the problem of the two schemes giving

di�erent answers, but unfortunately saves little time and is not a viable alternative

to the domain decomposition method. Although it decreases the time taken for

the second calculation to reach convergence by about 10%, most of this is used

in gaining the partially converged solution. The same problem will be found in

two dimensions so it is not worth pursuing any further.

13



The work presented in this report shows that it is possible to obtain savings in

one dimension by using a cheap and simple scheme in most of the 
ow domain

and only using a more accurate, but expensive, scheme (Roe's upwinding scheme)

in the small regions where it is necessary.

In this study two `cheap' schemes were considered, central di�erencing and

Lax-Wendro�. Unfortunately, the savings were not as large as might be expected

for central di�erencing, due to a restrictive CFL limit, and both schemes su�ered

from using a very small number of nodes in the test case considered, which caused

the iteration times to be swamped by overheads. These problems will be of less

signi�cance in higher dimensions where many more nodes are used and Roe's

scheme is relatively far more expensive.

The domain decomposition method has been successfully used to produce

sharp shocks, while using Roe's scheme in only a very small part of the domain.

Shocks were found to be the only one dimensional 
ow feature which required

special attention.

However, for central di�erencing, the interfaces between the two schemes pro-

duced wiggles which could not be completely removed by moving the interfaces

away from the shock. Also, the sharpened shock was too far upstream. This

seems to be due to the fact that central di�erencing with arti�cial di�usion and

Roe's scheme do not converge to precisely the same steady state solution and,

most importantly, predict di�erent shock positions. If Lax-Wendro� is used in-

stead, these problems disappear and an extremely good comparison can be made

between the `hybrid' scheme and Roe's scheme. This strongly suggests that a Lax-

Wendro� type scheme and not central di�erencing should be used as the simple

scheme when this work is extended to two dimensions. The Lax-Wendro� `hybrid'

scheme in one dimension takes only half the time to reach a converged solution

that Roe's scheme does, a speed advantage which will be increased greatly in two

dimensions due to the greater complexity of Roe's multidimensional scheme and

the reduced signi�cance of the computational overheads.

This work has also given a valuable insight into the domain decomposition

approach, highlighting problems to be solved before the extension to two dimen-

sions is attempted. This should make it simpler to tackle the essentially multidi-

mensional problems related to the 
uctuation distribution scheme and the wave

decomposition model.
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Figure 1: Sod's problem: comparisons of density, momentum and energy between

the exact solution (solid line), �rst order Roe's scheme (dotted line) and second

order Roe's scheme using the van Leer 
ux limiter (broken line).
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Figure 2: Woodward and Colella's problem: comparison of density between �rst

order Roe's scheme (dotted line) and second order Roe's scheme using the van

Leer 
ux limiter (solid line), at times = 0 016 0 028 0 038.
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Figure 3: Converging cylindrical shock: comparison of density between �rst order

Roe's scheme (dotted line) and second order Roe's scheme using the van Leer 
ux

limiter (solid line), at times = 54 70 110.
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Figure 4: Central di�erencing with = 0 0 (top), = 0 0004 (middle) and

= 0 006 (bottom).
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Figure 5: Roe's scheme used in 10 cells at either boundary, central di�erencing

with = 0 0 (top), = 0 0004 (middle) and = 0 006 (bottom) elsewhere.
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Figure 6: Comparison of Roe's scheme (solid line) and central di�erencing with

= 0 006 (dotted line) for the de Laval nozzle, = 0 4.

Figure 7: Comparison of Roe's scheme (solid line) and the hybrid scheme with

the ten cells at either boundary using Roe's scheme (dotted line) for the de Laval

nozzle, = 0 4.
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Figure 8: Comparison of Roe's scheme (solid line) and Lax-Wendro� (dotted line)

for the de Laval nozzle, = 0 4.
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Figure 9: Comparison of Roe's scheme (solid line) and central di�erencing with

= 0 006 (dotted line) for the de Laval nozzle, = 0 5.

Figure 10: Comparison of Roe's scheme (solid line) and the central di�erencing

hybrid scheme with only the two cells at the shock using Roe's scheme (dotted

line) for the de Laval nozzle, = 0 5.

25

� : M :

M :



0 25 50 75 100 125 150 175 200

Node index

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

M
ac

h 
N

o.

0 25 50 75 100 125 150 175 200

Node index

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

M
ac

h 
N

o.

1

1

Figure 11: Comparison of Roe's scheme (solid line) and the central di�erencing

hybrid scheme with a total of six cells at the shock using Roe's scheme (dotted

line) for the de Laval nozzle, = 0 5.

Figure 12: Comparison of Roe's scheme (solid line) and the central di�erencing

hybrid scheme with a total of twelve cells at the shock using Roe's scheme (dotted

line) for the de Laval nozzle, = 0 5.
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Figure 13: Comparison of Roe's scheme (solid line) and the central di�erencing

hybrid scheme ( = 0 01) with a total of twelve cells at the shock using Roe's

scheme (dotted line) for the de Laval nozzle, = 0 5.

Figure 14: Comparison of Roe's scheme (solid line) and Lax-Wendro� (dotted

line) for the de Laval nozzle, = 0 5.
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Figure 15: Comparison of Roe's scheme (solid line) and the Lax-Wendro� hybrid

scheme with only the two cells at the shock using Roe's scheme (dotted line) for

the de Laval nozzle, = 0 5.

Figure 16: Comparison of Roe's scheme (solid line) and the Lax-Wendro� hybrid

scheme with a total of six cells at the shock using Roe's scheme (dotted line) for

the de Laval nozzle, = 0 5.
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