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1 IntroductionThe problem which will be addressed in this brief report is the minimisation ofthe functional F = 12XT �TTQT �T : (1:1)This quantity arises from the numerical solution of systems of �rst order con-servation laws via least squares minimisation of the associated uctuations �T .The sum in (1.1) is taken over the grid cells (T ) of a triangulated computationaldomain and the QT are positive de�nite symmetric matrices. The �T will bede�ned precisely later in this report and the QT will be chosen appropriately foreach case considered.F can be considered as a function of solution values stored at the grid nodesand of the coordinates of the nodes themselves so it can be minimised with respectto any or all of these variables. The minimisation can be achieved iteratively usinga steepest descent method which de�nes the update to a nodal variable, uj say,in which j is a nodal index, to be�uj = �� @F@uj ; (1:2)where � is an appropriate relaxation factor. This is equivalent to computing �Twithin each triangle in turn and accumulating adjustments at the nodes of theform �(uj)T = �� @(�TTQT �T )@uj (1:3)from each triangle T . In this report the contribution (1.3) of an individual cellto a node j will be calculated for two cases where �T is a vector quantity:a) when the uctuation is divided into more than one component within eachtriangle.b) when a complex scalar uctuation can be derived from a system of equa-tions, based on the 2 � 2 Cauchy-Riemann system.In both of the above cases F is minimised with respect to the solution values andthe coordinates of the grid nodes. 2



2 Split Scalar FluctuationsConsider the steady state linear advection equation in two dimensions,~a � ~ru = 0 ; (2:1)where the advection velocity ~a = (a; b)T is constant over the whole domain.Alternatively, in any case where ~a is divergence-free, equation (2.1) can be writtenas ~r � ~f = 0 where ~f = u~a : (2:2)The uctuation in a triangle T associated with (2.1) is given by�T = � Z Z4 ~a � ~ru dxdy= I@4 u~a � d~n ; (2.3)where ~n represents the inward pointing normal to the boundary of the cell. Underthe assumption that u varies linearly over each triangle and its approximation iscontinuous across the cell edges the discrete uctuation is evaluated to be�T = 3Xk=1 12 (ui + uj)~a � ~nk= 3Xk=1�12 (~a � ~nk)uk ; (2.4)where k is a vertex of the triangle (i and j are the other two) and ~nk is the normalto the edge opposite vertex k scaled by the length of that edge.In [2] �T is considered as a single scalar quantity but it could be split intocomponents before the steepest descent update is calculated. As an example, theuctuation could be written as a three component vector,�T = 12 0BBBBB@ (u2 + u3)~a � ~n1(u3 + u1)~a � ~n2(u1 + u2)~a � ~n3 1CCCCCA ; (2:5)where each of the above components is the contribution from an edge of thetriangle to the uctuation, cf. (2.3) and (2.4). In the de�nition (1.1), QT is nowa 3� 3 positive de�nite matrix. 3



The simple choice of QT = 1ST I, where ST is the area of the triangle givesF = XT (�1T )2 + (�2T )2 + (�3T )22ST = XT FT ; (2:6)and the individual element contributions to this sum can be written�FT = 3Xk=1 �kTST ��kT � (�kT )22ST 2 �ST! : (2:7)Thus, using (2.5) and the fact thatST = 12 3Xk=1xk �ky = �12 3Xk=1 yk �kx ; (2:8)where �k is a di�erence along the edge opposite vertex k taken in an anticlockwisesense, e.g. �1x = x2 � x3, leads to the increments to the variables at vertex 1 ofa triangle T due to FT which are given by�u1 = �(�2T )2ST ~a � ~n2 � (�3T )2ST ~a � ~n3 (2.9)�x1 = �b(�2T )2ST (u3 + u1) + b(�3T )2ST (u1 + u2) + (�1T )2 + (�2T )2 + (�3T )24ST 2 (y2 � y3)�y1 = a(�2T )2ST (u3 + u1)� a(�3T )2ST (u1 + u2)� (�1T )2 + (�2T )2 + (�3T )24ST 2 (x2 � x3) :Similar expressions can easily be derived for the contributions to vertices 2 and3 and the accumulation of these updates over the whole grid leads to the fullsteepest descent update to the nodal variables.Note that F only vanishes if the uctuation components �kT all vanish andthis will not always be possible since the solution values and grid coordinates donot provide enough degrees of freedom. If the uctuation remains unsplit thenthere are Nc quantities set to zero using 3 � Nn unknowns. Nc and Nn are thenumber of grid cells and nodes respectively.This splitting in itself is probably of limited use. However, it can be used as thebasis for introducing some form of upwinding into the algorithm by weighting thecomponents of �T (2.5) in the functional F (2.6) in some manner which dependscontinuously on all of the dependent variables. For example, one could take�T = 12 0BBBBB@ (u2 + u3)(~a � ~n1)+(u3 + u1)(~a � ~n2)+(u1 + u2)(~a � ~n3)+ 1CCCCCA ; (2:10)4



where (�)+ indicates the positive part, so that only contributions to the uctuationfrom inow edges are considered in the minimisation of F (2.6).One further option is to de�ne the uctuation within each triangle to bedependent only on perturbations of the variables at the upwind vertices, so if theupwind vertices of a chosen cell are 1 and 2 then��T = @�T@u1 �u1 + @�T@u2 �u2 (2:11)and there is no dependence on �u3. E�ectively, the uctuation is rede�ned to beindependent of the variables at the dowstream vertices. The disadvantage of theresulting scheme, and of the process of allowing only upwind cells to contribute tothe least squares iteration at a node, is that the stencil for the update to a nodemay change at each iteration, leading to a discontinous change in the de�nitionof F between iterations which may even increase its value. Note that it is morelikely that upwinding would be used on the solution variables rather than thegrid variables since the former arises from a hyperbolic di�erential equation.It may also be possible to combine the ideas behind (2.10) and (2.11) byde�ning an update of the form��T = @�1T@u1 �u1 + @�2T@u2 �u2 + @�3T@u3 �u3 ; (2:12)where the �kT is the kth component of a vector such as (2.10). This does notdiscount the possibility of discontinuities in the resulting de�nition of the func-tional being minimised but does allow more exibility in the upwinding of thealgorithm.Also, the suggestion for splitting �T in (2.10) is not unique. Another choice,for example, might be to divide the uctuation into components proportional tothose derived from multidimensional uctuation distribution schemes [1]. Thiswould lead to di�erent expressions in (2.10) in which �kT is now the contributionsent to vertex k by the uctuation in triangle T . This can be illustrated byconsidering the PSI scheme [1].In the case where the whole uctuation is sent to a single downstream vertexthe analysis carries through as in [2], although some weighting similar in natureto that applied in (2.10) would be necessary for the iteration to become genuinely5



upwind in nature. In the two target case (vertices 2 and 3, say) the distributionbefore weighting is given by�2 = �12~a � ~n2(u2 � u1) ; �3 = �12~a � ~n3(u3 � u1) ; (2:13)and �1 = 0. From (2.7) it can easily be deduced that�u1 = �(�2T )2ST ~a � ~n2 � (�3T )2ST ~a � ~n3 (2.14)�x1 = b(�2T )2ST (u2 � u1)� b(�3T )2ST (u3 � u1) + (�2T )2 + (�3T )24ST 2 (y2 � y3)�y1 = �a(�2T)2ST (u2 � u1) + a(�3T )2ST (u3 � u1)� (�2T )2 + (�3T )24ST 2 (x2 � x3) :The asymmetry of the chosen splitting of the uctuation means that the othertwo sets of updates take a slightly di�erent form so that�u2 = (�2T )2ST ~a � ~n2 (2.15)�x2 = b(�3T )2ST (u3 � u1) + (�2T )2 + (�3T )24ST 2 (y2 � y3)�y2 = �a(�3T )2ST (u3 � u1)� (�2T )2 + (�3T )24ST 2 (x2 � x3) :and a very similar expression can be derived for the update to the variables atvertex 3. As before, accumulating these updates over the whole grid leads to thecomplete steepest descent update.3 A Cauchy-Riemann SystemThe second model problem considered here is, as in [2], that of inviscid, irrota-tional ow arising from a small perturbation of a uniform stream, given by theequations � = (1 �M2)ux + vy = 0! = vx � uy = 0 : (3.1)In fact, only the elliptic case (M2 < 1) will be considered here, where the trans-formation X = x ; Y = p1�M2 y ;U = p1�M2 u ; V = v ; (3.2)6



leads directly to the Cauchy-Riemann equations,�0 = �p1�M2 = UX + VY = 0!0 = ! = VX � UY = 0 : (3.3)In [2] (3.3) was kept as a system of equations with real coe�cients and the uc-tuation was evaluated as�T = � Z Z4 FX +GY dxdy= I@4(F ;G) � d~n ; (3.4)where F = (U; V )T and G = (V;�U)T. When U and V are assumed to varylinearly within each cell (3.4) can be written�T = 3Xk=1�12(F;G)k � ~nk ; (3:5)and the quantity chosen in [2] to be minimised isF = 12XT �TT�TST = 12XT (FTF +GTG)TST : (3:6)Alternatively, the complex variablesW = V + iU ; Z = X + iY ; (3:7)can be introduced and (3.3) can be written as a scalar equation with complexcoe�cients given by @W@Z = @W@X = @W@(iY ) ; (3:8)which, with a small amount of algebraic manipulation becomes(VX � UY ) + i(UX + VY ) = 0 (3:9)or, equivalently, ~r � f = 0 ; (3:10)where f = F + iG = 0B@ V + iU�U + iV 1CA ; (3:11)and �nally ~a � ~rW = 0 ; (3:12)7



where ~a = (1; i)T and W is de�ned in (3.7). Note that (3.12) bears a strikingresemblance to the scalar advection equation (2.1) although the coe�cients arenow complex.Equations (3.10) and (3.12) are integrated to give the complex uctuation�T = � Z Z4 ~r � ~f dxdy= I@4 ~f � d~n= I@4W ~a � d~n ; (3.13)and the assumption that U and V both vary linearly over each triangle leads tothe discrete form of the uctuation which is given by�T = 3Xk=1�12(~a � ~nk)Wk : (3:14)One can now seek to minimise the quantityF = 12XT j�T j2ST = 12XT �T�TST = XT FT ; (3:15)in which the sum is over all of the triangles in the domain and ST is the areaof triangle T . (3.15) is in fact equivalent to (3.6). It follows immediately from(3.15) that an individual element contribution gives�FT = 12ST �(j�T j2) + j�T j22 �� 1ST �= 12ST �(j�T j2)� j�T j22ST 2 �ST= 12ST (�T ��T + �T��T )� j�T j22ST 2 �ST : (3.16)Using a steepest descent method to minimise F leads to iterative updates tothe complex variables de�ned in (3.7) of the form�W = �V + i�U = �@F@V � i@F@U�Z = �X + i�Y = � @F@X � i@F@Y : (3.17)With some algebraic manipulation of (3.16) and usingp1�M2ST = 12 3Xk=1Xk�kY = �12 3Xk=1 Yk�kX ; (3:18)8



and the fact that�T = �12 3Xk=1 [(Vk�kY + Uk�kX) + i(Uk�kY � Vk�kX)]= i2 3Xk=1Wk�kZ= � i2 3Xk=1Zk�kW (3.19)= 12 3Xk=1 [(Xk�kU + Yk�kV ) + i(Yk�kU �Xk�kV )] ;where �k as in (2.8) signi�es a di�erence along the edge opposite vertex k takenin an anticlockwise sense, the contribution of a particular cell to its kth vertexcan be shown to be�Wk = i2ST �T�kZ�Zk = � i2ST �T�kW � ij�T j24p1 �M2ST 2�kZ : (3.20)The accumulation of these increments leads to the complete steepest descentiteration. This is equivalent to the update derived in [2].4 ConclusionsIn this report, iterative updates have been derived for a steepest descent methoddesigned to minimise a chosen functional, related to a system of partial di�erentialequations, with respect to solution values and grid node coordinates. The func-tional is in each case designed for a least squares minimisation of the uctuationscorresponding to the system of equations.Two speci�c cases have been considered, one in which a scalar uctuation issplit into components before the least squares minimisation is applied and anotherin which a system based on the 2 � 2 Cauchy-Riemann system is considered. Inthe latter case it is noted that the system can be written in a complex form whichhas many similarities to the scalar case.9
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