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Hyperbolic Conservation Laws

Consider the scalar conservation law

∂tu+ ∇ · f = 0 or ∂tu+ a · ∇u = 0

on a domain Ω.

a = ∂f

∂u
is the advective velocity of the flow.

u(x, 0) is specified.

u(x, t) is specified on inflow boundaries.

This work is aiming for high order accurate,
oscillation-free approximations to this equation.
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The Steady State Case

The residual on a 2D triangular element (E) is given by

φE =

∫
E

∇ · f dΩ =

∮
∂E

f · n dΓ

n gives the outward pointing normal to the element
boundary.

u varies continuously and is stored at mesh nodes.

In simple cases φE can be evaluated exactly using
an appropriate (conservative) linearisation.

. – p.3/30



Residual Distribution Schemes

The aim is to solve the equations given by

∇ · f ≡ 0 −→
∑

E∈∪△i

βE
i φE = 0

This can be done iteratively, driving the φE to zero, by

distributing each residual φE to its adjacent nodes,

carefully choosing the distribution coefficients βE
i ,

applying a simple pseudo-time-stepping algorithm:

Si u
n+1
i = Si u

n
i − ∆t

∑
E∈∪△i

βE
i φE
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Scheme Design

Ideally any residual distribution scheme would be

Conservative – for discontinuity capturing.

Positive – to prohibit unphysical oscillations.

Linearity Preserving – for accuracy.

Continuous – for convergence to steady state.

Compact – for efficiency.

Upwind – for physical realism.
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Upwind Schemes

N – linear, positive.

LDA – linear, linearity preserving.

PSI – nonlinear, positive and linearity preserving.

Blended (N,LDA) – nonlinear, (almost) positive and
linearity preserving.

Precise details depend on the blending.

These schemes, derived from a piecewise linear
representation, provide the distribution coefficients βE

i .
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Time-Dependent Problems

Simply applying high order pseudo-time-stepping
doesn’t improve the accuracy for time-dependent
problems beyond first order.

However, Runge-Kutta time-stepping can be
combined with:

(i) a consistent mass matrix for an equivalent
Petrov-Galerkin formulation;

(ii) a space-time distribution.
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The Finite Element Analogy

Residual distribution schemes:

Integrate the conservation law over mesh elements.

Distribute the integrated quantities to update nodes.

Finite element schemes:

Integrate a distributed form of the conservation law
over mesh elements.

Assemble the integrated quantities to update nodes.

Both methods partition unity for conservation.

. – p.8/30



Stabilised Finite Elements

Locally constant perturbations, cf. SUPG:

+ = Flow

Piecewise linear perturbations might be considered:

+ = Flow
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Consistent Mass Matrix

The pseudo-time-stepping is replaced by
∑

E∈∪△i

∑
j∈E

mE
ij

dui

dt
+ ∆t

∑
E∈∪△i

βE
i φE = 0

One possible form, for piecewise linears, gives

mE
ij =

|E|

36
(3δij + 12βE

i − 1)

The βE
i can be evaluated at the old time level.

Even with TVD RK time-stepping, positivity is lost.
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Linear, Scalar
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Nonlinear, Scalar
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Nonlinear, System
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Nonlinear, System
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Nonlinear, System
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Higher Order Accuracy

The order of accuracy of a linearity preserving
scheme corresponds to the order of accuracy of the
representation of the residual (Abgrall, 2001).

Therefore, to get a higher order scheme,

create a higher order representation of u,

use this to evaluate the residual,

distribute this residual in a linearity preserving
manner.
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High Order Accuracy

Cell subdivision (Abgrall & Roe, 2003),
e.g. 4 subelements give 6 degrees of

freedom, enough for piecewise
continuous quadratics.

Local derivative recovery (Caraeni et al., 2001),
e.g. gradient recovery at the nodes also gives

enough for piecewise continuous quadratics.

Extending the stencil (Hubbard & Mebrate, 2006),
e.g. 6 nodes per element/edge is enough for

piecewise continuous quadratics.
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Combining With Positivity

The desired properties are all straightforward to
achieve, except positivity.

Along each (sub)element edge take

uLIM = uLO + γ(uHO − uLO)

where γ must
be chosen
appropriately
for each edge.

|ui1 − ui2 |

uHO
uLO

uLIM

i1 i2i1i2
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Restricting the Interpolant

As long as uLIM − uLO is bounded by C δuedge the
affected residuals can always be distributed to the
vertices of their own (sub)elements in a positive manner.

Edge-based limiting guarantees conservation.

The time-step must be restricted, but not by much.

To guarantee positivity, upwinding is sacrificed.

The γ can be chosen to give locally monotonic u.

(Hubbard, 2007)
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A Space-Time Approach

The residual on a prismatic space-time element is

φEt
=

∫ tn+1

tn

∫
E

(∂tu+ ∇ · f) dΩ

and should be evaluated exactly once supplied with uh.

The aim is now to solve equations of the form

∂tu+ ∇ · f ≡ 0 −→
∑

E∈∪△i

βEt

i φEt
= 0

with new distribution coefficients βEt

i .
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Comments

The temporal derivative term must be integrated
consistently for full accuracy.

Signals should only be sent forward in time.

A PSI-like limiting procedure can create a linearity
preserving scheme from a positive one, i.e.

(βEt

i )LIM =
[(βEt

i )LO]+∑
k∈Et

[(βEt

k )LO]+

Pseudo-time-stepping can still be applied:

Si u
(m+1)
i = Si u

(m)
i − ∆τ

∑
Et∈∪△i

βEt

i φEt
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A Second Order Scheme

Given a positive distribution of the spatial derivative
terms, local updates take the form
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and lead to a positive iteration. When u is linear

The terms in the square brackets lead to low order
distribution coefficients, βLO

i .

These can be limited for second order accuracy
(Abgrall & Mezine, 2003).
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Higher Than Second Order

Limiting the quadratic interpolant allows an element’s
“mass” to be written as a weighted sum of its vertex
values, so a single element update can be written
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In the piecewise linear case, D = |E| I/3 , is
independent of the data.

In the high order case D is a diagonal matrix which
depends on the data, specifically

Di = |E|(1 + γ′ki − γ′ij)/3 etc.
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Notes

If the interpolant wasn’t limited, the elements of D

could become unbounded.

If C ≤ 0.5 in the limiting of the interpolant along
each edge then the elements of D are guaranteed
to be positive.

In general D
∗ 6= D

n, even when they are bounded
and positive, so a positive discretisation of the
spatial terms does not guarantee a maximum
principle overall because

un+1
i =

∑
nodes

wju
n
j where wj ≥ 0 but

∑
nodes

wj 6= 1

. – p.24/30



Limiting the Mass Matrix

The mass at the new time level can be related to the
mass at the old time level, i.e.

0
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0 D∗
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k

1

C

C

A

=

0

B

B

@

Dn
i − ψij + ψki 0 0

0 Dn
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0 0 Dn
k
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A

where the ψ = |E|
3 (γ′∗ − γ′n).

It is also possible to write D
n in terms of D

∗ and
follow a similar process.
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Limiting the Mass Matrix

The element’s “mass” can be redistributed locally, i.e.

D
∗ →

0
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This leads to a conservative method because each
column sums to D∗

· .

This is an M-matrix when C ≤ 0.25 in the limiting of
the interpolant along each edge.
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Solving the New System

For each mesh element, assemble the following:
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This leads to a positive iteration as long as the
discretisation of the spatial terms is positive and
∆τ is small enough.
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Comparison of Results
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Comparison of Results
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Summary

For time-dependent problems, higher order accuracy
requires consistent spatial integration of the time
derivative.

This can be done by introducing a mass matrix, at
the expense of positivity.

It is simpler to avoid oscillations in a space-time
framework.

With careful limiting, it may be possible to combine
higher than second order accuracy with positivity.
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