
Travelling waves in biology: Lecture 3
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The fire-diffuse-fire (FDF) model [1] is relevant to the study of travelling wave behaviour observed when Ca2+ is released from internal stores in
living cells. Ca2+ is stored intracellularly in the endoplasmic or sarcoplasmic reticulum at 2–3 orders of magnitude greater than its concentration
in the cytosol and is released by a nonlinear feedback process referred to as calcium-induced calcium release (CICR). CICR involves Ca2+ release
through Ca2+ channels that are receptors for IP3 (inositol (1,4,5)-trisphosphate). These channels are activated at slightly elevated levels of
cytosolic Ca2+ and then inactivated as the level of Ca2+ rises further. This mechanism for generating oscillations in the concentration of cytosolic
free Ca2+ is believed to underlie the waves that propagate as intra and intercellular waves over distance as large as 1mm with speeds of between
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5 and 20 µms−1 . When coupled to the kinetics of Ca2+ reuptake into stores (by Ca2+ ATPases), the CICR mechanism can lead to excitability
and oscillations. Initiation sites or hot spots have been found to spontaneously release Ca2+ and can trigger a wave that spreads via the CICR
process. Burst-like wave behaviour is commonly seen in immature Xenopus oocytes and in cardiac myocytes where saltatory waves propagate with
a non-constant shape. Importantly, long ranged Ca2+ waves are capable of synchronising the activities of different cytoplasmic regions of a single
cell, such as cortical granule exocytosis after egg fertilisation. In contrast to a saltatory wave, these waves have a continuous nature. Both types
of wave are thought to be supported by the same mechanism, namely CICR. The existence of such long range spatial and temporal signalling
by Ca2+ is one of the most significant findings of the last decade in the field of intracellular signalling and has stimulated many experiments for
the elucidation of the role of Ca2+ waves in cell regulation. A major success of the FDF model is the natural description of both saltatory and
continuous travelling waves.

The FDF model incorporates descriptions of the two major fluxes between the endoplasmic reticulum and the cytosol. The first is due to a pump
which drives the Ca2+ up the gradient from the cytosol back into the endoplasmic reticulum and the second arises when the IP3 receptor/calcium
channel opens and causes a large flux from the endoplasmic reticulum into the cytosol. After an open channel closes via inactivation, it cannot
reopen for some time during which it is in a refractory state. Thus the release of Ca2+ by intracellular stores is self-regulating. Such events are
commonly referred to as Ca2+ puffs or sparks and are the elementary events underlying Ca2+ waves. The FDF model provides a caricature of
Ca2+ release events that allows one to study an array of Ca2+ release sites that can interact via diffusion of Ca2+ and the triggering of a CICR
like mechanism.

For further discussion see [2, 3].
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2 The fire-diffuse-fire model - breaking translation invariance
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The one dimensional FDF model consists of a regular array of point-source release sites with lattice spacing d, embedded in a continuum in which
calcium ions diffuse. Denoting the concentration of Ca2+ ions by u(x, t) the FDF model is given by the following partial differential equation

∂u

∂t
= −

u

τd

+ D
∂2u

∂x2
+

∞∑
n=−∞ δ(x − xn)η(t − Tn), x ∈ R, t > 0. (1)

Note that xn = nd is the location of the nth Ca2+ release site and the first time that u(xn, t) crosses a threshold uc from below is denoted by
Tn. Hence, the FDF model assumes that the site at xn releases only one Ca2+ puff at a time, Tn, determined by

Tn = inf{ t | u(xn, t) > uc,
∂u(xn, t)

∂t
> 0}.

The function η(t) describes the shape of the Ca2+ puff and is considered as a rectangular pulse-shape given by

η(t) =
σ

τR

Θ(t)Θ(τR − t)

where Θ(x) is a step function (Θ(x) = 0 for x < 0, Θ(x) = 1 for x ≥ 0), σ is the strength of the calcium puff and τR is the duration of Ca2+

release. The inclusion of the decay time τd in (1) models the time-scale associated with the action of the pumps that resequester the Ca2+ back
into the stores. Under normal physiological conditions pumps that are embedded in the membrane consume nucleotide trisphosphates and pump
the Ca2+ up the gradient from the cytosol back into the stores. In the absence of any sources (σ = 0) equation (1) is equivalent to the cable
equation that is often used to model the spread of voltage in a passive unbranched dendritic cable.
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3 Travelling waves

The FDF model is capable of composing global signals (travelling waves) from elementary events (puffs or spikes). The solution of (1) can be
expressed in terms of the Green’s function of the cable equation as

u(x, t) =
σ

τR

∞∑
n=−∞

∫ Tn+τR

Tn

dt ′G(x − xn, t − t ′)

where

G(x, t) =
e−t/τd

√
4πDt

e−x2/(4Dt)Θ(t)

We consider travelling waves which satisfy Tn = n∆ so that the speed of threshold crossing events is given by c = d/∆. Moreover, we restrict
attention to the case where ∆ > τR so that only one site is releasing Ca2+ at any one time. The, as yet, undetermined parameter ∆ will be
referred to as the period of a wave as it measures the time between successive release events that make up a saltatory travelling pulse. Assuming
that only the sites with index up to N have crossed threshold we have that

u(x, t) =
σ

τR

N∑
n=−∞

∫min(t−n∆,τR)

0

dt ′G(x − nd, t − t ′ − n∆), t > tN.

Since we are only interested in long time solutions that cause sites with increasing n to cross threshold we consider the large N limit and neglect
all terms in the above sum with n ≤ 0. Hence,

u(Nd,N∆) =
σ

τR

N−1∑
n=0

∫ τR

0

dt ′G((N − n)d, (N − n)∆ − t ′). (2)

Introducing

H(x, t) =
1

τR

∫ τR

0

G(x, t − t ′)dt ′,
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gives

u(Nd,N∆) = σ

N∑
n=1

H(nd, n∆).

Note that limτR→0 H(x, t) = G(x, t). Hence, one may determine the speed of the travelling wave in a self-consistent manner by demanding

lim
N→∞ u(Nd,N∆) = uc.

This is an implicit equation for ∆ = ∆(uc), and hence c = c(uc).

Note from (2) that waves do not propagate with an invariant shape even though the threshold crossing times occur on a regularly spaced temporal
lattice. A saltatory travelling wave solution to the FDF model is illustrated in figure 1. Note the large increase in the concentration of Ca2+ ions
just after a release event. The saltatory nature of the wave may be directly attributed to the fact that release sites are not spread continuously
throughout the system. Continuum models that neglect the discreteness of release sites are more appropriate for the study of travelling waves
with constant profiles.
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Figure 1: An example of a stable saltatory travelling wave analytically determined by equation (2) with N = 5. The period ∆ of the wave is
determined self-consistently as ∆ = 0.17 for the choice of parameters td = 1, τD = d2/D = 1, τR = 0.1 and û = ucd/σ = 0.1
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Stochastic FDF

Add noise to the threshold: uc → uc + noise, to mimic the stochastic nature of calcium release [4].
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Figure 2: Left: An example of two lurching pulses moving out from the center of a deterministic one dimensional FDF model with 50 regularly
spaced release sites and free boundary conditions. Right: Stochastic FDF model - much more like biological reality!
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Figure 3: Temporal sequence snapshots for the two-dimensional stochastic FDF model with low noise. Frames are presented every 0.45s starting
in the top left corner and moving rightward and down. An initial seed in the center of the cell model leads to the formation and propagation of a
circular front. Spiral waves form in the wake of the wave by spontaneous nucleation. These can be destroyed in wave-wave collisions and created
by spontaneous nucleation.
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Figure 4: Temporal sequence snapshots for the two-dimensional stochastic FDF model with high noise. Frames are presented every 0.45s starting
in the top left corner and moving rightward and down. An initial seed leads to the formation of a circular travelling front. In the wake of the wave
there is periodic and near simultaneous release from a large number of stores, typical of systems exhibiting array enhanced coherence resonance.
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4 A continuum calcium bi-domain model

Here we explicitly model the fact that the Ca2+ content in the intra-cellular Ca2+ store is in fact finite and should be more properly described
with a bidomain model as in [5]. Introducing the ratio between the effective volumes of the ER store and the cytosol as γ, the bidomain model
takes the form

∂c

∂t
= Jrel − Jpump + D

∂2c

∂x2
,

∂cer

∂t
= −γ−1[Jrel − Jpump] + Der

∂2cer

∂x2
.

Here
Jrel(x, t) = (cer(x, t) − c(x, t))

∑
m

η(t − Tm(x)).

The release times Tm(x) are determined by a threshold process such that

Tm(x) = inf{t | c(x, t) ≥ cth, t > Tm−1(x) + τR},

and τR is an absolute refractory time-scale.

In the bidomain model the calcium pump flux must account for the Ca2+ on both sides of the ER membrane. Here we consider the linear pump
model

Jpump =
c

τ
−

cer

τer
.

4.1 The shunt model

Take cer constant and set τ−1
er = 0. Consider a single release event, T(x) = x/v. Introducing ξ = vt − x we may re-write the original equations

of motion (for a solitary travelling release event) in the co-moving frame as c = c(ξ, t), where c satisfies(
∂

∂t
+ v

∂

∂ξ

)
c = −

c

τ
+ D

∂2c

∂ξ2
+ η(ξ/v)(cer − c).
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A stationary profile c(ξ, t) = c(ξ) in the co-moving frame satisfies the ODE

(dξ − m+(ξ))(dξ − m−(ξ))c = F(ξ), F(ξ) = −
cer

D
η(ξ/v),

where

m±(ξ) =
v±

√
v2 + 4ε(ξ)D2

2D
, ε(ξ) =

1

D

(
1

τ
+ η(ξ/v)

)
.

Introducing z = (dξ − m−(ξ))c, we see that

z(ξ) = G+(ξ, 0)

[
z(0) + H(ξ)

∫ξ

0

G+(0, ξ ′)F(ξ ′)dξ ′
]

,

where

G±(ξ, ξ ′) = exp

(∫ξ

ξ ′
dsm±(s)

)
.

For z(ξ) to be bounded as ξ → ∞ we require

z(0) = −

∫∞
0

G+(0, ξ ′)F(ξ ′)dξ ′.

The corresponding solution for c(ξ) is given by

c(ξ) = G−(ξ, 0)

[
cth +

∫ξ

0

G−(0, ξ ′)z(ξ ′)dξ ′
]

.

For c(ξ) to be bounded as ξ → −∞ we require

cth = z(0)

∫ 0

−∞ G−(0, ξ ′)G+(ξ ′, 0)dξ ′.

Note that for ξ < 0 m±(ξ) = k±, where

k± =
v±

√
v2 + 4D/τ

2D
.
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Figure 5: Speed of a solitary wave as given by (3) with η(ξ) = ηΘ(ξ)Θ(∆ − ξ). v = v(cth), with D = 30, cer = 100, ∆ = 0.05, τ = 0.01 and
η = 1. Of the two branches of solutions, the slower is always unstable.

Hence, we have the elegant result that the speed of the wave is determined by the equation

cth =
z(0)

k+ − k−

,

As an example consider η(ξ) = ηΘ(ξ)Θ(∆ − ξ). In this case z(0) is easily calculated as

z(0) =
ηcer

D

1 − e−m+v∆

m+

, m+ =
v +

√
v2 + 4(τ−1 + η)D

2D
. (3)

For sufficiently small cth/cer there are a pair of solutions to (3), as illustrated in Fig. 5.
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Figure 6: Tango waves in the vicinity of the point of dynamic instability.

4.2 Tango waves in the full bi-domain model

Travelling fronts and pulses can be constructed in a similar manner for the full bi-domain model. In this case a linear stability analysis shows
that the faster branch of solutions can undergo a dynamic instability (not possible for the pure shunt model). Some numerical examples of waves
beyond a dynamic instability point are shown in figures 6 and 7. In contrast to pulse and front solutions that travel with a constant speed in one
direction, we observe waves that propagate in a back-and-forth manner. Such a dynamical phenomenon was first reported in [5] and named as
tango waves. The left panel in figure 6 resembles earlier findings, especially with respect to the wave form and to the emergence of additional
pulses. Whenever a tango wave reverses its direction after invading the low calcium concentration region, pulses are set off, which travel to the
right with constant speed. The number of pulses can increase in the course of time. The first four tango waves initiate only one pulse, whereas
proceeding ones give rise to two pulses. The form of the tango wave changes appreciably when we alter γ as can be inferred from the right panel
in figure 6. Instead of fingering tango waves, the wave front is now more compact and the amplitude of the back-and-forth movement is much
smaller.
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Figure 7: Reversed tango waves for two different initial calcium concentration profiles.

Figure 7 illustrates that tango waves possess a larger variety of forms than already suggested by figure 6. Here, the front extends from a state
of low calcium concentration to the one of high calcium concentration. Although going into the reverse direction, the shape of the moving edge
is similar to the one in figure 6. A comparison between the two panels in figure 7 with respect to the interface between the high and the low
calcium concentration state reveals that it moves to the left in the left panel, but to the right in the right panel. Therefore, the state of low
calcium concentration will eventually occupy the whole space in the former example, whereas the same is true for the state of elevated calcium
concentration in the latter case.
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