
Travelling waves in biology: Lecture 4

Bumps, breathers, and waves in a neural 
network with threshold accommodation

Steve Coombes



Neurons: pyramidal cells



Neural Field Model
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w(|x-y|)
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Wilson and Cowan (1972, 1973), Amari (1977)

u(x, t) =
∫

∞

−∞

w(x−y)
∫ t

−∞

η(t−s)f(u(y, s)−h)dsdy

Hill (1936), “... the threshold rises when the local potential is maintained ... and reverts 
gradually to its original value when the nerve is allowed to rest.”

ht = −(h − h0) + κH(u − θ)

Slow synapses:
spike train → firing rate f

f(u) = H(u)



Network ingredients

w(x) = (1 − |x|)e−|x|

Mexican-Hat

synaptic processing

dendritic processing

time

PSP

α2te−αt

Synaptic/dendritic processing

Network anatomy



Behaviour without accommodation
Time-independent solutions : u(x) =

∫
R

w(x − y)f(u(y) − h)dy

One-bump spatially localised solution

q(x) =
∫

x2

x1

w(x − y)dy
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q(x1,2) = h ∆e
−∆

= h ∆ = x2 − x1gives where
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Stability

Examine eigenspectrum of the linearization about a solu

For Heaviside firing rate

f ′(q(x)−h) = δ(q(x)−h) =
δ(x − x1)

|q′(x1)|
+

δ(x − x2)

|q′(x2)|

Solutions of form u(x)eλt
Lu(x) = u(x)satisfy

Lu(x) = η̃(λ)
∫

∞

−∞
w(x − y)f ′(q(y) − h)u(y)dy

so

u(x) =
η̃(λ)

|w(0) − w(∆)|
[w(x − x1)u(x1) + w(x − x2)u(x2)]



[
u(x1)
u(x2)

]

= A(λ)

[
u(x1)
u(x2)

]

, A(λ) =
η̃(λ)

|w(0) − w(∆)|

[
w(0) w(∆)
w(∆) w(0)

]
If u(x1,2) = 0 then u(x) = 0 xfor all . Matrix eqn :

Non trivial solutions if

E(λ) = |A(λ) − I| = 0

Solutions stable if Re(λ) < 0
ε(λ)
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See also Amari Bio. Cybern 1977 
and Pinto and Ermentrout SIAM J 
Appl Math 2001.



Evans functions
Evans function for integral neural field equations with

Arbitrary synaptic footprints
Arbitrary synaptic response
Space dependent delays

[For a Heaviside]
Usual properties for E(λ)

E(λ) = 0 λiff is an eigenvalue of L

Order of the roots = multiplicity of eigenvalues
is analyticE(λ)

Essential spectrum in left half plane, so not a problem.
T Kapitula, N Kutz and B Sandstede. The Evans function for nonlocal  equations.  Indiana University Mathematics Journal 53 (2004)1095-1126.
S Coombes and M R Owen (2004) Evans functions for integral neural field equations with Heaviside firing rate function SIAM Journal on 
Applied Dynamical Systems, Vol 34, 574-600.
D J Pinto, R K Jackson and C E Wayne (2005) Existence and stability of traveling pulses in a continuous neuronal network, SIAM Journal on 
Applied Dynamical Systems 4, 954-984.



Stability in 2D
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2D Wizard-Hat, radially symmetric one-bump

u(r, θ, t) = um(r)eimθeλmt
m ∈ ZPerturbations where

Eigenfunction 
suggests bump 
splits into two



Bill Troy @ Pittsburgh

1

α
∂tu(r, t) = −u(r, t)+

∫
R2

drw(|r−r
′|)f◦u(r′, t)−ga(r, t)

∂ta(r, t) = −a(r, t) + u(r, t)



Rotational bifurcation
following Moskalenko, Liehr, and Purwins, Europhys Lett, 2003

∂tψ(r, t) = L[ψ]ψ, ψ =

[

u(r, t)
a(r, t)

]

, ψ =

[

q(r)
q(r)

]

,

From invariance of the full system under rotation there 
exists a Goldstone mode ψ0 = ∂θψ

Lψ0 = 0.

Linearising around time-independent solution        givesq(r)

Destabilisation when one of the other modes exactly 
coincides with      under parameter variation.  Parameter 
degeneracy means a generalised eigen-fn     of      appears:

ψ0

ψ1 L

Lψ1 = ψ0.



Solvability condition: 〈ψ†
0
| ψ0〉 = 0, L†ψ

†
0

= 0.

Nice result that ψ
†
0

ψ0can be expressed in terms of

Bifurcation condition 0 = (αg − 1)
〈

f ′(q)(∂θq)
2
〉

grot = α
−1
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Threshold Accommodation

u(x, t) =
∫

∞

−∞

w(x−y)
∫ t

−∞

η(t−s)f(u(y, s)−h)dsdy

Hill (1936), “... the threshold rises when the local potential is maintained ... and reverts 
gradually to its original value when the nerve is allowed to rest.”

ht = −(h − h0) + κH(u − θ)



Time-independent solutions (u, h) = (q(x), p(x))

q = w ⊗ H(q − p), p =







h0 q < θ

h0 + κ q ≥ θ

 5 0 5

 0.3

0

0.3

0.6

x

q(x) x
x

x

1

2

3

(w ⊗ f)(x, t) =
∫

∞

−∞
w(y)f(x − y, t)dy



An explicit solution may be constructed as

q(x) =

(

∫

−x2

−x3

+
∫

x1

−x1

+
∫

x3

x2

)

w(x − y)dy

The unknowns x1, x2, x3 are found by the 
simultaneous solution of 

q(x1) = h0 + κ, q(x2) = θ, q(x3) = h0

Windows of existence:  It appears that for     less than 
some critical value there is only ever one solution of this 
type.

κ



Bump Stability I
Perturbations: (u(x), h(x))eλt

u(x) = η̃(λ)w ⊗ H ′(q(x) − p(x))[u(x) − h(x)]

λh(x) = −h(x) + κH ′(q(x) − θ)u(x)

η̃(λ) =
∫

∞

0
dsη(s)e−λs

u

η̃(λ)
= w ⊗ H ′(q − p)

[
1 −

κ

1 + λ
H ′(q − θ)

]
uHence

Within the convolution

H ′(q(x) − p(x)) =
∑

y=±x1,±x3

δ(x − y)

|q′(q−1(y))|

H ′(q(x) − θ) =
1

κ

∑

y=±x2

δ(x − y)

|q′(q−1(y))|



Bump Stability II

u(x)

η̃(λ)
=

6∑

j=1

Aj(x, λ)uj

where the       are defined in terms of Aj w(x), q′(x), x±1, x±2, x±3

E(λ) = |A(λ) − I| = 0, A(λ)ij = η̃(λ)Aj(xi, λ)

Demanding non-trivial solutions gives the Evans function

One natural way to find the zeros of          is to write
                   and plot the zero contours of  
and                in the           plane.  The Evans function is 
zero where the lines intersect.  

E(λ)
λ = ν + iω Re E(λ)

Im E(λ) (ν, ω)

S Coombes and M R Owen 2004 Evans functions for integral neural field equations with Heaviside firing rate function 
SIAM Journal on Applied Dynamical Systems, Vol 34, 574-600.



Bump Stability III: η(t) = αe−αt

Low      instability on Re axis (increasing    )κ α
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Bump Stability IV
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High    instability on Im axis  (increasing   ) gives a breatherακ



Summary of Bump instabilities

2

4

6

0.1 0.2 0.3

stable 1-bump

drift
instability

breathing
instability

α

κ



Travelling Pulse I

Introduce travelling wave coordinate ξ = x − ct

q(ξ) ≥ θ for ξ ∈ [ξ1, ξ3]

q(ξ) ≥ p(ξ) ξ ∈ [ξ2, ξ4]

q(ξ1) = θ q(ξ2) = p(ξ2) q(ξ3) = θ q(ξ4) = p(ξ4)

allows to solve for p

for 
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Dynamic instability of pulses
A pair of complex conjugate eigenvalues crosses the Im 
axis at α ≈ 1.52, α ≈ 1.64
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Exotic Dynamics
... including asymmetric breathers, multiple bumps, multiple pulses, 
periodic traveling waves, and bump-splitting instabilities that appear 
to lead to spatio-temporal chaos.
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S Coombes and M R Owen: Bumps, breathers and waves in a neural network with spike frequency adaptation. PRL, 94, 148102, (2005).



Colliding pulses 1D

Pulses may rebound, entrain, or annihilate one another.

Pulse-bump collisions seem to destabilise the bump.



Stable Bump 2D



2D: Bump to Breather



2D: Bump to Pulse



2D: Breathing Pulse



2D: Dimple Bumps

Complex splitting



2D: Collisions



Spirals



Post-Inhibitory Rebound (slow current)
Thalamocortical (TC) 

cell

Dynamic response due to a low-threshold Calcium conductance.

v

vss

h

Stable (!) slow lurching waves in a 
purely inhibitory network

D H Terman, G B Ermentrout and A C Yew, Propagating activity patterns in thalamic neuronal networks, SIAM Journal on Applied 
Mathematics 61,1578-1604 (2001)

S Coombes, Dynamics of synaptically coupled integrate-and-fire-or-burst neurons, Physical Review E 67, 041910 (2003)

and for smooth waves in RE-TC networks see 

J Jalics, Slow waves in mutually inhibitory neuronal networks, Physica D 192, 95–122 (2004) 



The End!

http://www.maths.nott.ac.uk/~sc/

http://www.maths.nott.ac.uk/personal/sc/
http://www.maths.nott.ac.uk/personal/sc/

