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IP3Rs are clustered in Xenopus laevis oocytes 
(Nuccitelli) 
1.2 mm 

!"#$%#
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wave 

Three “modes” of Ca2+ release
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puff 
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wave

(Parker, Bootman, Berridge)
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global 
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• Depolarization

• Ca influx (DHPRs)

• Ca release (RyRs)

• Elevated Ca in 
myoplasm 

• Contraction of 
sarcomere 

RyRs are clustered in cardiac myocytes (quarks, sparks, waves)

“Common pool” models of 
excitation-contraction coupling 

do not properly account for 
local Ca signaling in the 

diadic space and junctional SR

(Bers 2002)



?
single channel gating ⇔ calcium puffs/sparks

 

allosteric coupling
arrangement of channels 
buffered calcium diffusion



r  =  0 :  flux for Ca turns “on” at t = 0 (no flux for buffer)

r ! " :  buffers in equilibrium with background Ca

∂[Ca2+]

∂t
= DCa∇

2[Ca2+] − kf [Ca2+][B] + kr[CaB] + σ(t)δ(r)

∂[B]

∂t
= DB∇

2[B] − kf [Ca2+][B] + kr[CaB]

∂[CaB]

∂t
= DCaB∇

2[CaB] + kf [Ca2+][B] − kr[CaB]

buffered Ca diffusion

Ca
2+

+ B

kf

⇀↽

kr

CaB
near point source

for free Ca



5 pA source — cluster of channels — fast buffer kinetics 

B is depleted 
near source

Ca increase rapid 
near source

Ca and CaB in local
equilibrium



0.5 pA source — single channel — slow buffer kinetics 

B is not depleted 
near source

Ca and CaB not in 
local equilibrium

Ca increase rapid 
near source



! Steady-state rapid buffer limit (large source) 

Buffer profile is only slightly perturbed near source

No local equilibrium between Ca2+ and buffer near source

! Steady-state excess buffer limit (small source)

[B]
∞

=
K[B]T

[Ca2+]∞ + K

[Ca2+] =
σ

2πDCar
e−r/λ + [Ca2+]∞ λ =

√

DCa/kf [B]
∞

[Ca2+] =
σ

2πDCar
e−r/λ + [Ca2+]∞ λ =

√

DCa/kf [B]
∞

Buffer is nearly saturated near source

Local equilibrium between Ca2+ and buffer everywhere

K = kr/kf [B]T = [B] + [CaB]

DCa[Ca2+] + DCaB

[Ca2+][B]T
[Ca2+] + K

=
σ

2πr
+ DCa[Ca2+]∞ + DCaB

[Ca2+]∞[B]T
[Ca2+]∞ + K

(Wagner & Keizer 1994)
(Smith 1996)

(Neher 1986)
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(DeYoung & Keizer 1992) 

IP3R and RyR gating modeled as a Markov chain

(Hille)

(Ehrlich & Watras 1988) (Bezprozvanny et al. 1991) 



dissociation 
rate constants

association 
rate constants

cooperativity of 
Ca2+ binding

infinitesimal 
generator

local [Ca]

intracellular channels are modeled as Markov chains

each state is “open” or “closed”



improve 
next slide
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instantaneous 
coupling

τchan << τdiff

arrangement of channels 

SAN descriptor for instantaneously-coupled Ca2+ channels 12

and write aj as the position of the Ca2+ regulatory site for channel j, the increase in [Ca2+]

experienced by channel j when channel i is open is

cij =
σO

2πD|ri − aj|
e−|ri−aj |/λ.

Assuming the regulatory sites are located a small distance rd above channel pores, we write

aj = xix̂ + yiŷ + rdẑ and rij = |ri − aj| so that rii = |ri − ai| = rd. Thus, the off-diagonal

elements of the coupling matrix C = (cij) are

cij =
σO

2πDrij
e−rij/λ (i "= j) , (20)

with identical diagonal elements given by

cii = cd =
σO

2πrd
e−rd/λ. (21)

Notice that rij = rji implies that the interaction matrix is symmetric (cij = cji).

Figures 2A and B show the Ca2+ microdomain given by Eq. 19 for release sites with 7 and

19 channels arranged in a hexagonal lattice. The buffer length constant (λ) and release site

radius (R) determine the size of the Ca2+ microdomain and strength of channel interactions

(compare Figs. 2B and C).

2.6 Q-matrix expansion for instantaneously-coupled two-state chan-

nels

Using the interaction matrix C = (cij) we extend the SAN descriptor for independent chan-

nels (Eq. 18) to channels instantaneously-coupled via the buffered diffusion of intracellular

Ca2+. For two interacting two-state channels C is 2 × 2 and the expanded Q-matrix is

Q(2) =





$ k+cη
∞ k+cη

∞ ·
k− $ · k+ (c∞ + c21)

η

k− · $ k+ (c∞ + c12)
η

· k− k− $




. (22)

For three interacting channels C is 3 × 3 and

Q(3) =





! k+cη
∞ k+cη

∞ · k+cη
∞ · · ·

k− ! · k+ (c∞ + c12)
η · k+ (c∞ + c13)

η · ·
k− · ! k+ (c∞ + c21)

η · · k+ (c∞ + c23)
η ·

· k− k− ! · · · k+ (c∞ + c13 + c23)
η

k− · · · ! k+ (c∞ + c31)
η k+ (c∞ + c32)

η ·
· k− · · k− ! · k+ (c∞ + c12 + c32)

η

· · k− · k− · ! k+ (c∞ + c13 + c23)
η

· · · k− · k− k− !





.

(23)

N!N coupling matrix 

channels are coupled assuming excess buffer limit

superpose interactions

SAN descriptor for instantaneously-coupled Ca2+ channels 12

and write aj as the position of the Ca2+ regulatory site for channel j, the increase in [Ca2+]

experienced by channel j when channel i is open is

cij =
σO

2πD|ri − aj|
e−|ri−aj |/λ.

Assuming the regulatory sites are located a small distance rd above channel pores, we write

aj = xix̂ + yiŷ + rdẑ and rij = |ri − aj| so that rii = |ri − ai| = rd. Thus, the off-diagonal

elements of the coupling matrix C = (cij) are

cij =
σO

2πDrij
e−rij/λ (i "= j) , (20)

with identical diagonal elements given by

cii = cd =
σO

2πrd
e−rd/λ. (21)

Notice that rij = rji implies that the interaction matrix is symmetric (cij = cji).

Figures 2A and B show the Ca2+ microdomain given by Eq. 19 for release sites with 7 and

19 channels arranged in a hexagonal lattice. The buffer length constant (λ) and release site

radius (R) determine the size of the Ca2+ microdomain and strength of channel interactions

(compare Figs. 2B and C).

2.6 Q-matrix expansion for instantaneously-coupled two-state chan-

nels

Using the interaction matrix C = (cij) we extend the SAN descriptor for independent chan-

nels (Eq. 18) to channels instantaneously-coupled via the buffered diffusion of intracellular

Ca2+. For two interacting two-state channels C is 2 × 2 and the expanded Q-matrix is

Q(2) =





$ k+cη
∞ k+cη

∞ ·
k− $ · k+ (c∞ + c21)

η

k− · $ k+ (c∞ + c12)
η

· k− k− $




. (22)

For three interacting channels C is 3 × 3 and

Q(3) =





! k+cη
∞ k+cη

∞ · k+cη
∞ · · ·

k− ! · k+ (c∞ + c12)
η · k+ (c∞ + c13)

η · ·
k− · ! k+ (c∞ + c21)

η · · k+ (c∞ + c23)
η ·

· k− k− ! · · · k+ (c∞ + c13 + c23)
η
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η ·
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η

· · k− · k− · ! k+ (c∞ + c13 + c23)
η

· · · k− · k− k− !
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(23)
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Limiting probability distributions  

fO =

NO

N
Score =

Var[fO]

E[fO]

Not all parameters lead to puffs (Score > 0.3)

but parameters leading to puffs are easy to find 

! 0.5



Two-state model with Ca2+ activation but no Ca2+ inactivation
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C
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What leads to the termination 

of these Ca2+ puffs? 

Stochastic attrition??  
(cf. Cheng and Stern 2005)



 Puffs are sensitive to channel density (w/o Ca inactivation) Stochasticattritionviewedasanabsorptiontime17
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Figure5:TheCa2+puff/sparkScoreasafunctionofthecouplingstrengthc∗andthe

cooperativityofCa2+bindingforη=1(thinsolidline),2(thicksolidline),η=3(dashed

line),andη=4(dottedline).OtherparametersasinFig.3.Thefilledsquare,circle,and

trianglecorrespondtoFig.4A,C,andE,respectively.

thecouplingstrengthisincreased.Therightwardshiftsinthesedistributionscorrespondto

andanincreaseintheexpectednumberofopenchannels(E[NO])asthecouplingstrength

(c∗)isincreased(compareFig.4DandE).

Figure5summarizestheresultsofmanysimulationssuchasFig.4byplottingtheScore

for19channelCa2+releasesitesimulationsasafunctionofthecouplingstrength(c∗).The

thicksolidlineofFig.5showsthatwhenthecooperativityofCa2+bindingisη=2the

puff/sparkScorefirstincreasesandthendecreasesasafunctionofthecouplingstrengthc∗.

Thefilledsquare,circle,andtrianglecorrespondtothesimulationspresentedinFig.4A,

C,andE,respectively.BecausesimulationssuchasthoseinFig.4indicatethataScoreof

0.3ormorecorrespondstorobustpuffsorsparks,weconcludethattherangeofcoupling

strengthsleadingtosignificantstochasticCa2+excitabilityinthisreleasesitecomposedof

19two-statechannelsisapproximatelyc∗=0.056–0.070µM.

Todeterminetheextenttowhichthephenomenonofstochasticattritiondependsonthe
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Figure 4: A, C, E: Ca2+ release site simulations with 19 two-state channels using different

values of the coupling strength: c∗ = 0.04, 0.06, and 0.08 µM, respectively. Other parameters

as in Fig. 3. Only the intermediate value of 0.06 µM (A) leads to robust puff/spark events.

B, D, F: The stationary probability distributions for A, C, and E, respectively: π = (πi)

with 0 ≤ i ≤ N .

Figure 4A, C, and E show three stochastic Ca2+ release site simulations demonstrating

that an elevated Score corresponds to the presence of Ca2+ puffs/sparks. The parameters

used are identical to Figs. 2 and 3 except that the coupling strength takes values of c∗ =

0.04, 0.06, and 0.08 µM. In Fig. 4A the coupling strength is insufficient to allow generation

of Ca2+ puff/spark events and the Score is a comparatively low value of 0.09. In Fig. 4E the

Score is also quite low (c∗ = 0.04) because the coupling strength is too strong for puff/spark

events to terminate via stochastic attrition. In Fig. 4C the coupling strength of c∗ = 0.06

µM leads to robust Ca2+ puffs/sparks and a comparatively large Score of 0.43. Figures 4B,

D, and F show the stationary probability distributions for the number of open channels as

Stochastic attrition viewed as an absorption time 16
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Figure 4: A, C, E: Ca2+ release site simulations with 19 two-state channels using different

values of the coupling strength: c∗ = 0.04, 0.06, and 0.08 µM, respectively. Other parameters

as in Fig. 3. Only the intermediate value of 0.06 µM (A) leads to robust puff/spark events.

B, D, F: The stationary probability distributions for A, C, and E, respectively: π = (πi)

with 0 ≤ i ≤ N .

Figure 4A, C, and E show three stochastic Ca2+ release site simulations demonstrating

that an elevated Score corresponds to the presence of Ca2+ puffs/sparks. The parameters

used are identical to Figs. 2 and 3 except that the coupling strength takes values of c∗ =

0.04, 0.06, and 0.08 µM. In Fig. 4A the coupling strength is insufficient to allow generation

of Ca2+ puff/spark events and the Score is a comparatively low value of 0.09. In Fig. 4E the

Score is also quite low (c∗ = 0.04) because the coupling strength is too strong for puff/spark

events to terminate via stochastic attrition. In Fig. 4C the coupling strength of c∗ = 0.06

µM leads to robust Ca2+ puffs/sparks and a comparatively large Score of 0.43. Figures 4B,

D, and F show the stationary probability distributions for the number of open channels as
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Figure 4: A, C, E: Ca2+ release site simulations with 19 two-state channels using different

values of the coupling strength: c∗ = 0.04, 0.06, and 0.08 µM, respectively. Other parameters

as in Fig. 3. Only the intermediate value of 0.06 µM (A) leads to robust puff/spark events.

B, D, F: The stationary probability distributions for A, C, and E, respectively: π = (πi)

with 0 ≤ i ≤ N .

Figure 4A, C, and E show three stochastic Ca2+ release site simulations demonstrating

that an elevated Score corresponds to the presence of Ca2+ puffs/sparks. The parameters

used are identical to Figs. 2 and 3 except that the coupling strength takes values of c∗ =

0.04, 0.06, and 0.08 µM. In Fig. 4A the coupling strength is insufficient to allow generation

of Ca2+ puff/spark events and the Score is a comparatively low value of 0.09. In Fig. 4E the

Score is also quite low (c∗ = 0.04) because the coupling strength is too strong for puff/spark

events to terminate via stochastic attrition. In Fig. 4C the coupling strength of c∗ = 0.06

µM leads to robust Ca2+ puffs/sparks and a comparatively large Score of 0.43. Figures 4B,

D, and F show the stationary probability distributions for the number of open channels as

Coupling too strong

Score = 0.04
Coupling too weak

Score = 0.09

Coupling just right

Score = 0.43

fO =

NO

N

Score =
Var[fO]

E[fO]
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 Puffs terminating via Ca inactivation are not sensitive 
to channel density



Parameter studies are performed using direct methods

— faster than Monte Carlo estimates —  

16384 !16384 generator
245760 non-zero entries

seven four-state channels

 — nontrivial due to state space explosion — 

Use Kronecker structure 
of generator matrix 

for computational efficiency

assume 
mean-field 
coupling

 
neighboring 

channels 
indistinguishable 120 !120 generator

792 non-zero entries



Coupling matrix C = (c
ij
) gives [Ca] increase experienced by 

channel j when channel i is open
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mean field

“mean-field” approximation for channel coupling

Mean-field approximation usually works well
(see next slide)
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Open symbols are full model while X’s are mean-field result

The details of channel position are important primarily through 
their effect on the average coupling stength (c*) 



Isn’t stochastic attrition an unlikely termination mechanism?

τattrit =
1

kattrit

= τO

1 − (1 − pO)N

N (1 − pO)N−1
pO

0 25 50 75 100 125
N

100

102

104

106

108

1010

τ at
tri

t (m
s)

The time constant for stochastic attrition is an exponential 
function of the number of open channels

(Stern)

N two-state channels 

identical 

independent gating

1/τC

C(closed) ⇀↽ O(open)
1/τO

pO =
τO

τC + τO

pO = 0.20

pO = 0.15



N two-state channels 

identical 

independent gating

mean-field instantaneously- 

coupled gating

The time constant for stochastic attrition depends on the 
coupling strength (i.e., the density of the release site)

Stochastic attrition viewed as an absorption time 22

are coupled (c∗). These calculations include Ca2+-regulation and cooperative Ca2+ binding

and, consequently, the expected time for stochastic attrition to occur can be much shorter

(or much longer) than that predicted by the back-of-the-envelope calculation that assumes

independent and uncoupled channels (Eq. 1). In this section we derive an analytical formula

analogous to Eq. 1 for the expected time until stochastic attrition in a release site composed

of N instantaneously and mean-field coupled two-state Ca2+-activated channels (Eq. 2).

As discussed in Section 2.2, there are 6 parameters in this minimal model of a release

site composed of two-state Ca2+-activated channels. These include the channel parameters

themselves—the association (k+) and dissociation (k−) rate constants and the cooperativity

of Ca2+ binding (η)—as well as the number of channels (N), the background [Ca2+] (c∞), and

the [Ca2+] increase contributed by each open channel (c∗). To calculate the expected time

until stochastic attrition, it is helpful to measure concentration in units of the dissociation

constant for Ca2+ binding to the two-state channel (K) and measure time in units of the

reciprocal of the dissociation rate constant (k−). Thus, we write

ĉ∗ = c∗/K ĉ∞ = c∞/K Q̂ = Qk− (17)

and substitute these expressions into Eq. 8 to find a dimensionless generator matrix for the

Ca2+ release site composed of coupled two-state channels,

Q̂ =





! Nĉη
∞

1 ! (N − 1)(ĉ∞ + ĉ∗)η

2 ! (N − 2)(ĉ∞ + 2ĉ∗)η

. . .

(N − 1) ! (ĉ∞ + (N − 1)ĉ∗)η

N !





. (18)

Notice that the six parameters of the original dimensional generator matrix (k+, k−, c∞, c∗,

N , and η in Eq. 8 correspond to four dimensionless parameters (ĉ∞, ĉ∗, N , and η in Eq. 18).

When the dimensionless versions of Q̂attrit = Qattritk− and T̂ = Tk− are defined as in Eq. 9,

the dimensionless hitting time vector ĥ = hk− is given by ĥ = −T̂−1e. Beginning with

Eq. 18 Appendix B shows that the expected time until absorption into state NO = 0 given

an initial state of NO = 1 (that is, h1) is given by

τattrit =
1

kattrit
=

1

k−

{
1 +

N−1∑

i=1

[
(N − 1)!

(i + 1)!(N − 1− i)!

i∏

j=1

(
c∞ + jc∗

K

)η
]}

(19)

0.01 0.1
Coupling strength (µM)

0

0.1

0.2

0.3

0.4

0.5

S
co

re

N=193050100

Score

c∗



N can be large if coupling strength is appropriately reduced

19 30 50 100 150 200 250
N

.0638

.0396

.0234

.0116

.0077

.0058

O
pt

im
al

 c
ou

pl
in

g 
st

re
ng

th

A
B

C

N

c*



But stochastic attrition is not robust when the number of 
channels is large, that is, it requires channels with precisely 
the right density or source amplitude

One expects that the time constant for domain formation 
and collapse will influence puff/spark termination

Before considering Ca release sites, consider the effect of a 
time-dependent Ca domain on a single Ca-regulated 
channel
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2.3 Two representations of the time-dependent Ca2+ domain

We study the effect of residual Ca2+ on Ca2+-regulated Ca2+ channel models by coupling

the stochastic gating of a single channel model to an ordinary differential equation for the

time-dependent [Ca2+] in a restricted cytoplasmic compartment or, alternatively, a par-

tial differential equation for the buffered diffusion of intracellular Ca2+ in a homogeneous

isotropic cytosol.

Figure 1 shows the assumed relationship between the Ca2+-regulatory sites of a stochas-

tically gating intracellular Ca2+ channel and the time-dependent [Ca2+] in the case of a

restricted cytoplasmic compartment. When the channel is open, the Ca2+ concentration—

denoted by [Ca2+] or c—is assumed to increase (solid arrow) at constant rate. When the

channel is closed, [Ca2+] decreases (dashed arrows) at a rate proportional to the concentration

difference between the restricted compartment and the bulk [Ca2+]—denoted by [Ca2+]∞ or

c∞. The ordinary differential equation for domain [Ca2+] is thus

dc

dt
= α(t)− c− c∞

τ
where α(t) =

{
0 when S(t) = C

α0 when S(t) = O.
(9)

Here α0 has units of conc/time and is proportional to the source amplitude of the channel and

inversely proportional to the volume of the restricted compartment. From this expression, it

is clear that the domain [Ca2+] (c) fluctuates between the minimum value c∞ and a maximum

of

css = τα0 + c∞. (10)

The parameter τ in Eq. 9 will be referred to as the time constant for Ca2+ domain formation

and collapse or simply the “domain time constant.” The value of τ is determined by the

geometry of a problem of interest and characterizes the time required for Ca2+ to diffuse

from the restricted domain to the bulk. For small values of τ , increases and decreases in

[Ca2+] occur quickly each time there is a C → O or O → C transition in the single channel

model, while for large values of τ changes in [Ca2+] occur more slowly. If the [Ca2+] is given

by c0 at time t = t0, we see by integrating Eq. 9 that until a state transition occurs,

c (t) = c̃ + (c0 − c̃) e−(t−t0)/τ (11)

where c̃ is the steady-state [Ca2+] for the current state of the channel, either c∞ or css =

τα0 + c∞ for a closed or open channel, respectively.
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Figure 1: Schematic diagram showing the assumed relationship between the [Ca2+] in a restricted

cytoplasmic compartment and cytosolic Ca2+-regulatory sites (open circles) of a stochastically

gating intracellular Ca2+ channel. Dotted arrows represent Ca2+ feedback on the channel. The

time-dependent domain [Ca2+] satisfies Eq. 9 or Eq. 14: increases (solid arrow) at constant rate

when the channel is open, and decreases (dashed arrows) at a rate proportional to the difference

between the calcium concentration in the restricted compartment (denoted by [Ca2+] or c) and the

bulk (denoted by [Ca2+]∞ or c∞).

2 Formulation of the Model

We study the effect of residual Ca2+ on the stochastic gating of Ca2+-regulated Ca2+ channels

by coupling a single-channel kinetic model of an ion channel of interest (see Section 2.1 and

Section 2.2) to a mathematical model of the formation and collapse of the Ca2+ domain that

is a consequence of—and may influence—channel gating (detailed in Section 2.3). Though

the model formulation is completely general and can be used to analyze the effect of residual

Ca2+ on arbitrarily complex single channel models, for clarity we begin with a comparatively

simple case.

2.1 Two-state models of Ca2+-regulated Ca2+ channels

Stochastic models of single channel gating often take the form of continuous-time discrete-

state stochastic processes; for review see (Colquhoun & Hawkes, 1995; Smith, 2002a). For

example, the transition-state diagram for a two-state channel activated by Ca2+ is

(closed) C

k+cη

!
k−

O (open) (1)
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In summary, we study the effect of residual Ca2+ on Ca2+-regulated Ca2+ channels by

coupling a single-channel model to a time-dependent Ca2+ domain. The single channel model

specified by K−, K+, and uO includes a number of parameters—the non-zero off-diagonal

entries of K− and K+. In the case of a restricted cytoplasmic compartment, there are 3

additional parameters: τ , α0, c∞, and the auxiliary parameter css given by Eq. 10. In the

case of a homogeneous isotropic cytosol there are 5 additional parameters: θ, λ, σ0, r0, and

c∞. Here the maximum [Ca2+] experienced by the Ca2+-regulatory site of the channel is

css =
σ0

2πDcr0
e−r0/λ + c∞ where λ =

√
θDc. (16)

For example, using the parameters for millimolar EGTA above and a distance between

channel pore and Ca2+ binding site of r0 = 0.021 µm, the maximum domain [Ca2+] (css)

for a 0.066 pA channel is approximately 10 µM. Note that in the case of the homogeneous

isotropic cytosol assuming the excess buffer approximation results in reaction terms that are

similar to the restricted cytosolic compartment case (cf. Eq. 14 and Eq. 9). Thus, we might

expect similar results obtained using these two distinct representations of the time-dependent

Ca2+ domain.

2.4 Monte Carlo Simulation Method

Simulation of a Ca2+ channel coupled a dynamic Ca2+ domain is straightforward and utilizes

a numerical scheme for the time-evolution of the [Ca2+] as well as a numerical scheme that

produces an instantiation of the time-inhomogeneous stochastic process representing channel

gating. Because the simplest algorithms for simulating channel gating are first order accurate

in time, we used Euler’s method to integrate Eq. 9. The numerical schemes used to solve

Eq. 14 followed previous work (Smith et al., 1996; Smith, 1996).

For a review of Monte Carlo simulation methods applicable to stochastically gating ion

channel models see (Colquhoun & Hawkes, 1995; Smith, 2002a). Briefly, time is discretized

and at each time-step the channel is given an opportunity to change state. In a short time

interval of length ∆t, the probability that the channel makes a transition between state i

and j is given by the elements of

W = (wij) = I + Q∆t (17)

where I is a commensurate identity matrix, that is,

wij = P{S(t) = Si, t + ∆t|S(t) = Si, t}

for sufficiently small ∆t. Because Q is a function of the time-dependent domain [Ca2+], the

row of W corresponding to the current state needs to be calculated at every time step. The
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Using Bayes’ formula these probability densities can be related to the to the probability

densities for domain [Ca2+] conditioned on the the state of the channel,

P
{
c < [Ca2+] < c + dc | S(t) = Si

}
=

P
{
c < [Ca2+] < c + dc and S(t) = Si

}

P {S(t) = Si}
.

That is, if the probability density ρi(c, t) is integrated over all possible Ca2+ concentrations,

the probability of finding the channel in state i is obtained,

πi ≡ P {S(t) = Si} =

∫ css

c∞

ρi(c, t)dc.

Although we are studying the the effect of residual Ca2+ on the gating of single channels,

the probability density approach is appropriate. The densities ρi(c, t) correspond to the

probability of observing a given domain [Ca2+] (c) and channel state (Si) at time t when

sampling from a large number of identical Monte Carlo simulations such as Figs. 3 and 4.

Importantly, the time-dependent probability densities ρi(c, t) can be related to one an-

other, to the parameters of the single channel model, and to the assumed dynamics of the

Ca2+ domain. To give a concrete example, consider the two-state Ca2+-activated channel

(Fig. 3) and write ρC(c, t) and ρO(c, t) as the joint probability density functions,

ρC(c, t)dc = P
{
c < [Ca2+] < c + dc and S(t) = C

}

ρO(c, t)dc = P
{
c < [Ca2+] < c + dc and S(t) = O

}
.

After a little thought, one can write a the following system of advection-reaction equations

expressing a conservation law for these joint probability densities,

∂ρC

∂t
= −∂φC

∂c
− k+cηρC + k−ρO (24)

∂ρO

∂t
= −∂φO

∂c
+ k+cηρC − k−ρO (25)

where φC and φO are probability fluxes given by

φC (c, t) = jC (c) ρC (c, t) where jC (c) = −c− c∞
τ

(26)

φO (c, t) = jO (c) ρO (c, t) where jO (c) = α0 −
c− c∞

τ
= −c− css

τ
. (27)

In these equations, the functions of [Ca2+] denoted by jC and jO correspond to the determin-

istic dynamics of the Ca2+ domain, i.e., the right hand side of Eq. 9—note that the source

amplitude parameter α0 is present in jO but not jC . Eqs. 24–27 represent a conservation

law indicating that the time-evolution of probability density at any [Ca2+] can only change

due to the impact of the distinct deterministic dynamics of [Ca2+] depending on channel
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In summary, we study the effect of residual Ca2+ on Ca2+-regulated Ca2+ channels by

coupling a single-channel model to a time-dependent Ca2+ domain. The single channel model

specified by K−, K+, and uO includes a number of parameters—the non-zero off-diagonal

entries of K− and K+. In the case of a restricted cytoplasmic compartment, there are 3

additional parameters: τ , α0, c∞, and the auxiliary parameter css given by Eq. 10. In the

case of a homogeneous isotropic cytosol there are 5 additional parameters: θ, λ, σ0, r0, and

c∞. Here the maximum [Ca2+] experienced by the Ca2+-regulatory site of the channel is

css =
σ0

2πDcr0
e−r0/λ + c∞ where λ =

√
θDc. (16)

For example, using the parameters for millimolar EGTA above and a distance between

channel pore and Ca2+ binding site of r0 = 0.021 µm, the maximum domain [Ca2+] (css)

for a 0.066 pA channel is approximately 10 µM. Note that in the case of the homogeneous

isotropic cytosol assuming the excess buffer approximation results in reaction terms that are

similar to the restricted cytosolic compartment case (cf. Eq. 14 and Eq. 9). Thus, we might

expect similar results obtained using these two distinct representations of the time-dependent

Ca2+ domain.

2.4 Monte Carlo Simulation Method

Simulation of a Ca2+ channel coupled a dynamic Ca2+ domain is straightforward and utilizes

a numerical scheme for the time-evolution of the [Ca2+] as well as a numerical scheme that

produces an instantiation of the time-inhomogeneous stochastic process representing channel

gating. Because the simplest algorithms for simulating channel gating are first order accurate

in time, we used Euler’s method to integrate Eq. 9. The numerical schemes used to solve

Eq. 14 followed previous work (Smith et al., 1996; Smith, 1996).

For a review of Monte Carlo simulation methods applicable to stochastically gating ion

channel models see (Colquhoun & Hawkes, 1995; Smith, 2002a). Briefly, time is discretized

and at each time-step the channel is given an opportunity to change state. In a short time

interval of length ∆t, the probability that the channel makes a transition between state i

and j is given by the elements of

W = (wij) = I + Q∆t (17)

where I is a commensurate identity matrix, that is,

wij = P{S(t) = Si, t + ∆t|S(t) = Si, t}

for sufficiently small ∆t. Because Q is a function of the time-dependent domain [Ca2+], the

row of W corresponding to the current state needs to be calculated at every time step. The
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where c̄ is some point on the interior (c∞ < c̄ < css), ρO(c̄) = ρ̄O, and we have eliminated

absolute value signs in the logarithms using c ≤ css and c∞ ≤ c. Exponentiating Eq. 37 and

using Eq. 34 we find,

ρC = ρ̂eτ+c (css − c)τ− (c− c∞)τ+c∞−1 (38)

ρO = ρ̂eτ+c (css − c)τ−−1 (c− c∞)τ+c∞ (39)

where ρ̂ is a constant chosen to satisfy conservation of probability (Eq. 32). Finally, we

use Eq. 33 and a similar expression for pclosed to arrive at an expression for the equilibrium

probabilities of the two-state Ca2+-activated channel,

popen = ρ̂

∫ css

c∞

eτ+c (css − c)τ−−1 (c− c∞)τ+c∞ dc. (40)

Note that the constant ρ̂ does not have to be found when both Eq. 38 and 39 are integrated

because

popen =
1

1 + ξ
where ξ =

pclosed

popen
=

∫ css

c∞
eτ+c (css − c)τ− (c− c∞)τ+c∞−1 dc

∫ css

c∞
eτ+c (css − c)τ−−1 (c− c∞)τ+c∞ dc

and ξ does not depend on ρ̂. Appendix B shows the derivation of the steady-state joint

probability densities ρC and ρC for cooperativity of Ca2+ binding η greater than 1.

— # # # —

Figure 9 plots these analytical expressions for the stationary joint probability densities ρC

(Eq. 39, top panels) and ρO (Eq. 38, bottom panels). In Fig. 9A the domain is comparatively

fast (τ small) so the probability density accumulates near c∞ when the channel is closed and

css when the channel is open. Consistent with Eq. 38, ρC →∞ as c→ c∞ from above because

τ+c∞ < 1 in Fig. 9A, i.e., there is a negative exponent in the (c− c∞) term of ρC . Because

τ− < 1, ρO also diverges as c → css from below. Although ρC and ρO diverge, they remain

integrable as probability densities must. Figure 9B shows the probability densities for a

slower domain; here ρC has shifted toward higher [Ca2+]. In Fig. 9C the Ca2+ domain is quite

slow (large τ) and the range of Ca2+ concentrations likely to be observed is approximately

the same regardless of whether the channel is open or closed. All of these observations are

consistent with the Monte Carlo simulations presented in Fig. 3. Indeed, Figure 9A–C and

Fig. 3A–C use the same values of τ and can be directly compared. Also notice that these

plots satisfy the boundary conditions (Eqs. 28–29).
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Given a M -state single channel model of a Ca2+-regulated Ca2+ channel of the form of

Eq. 5 and M×1 column vectors uC and uO indicating closed and open states (see Section 2),

we write ρi(c) with i = 1, 2, · · ·M for the joint probability density functions,

ρi(c, t)dc = P
{
c < [Ca2+] < c + dc and S(t) = Si

}
.

Collecting the ρi into a 1 ×M row vector ρ = (ρ1, ρ2, · · · , ρM), the system of advection-

reaction equations satisfied by these probability densities can be written in matrix form

as,
∂ρ

∂t
= − ∂

∂c
[ρJ ] + ρQ (54)

where φ = ρJ is a 1×M row vector of probability fluxes and J is a M ×M diagonal matrix

formed from the scalar functions jC(c) and jO(c) given by Eqs. 24 and 25,

J(c) = diag {jCuC + jOuO} .

For example, for the two-state channel activated by Ca2+, J is

J(c) =

(
jC 0

0 jO

)
=

(
− (c− c∞) /τ 0

0 − (c− css) /τ

)
=

1

τ

(
c∞ − c 0

0 css − c

)
.

Conservation of probability for the densities (ρ) solving Eq. 54 implies

M∑

i=1

πi = 1 where πi =

∫ css

c∞

ρi(c)dc (55)

and because there may be more than one open state, the open probability of the channel is

given by the inner product popen = πuO where π = (π1, π2, · · · , πM).

The boundary conditions that we associate with Eq. 54 are again a consequence of en-

forcing zero probability flux at either c∞ or css, as appropriate for each element of φ = ρJ .

This leads to M boundary conditions for the vector of probability densities given by

ρ∞diag{uO} + ρssdiag{uC} = 0, (56)

where ρ∞ and ρss are ρ(c) evaluated at c = c∞ and css, respectively. For example, in the

case of the two-state channel activated by Ca2+,

(ρC ρO)∞

(
0 0

0 1

)
+ (ρC ρO)ss

(
1 0

0 0

)
= (0 0)

in agreement with Eqs. 28 and 29.
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The PD approach to study the effect of “lumenal depletion”
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2 FORMULATION OF THE MODEL

We start with a minimal model that describes the stochastic gating of a two-state Ca2+-

activated channel, the diffusion of cytosolic Ca2+into the bulk and the refilling of the ER

lumen by diffusion of Ca2+from ER stores (bulk ER concentration). Once the main equations

of this minimal model have been introduced we consider a large ensemble of these models

evolving in time independently of each other and consider the time dependence of the dis-

tribution of Ca2+concentrations in the cytosol (Ccyt) and the ER (Cer) conditioned on the

state of the channel. This new description introduces probability density functions (PDFs),

one for each state of the Ca2+channel, which satisfies an advection-reaction equation. The

dynamics of the channel model is incorporated through the Q-matrix, which contains all the

necessary information of the transition probabilities between states. We end this section by

introducing the appropriate Q-matrix, that corresponds to a cluster of N, mean-field cou-

pled, two-state Ca2+-activated channels that will serve as the channel model to explore the

effect of luminal depletion on spark termination.

2.1 Minimal model with two-state Ca2+-activated channel

The rate of change of Ca2+concentration in the vicinity of the channel depends on the chan-

nel’s release rate, νrel, and the rate of diffusion to and from the bulks. On the cytosolic side

of the channel the Ca2+concentration, Ccyt, increases when the channel opens and decreases

due to the diffusion into the cytosolic bulk concentration. The Ca2+concentration on the

lumen decreases as Ca2+flows through the open channel and replenishes with Ca2+diffusing

from the ER bulk. In this model the bulk Ca2+concentrations in the cytosol and the ER

are fixed at Cmin and Cmax, respectively. Figure 1 shows a schematic representation of the

minimal model for a two-state Ca2+-activated channel.

This translates into the following set of ordinary differential equations,

dCcyt

dt
= γ(t)νrel(Cer − Ccyt)− νdom(Ccyt − Cmin) (1)

dCer

dt
=

1

λ
[−γ(t)νrel(Cer − Ccyt) + νer

dom(Cmax − Cer)] (2)

where γ(t) is a random variable indicating the state of the channel at time t. For the two-

state channel it takes the values 0 (closed) and 1 (open). The parameter λ measures the ratio



The joint probability densities become multivariate
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Figure 2: The traces illustrate the changes in Ca2+concentration Ccyt and Cer and the

stochastic gating the two-state Ca2+-activated Ca2+channel as a function of time obtained

from Eq. 1 and Eq. 2. Parameters used: νdom = 10, νer
dom = 0.1, νrel = 1 and k− = 1 in ms−1,

k+ = 1 (µM ms)−1, Cmin = 0.1 and Cmax = 100 µM.

2.2 Probability density formulation

Considering now an ensemble of systems like the one described in the previous section and

obeying the same model equations Eq. 1, Eq. 2 and Eq. 3. If each system starts with

different initial conditions they will evolve in time according to the previous equations and at

any instant one can ask about the distribution of concentrations in the ensemble according

to their channel state. To address this one can define joint probability density functions

ρo(Ccyt, Cer, γ = 1, t) and ρc(Ccyt, Cer, γ = 0, t) such that

ρi(Ccyt, Cer, t) dCcyt dCer = Prob{Ccyt < C̃cyt < Ccyt + dCcyt AND

Cer < C̃er < Cer + dCer AND γ(t) = i}

where for this particular channel model the state of the channel is indicated by the label

i = (O, C).

but still satisfy a system of advection-reaction equations
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This probability density function satisfies the following set of equations

∂

∂t
ρo = − ∂

∂Ccyt
{[νrel(Cer − Ccyt)− νdom(Ccyt − Cmin)]ρo}

− ∂

∂Cer

{
1

λ
[−νrel(Cer − Ccyt) + νer

dom(Cmax − Cer)]ρo

}

+ k+Ccytρc − k−ρo (4)

∂

∂t
ρc = − ∂

∂Ccyt
{−νdom(Ccyt − Cmin)ρc}

− ∂

∂Cer

{
1

λ
νer

dom(Cmax − Cer)ρc

}

+ k−ρo − k+Ccytρc (5)

In the above equations the divergence term advances the probability densities in the

phase space defined by the variables Ccyt and Cer and it acts on the drift rates defined by

the right-hand-side of Eq. 1 and Eq. 2. The reaction terms account for transitions between

states with transition rates given by the elements of the Q-matrix.

These equations can be written in a compact form that allows for a generalization to any

stochastic gating channel model. Defining a row-vector %ρ = (ρc, ρo) then using the Q-matrix

defined in Eq. 3 one can obtain the reaction terms by matrix multiplication. Using the index

i to label the component of the row-vector %ρ and defining the vector fields

F i
cyt = γi νrel(Cer − Ccyt)− νdom(Ccyt − Cmin) (6)

F i
er =

1

λ
[−γiνrel(Cer − Ccyt) + νer

dom(Cmax − Cer)] (7)

where the value of γi is 1 only if the index i corresponds to the open state, i.e. ρi = ρo.

Using this notation, Eq. 4 and Eq. 5 can be rewritten as

∂

∂t
ρi = −

∂(F i
cytρi)

∂Ccyt
− ∂(F i

erρi)

∂Cer
+ [%ρQ]i (8)

The set of equations given by Eq. 8 are in general difficult to solve analytically, except

for certain choices of parameters (see Appendix), and therefor are solved numerically. In the

present study we are interested in the steady-state solutions of these equations for different

channel models.

2.2.1 Four-state channel model

The four-state channel model considered here includes two binding sites for Ca2+, one for

activation and one for inactivation. There is no assumption of sequential binding. The
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The probability flux has two components

each of which depends on channel state
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A new class of whole cell models
not explicitly spatial 
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F d
er,i =

1

λd
er

(
−J i

rel + Jer

)

where

Jcyt = vcyt(c1 − ccyt)

Jer = ver(cer − c2)

J i
rel = γivrel(c2 − c1)

These PDEs are coupled to ODEs governing the [Ca2+] in the bulk compartments,

dccyt

dt
= J∗

cyt + Jleak − Jpump (2)

dcer

dt
=

1

λer
(Jpump − Jleak − J∗

er) (3)

Note that J∗
cyt and J∗

er are dependent on the probability densities (ρi) governed by
the PDEs. Recalling, that M is the number of states in the release site, these fluxes take the
form,

J∗
cyt =

M∑

i=1

∫ cmax
2

cmin
2

∫ cmax
1

cmin
1

vcyt(c1 − ccyt)ρi(c1, c2)dc1dc2

J∗
er =

M∑

i=1

∫ cmax
2

cmin
2

∫ cmax
1

cmin
1

ver(cer − c2)ρi(c1, c2)dc1dc2

3.2 Conventional ODE Models

3.2.1 Two compartment Model
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Figure 2: Compartmental PDA Model
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Given a M -state single channel model of a Ca2+-regulated Ca2+ channel of the form of

Eq. 5 and M×1 column vectors uC and uO indicating closed and open states (see Section 2),

we write ρi(c) with i = 1, 2, · · ·M for the joint probability density functions,

ρi(c, t)dc = P
{
c < [Ca2+] < c + dc and S(t) = Si

}
.

Collecting the ρi into a 1 ×M row vector ρ = (ρ1, ρ2, · · · , ρM), the system of advection-

reaction equations satisfied by these probability densities can be written in matrix form

as,
∂ρ

∂t
= − ∂

∂c
[ρJ ] + ρQ (54)

where φ = ρJ is a 1×M row vector of probability fluxes and J is a M ×M diagonal matrix

formed from the scalar functions jC(c) and jO(c) given by Eqs. 24 and 25,

J(c) = diag {jCuC + jOuO} .

For example, for the two-state channel activated by Ca2+, J is

J(c) =

(
jC 0

0 jO

)
=

(
− (c− c∞) /τ 0

0 − (c− css) /τ

)
=

1

τ

(
c∞ − c 0

0 css − c

)
.

Conservation of probability for the densities (ρ) solving Eq. 54 implies

M∑

i=1

πi = 1 where πi =

∫ css

c∞

ρi(c)dc (55)

and because there may be more than one open state, the open probability of the channel is

given by the inner product popen = πuO where π = (π1, π2, · · · , πM).

The boundary conditions that we associate with Eq. 54 are again a consequence of en-

forcing zero probability flux at either c∞ or css, as appropriate for each element of φ = ρJ .

This leads to M boundary conditions for the vector of probability densities given by

ρ∞diag{uO} + ρssdiag{uC} = 0, (56)

where ρ∞ and ρss are ρ(c) evaluated at c = c∞ and css, respectively. For example, in the

case of the two-state channel activated by Ca2+,

(ρC ρO)∞

(
0 0

0 1

)
+ (ρC ρO)ss

(
1 0

0 0

)
= (0 0)

in agreement with Eqs. 28 and 29.

large number of channels 
each with it’s own time-dependent domain
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fact that Ca2+release occurs as a collection of discrete release events, Ca2+sparks, and the
triggering of each spark is controlled locally.

As a result of local control, most cellular computer models of cardiac CICR published
to date have failed to reproduce the phenomenon of graded release. Stochastic Monte-Carlo
models, in which each the probabilistic triggering of each Ca2+spark is simulated individually,
can produce graded release, but these models can be computationally expensive. Here we
present simulations obtained with a new model based on population density analysis. This
novel method allows the stochastic components of CICR to be efficiently simulated in a
cellular model of excitation-contraction coupling.

3 Formulation of Model

3.1 SFU Description

Consider a stochastic functional unit (SFU) consisting of one L-type plasma membrane
Ca2+channel and one RyR cluster modeled for simplicity as a two-state super channel. When
the L-type Ca2+channel opens through the depolarization of the membrane, it allows the
entry of Ca2+into a restricted sub-membrane space (diadic cleft) triggering the release of
Ca2+from the junctional sarcoplasmic reticulum (JSR) through RyR. The Ca2+concentrations
in the diadic space (Cds) and in the JSR (Cjsr) change as a function of time depending on
the conducting state of these channels and the rate of Ca2+diffusion between these restricted
volumes and the bulk myoplasm (Jefflux) and network SR (Jrefill).

The SFU model descibed above corresponds to the four-state Markov chain,

k+
ryr

(both closed) CC ! CO (RyR open)
k−ryr

k+
dhpr "# k−dhpr k−dhpr $% k+

dhpr
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Figure 1: Compartmental SFU Model
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SFU model

New approach for modeling “local control” during EC coupling



Monte Carlo simulation of voltage-clamped cardiac myocyte

(1000 SFUs)

-80 mV

-10 mV

Next slide: snapshot of 
Cass & Cajsr at t =10 ms



 JSR is slow compared to diadic subspace...
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 Marginal densities show lumenal depletion during voltage step
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each point is 10 runs

each run takes 3 minutes

Probability density approach 
each point takes 10 sec

Probability density approach exhibits  “gain and gradedness”
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Computational efficiency of 
Monte Carlo and probability density approaches

Assuming the large N limit is of interest 
(20,000 SFUs " infinity)

Probability density approach

discretization error 
time step (#t)

resolution of mesh (#c)

Monte Carlo approach

discretization error 
time step (#t)

number of SFUs (N)
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