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IP5Rs are clustered in Xenopus laevis oocytes
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RyRs are clustered in cardiac myocytes (quarks, sparks, waves)

® Depolarization
e Ca influx (DHPRs)
® Ca release (RyRs)

® Elevated Cain
myoplasm

® Contraction of
sarcomere

“Common pool” models of :
excitation-contraction coupling i .
do not properly account for "
local Ca signaling in the
diadic space and junctional SR

(Bers 2002)
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single channel gating < calcium puffs/sparks
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arrangement of channels
buffered calcium diffusion




buffered Ca diffusion
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= () : flux for Ca turns “on” at ¢ = 0 (no flux for buffer)

r — oo : buffers in equilibrium with background Ca



5 pA source — cluster of channels — fast buffer kinetics

’ Time: 0.00 msec
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0.5 pA source — single channel — slow buffer kinetics

Time: 0.00 msec
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e Steady-state rapid buffer limit (large source)
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Buffer 1s nearly saturated near source
Local equilibrium between Ca”" and buffer everywhere ~ (Wagner & Keizer 1994)
(Smith 1996)
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Buffer profile 1s only slightly perturbed near source !

No local equilibrium between Ca’?" and buffer near source (Neher 1986)




IP3R and RyR gating modeled as a Markov chain
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(Ehrlich & Watras 1988) (Bezprozvanny et al. 1991)



intracellular channels are modeled as Markov chains

X(t)e{1,2,---,M —1, M)}

each state is “open” or “closed”

cooperativity of
/ Ca?* binding

Qt)=K_+c(t)"K
areout

rate constants local [Ca] rate constants
infinitesimal

generator
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four-state model with fast Ca activation and slow Ca inactivation
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four-state model with fast Ca activation and slow Ca inactivation
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two-state model with Ca activation but no inactivation
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channels are coupled assuming excess buffer limit

C=(cj) ¢ = ; Ug e i/
s Tij

superpose interactions

NXN coupling matrix

instantaneous arrangement of channels
coupling
Techan << Tdiff ...




Four-state model with Ca?2* activation and Ca?" inactivation

R=012x acore =047 Time = 0 ms
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Four-state model with Ca%* activation and Ca?* inactivation
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What leads to the termination of these Ca* puffs?




accumulation of Ca inactivation leads to termination of these puffs

Nci




Limiting probability distributions

0.90 0.91
0.2 —

0 — -lllllllllllllllll‘l | Hemilln.___________ |‘||||IIIII.

O 5 101520 0 5 10 15 20 O S5 10 15 20 O S5 10 15 20

N N N N

C, 0 C, C,

— & Score = Varlfo
N Elfo]

Pr

fo ~ 0.5

Not all parameters lead to puffs (Score > 0.3)
but parameters leading to puffs are easy to find



Two-state model with Ca?* activation but no Ca?%* inactivation

R=0425 acore =0.37 Time = 0 ms
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Two-state model with Ca?* activation but no Ca?* inactivation
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What leads to the termination Stochastic attrition??

of these Ca®* puffs? (cf. Cheng and Stern 2005)



Puffs are sensitive to channel density (w/o Ca inactivation)

fo="2
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Coupling too strong
Score = 0.04

Coupling just right
Score = 0.43

Coupling too weak
Score = 0.09




Puffs terminating via Ca inactivation are not sensitive
to channel density

V
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Parameter studies are performed using direct methods
QW) = ( subject torle =1

— faster than Monte Carlo estimates —
— nontrivial due to state space explosion —

seven four-state channels

assume
mean-field

colskni§ rone
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792 non-zero entries

for computational efficiency
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“mean-field” approximation for channel coupling

Coupling matrix C = (cl.j) gives [Ca] increase experienced by

channel j when channel i is open
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general form channels identical mean field

Mean-field approximation usually works well

(see next slide)




Open symbols are full model while X’s are mean-field result
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The details of channel position are important primarily through
their effect on the average coupling stength (cx)



Isn’t stochastic attrition an unlikely termination mechanism?
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The time constant for stochastic attrition is an exponential
function of the number of open channels
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The time constant for stochastic attrition depends on the
coupling strength (i.e., the density of the release site)
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N can be large if coupling strength is appropriately reduced
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But stochastic attrition is not robust when the number of
channels is large, that is, it requires channels with precisely
the right density or source amplitude

One expects that the time constant for domain formation
and collapse will influence puff/spark termination

Before considering Ca release sites, consider the effect of a
time-dependent Ca domain on a single Ca-regulated
channel



Effect of “residual calcium” on Ca-regulated channels

kT
(closed) ¢ = O (open)
-
— 0 when S(t
at) — S5 where  af(t) = when - 5(0)
T ap when S(t)
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[Ca”™*] (uM)

[U—
O
I

-

Effect of “residual Ca”’ on Ca-activated channel

fast domain
slow channel

t=10"

increase T

when domain is slow “residual
calcium” from previous openings
increases rate of C—O transitions
leading to elevated open probability



Probability density approaches as an alternative to Monte Carlo

The joint distributions
pclc,t)de = P{c<[Ca®"] <c+dcand S(t) = C}

polc,t)de = P{c<[Ca®"| <c+dcand S(t) =0}

are time-dependent and satisfy

reaction (stochastic gating)
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dpo e .
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advection (deterministic dynamics of domain)
. C — Cxo
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¢O (Ca t) — jO (C) PO (Ca t) jO (C) — .
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Time-dependent probability densities
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The PD approach w/ more complicated single channel models

o} B\ C, pi(c,t)de = P {c < [Ca’t] < ¢+ dc
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The PD approach to study the effect of “lumenal depletion”
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The joint probability densities become multivariate

pi(Coyt, Cor, 1) dCoyy dC. = Prob{Clyr < Cuyr < Cuyy + dClyy AND
Cop < Cop < Cop + dC,, AND ~(t) = i}

but still satisfy a system of -reaction equations
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The probability flux has two components
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1
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each of which depends on channel state
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Cytosolic domain and lumenal depletion domain
Ca-activated channel
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Comparison of Monte Carlo and probability density approaches
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Calcium activated channel — effect of lumenal depletion
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Dynamics of spark termination — effect of lumenal depletion
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A new class of whole cell models . .
not explicitly spatial

but includes local signaling

dc, §
dtyt — cht =+ Jleak — qump
dc,, 1 .
dt — )\_ (qump o Jleak o Je'r)

large number of channels
each with it’s own time-dependent domain



Diffuse IP3Rs with time-dependent domains
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New approach for modeling “local control” during EC coupling
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Bers 2002



Monte Carlo simulation of voltage-clamped cardiac myocyte

(1000 SFUs)

L-type channel
current

Myoplasmic
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Next slide: snapshot of
Cass & Cajsr at t =10 ms
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Marginal densities show lumenal depletion during voltage step
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JSR is slow compared to diadic subspace...



Because SR is slow compared to diadic subspace, we can reduce
to one-dimensional densities (in terms of Cajsr)

T =0.56 Teo =0.39
closed DHPR closed DHPR
closed RyR open RyR
0 300 600 900 1200 0O 300 600 900 1200
7. =0.023 7., =0.029
open DHPR open DHPR
closed RyR open RyR
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thpr (normalized)
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Probability density approach exhibits “gain and gradedness”
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Monte Carlo using 1000 SFUs
each point is 10 runs
each run takes 3 minutes
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Computational efficiency of
Monte Carlo and probability density approaches

Assuming the large N limit is of interest
(20,000 SFUs = infinity)

Monte Carlo approach

discretization error
time step (At)
number of SFUs (N)

Probability density approach

discretization error
time step (At)
resolution of mesh (Ac)
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