
University of Utah
Mathematical Biology

theImagine 
Possibilities

Stochastic Calcium Oscillations
J. P. Keener

Department of Mathematics
University of Utah

Nottingham 4/06 – p.1/30



University of Utah
Mathematical Biology

theImagine 
Possibilities

Calcium Handling

R

Agonist

Endoplasmic

Reticulum

IPR

+

cel l

cytoplasm

outside the

cell

G

PLC

IP3

ATPase

pump

+

+

_
RyR

Jpm

Jin

JIPR

JRyR

Jserca

mitochondria
Juni

Jmito

buffered

Ca2+

Ca2+Jon

Joff

Ca
2+

Ca
2+

SOC, Icrac, 

AAOC

buffered

Ca2+

Jon,e

Joff,e

Stochastic Calcium Oscillations – p.2/30



University of Utah
Mathematical Biology

theImagine 
Possibilities

Basic Calcium Model
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What are the flux terms?
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CICR in IP3 Receptors
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Flux through IP3 receptor is diffusive,
JIPR = gmaxPo(csr − c)

where Po = S3
10 is the open probability.
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Calcium Dynamics

dc

dt
= (gmaxPo + Jer)(csr − c) − JSERCA,

dh

dt
= φh(c)(1 − h) − ψh(c)h,

where
JSERCA = Vmax

c2

K2
s +c2

,

Po = h3f(c).
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Bifurcation Diagram
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But the data do not look like this at all!
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Onset of Oscillations

• At low IP3 concentrations, calcium release is infrequent and
highly irregular.

• At medium IP3, calcium release is less rare and less
irregular.

• At high IP3, calcium release is frequent and regular (a
periodic oscillation).

The data show no Hopf Bifurcations or sharp onset of oscilla-

tions.
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Problems

What went wrong?

There are (at least) two problems with this model:

1. Calcium is not spatially homogenious; channels are
controlled by local calcium concentration.

2. Channel openings are not deterministic.
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Discrete Release Sites

Cardiac Cell

Calcium release sites

∂c
∂t

= 1
L

∑

n δ(x− xn) JIPR − JSERCA + D ∂2c
∂x2

with
xn location of release sites separated by distance L,

D ∂2c
∂x2 spatial diffusion of calcium.
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Fire-Diffuse-Fire Model

L

Suppose calcium c is released from
• a long line of evenly spaced release sites;
• Release of full contents σ occurs when the local

concentration c reaches threshold θ.
∂c

∂t
= D

∂2c

∂x2
− ksc+

σ

L

∑

n

δ(x− nL)δ(t− tn)
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Fire-Diffuse-Fire-II

The solution of the heat equation with δ-function initial data at
x = x0 and at t = t0 is

c(x, t) =
1

√

4πD(t− t0)
exp(−

(x− x0)
2

4D(t− t0)
− ks(t− t0))
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Fire-Diffuse-Fire-III

Suppose known firing times are tj = j∆t at position xj = jL,
j = −∞, · · · , n− 1. Find tn.
At x = xn = nL,

c(nL, t) =
1

L

n−1
X

j=−∞

σ
p

4πD(t− tj)
exp(−

(n− j)2L2
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L
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Fire-Diffuse-Fire-IV

To find the delay ∆t, solve the equation

θL

σ
= f(

D∆t

L2
).

This is easy to do graphically:
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Conclusion: Propagation fails for θL
σ
> θ∗ (i.e. if L is too large, θ

is too large, or σ is too small.)
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Problems

What went wrong?

There are two problems with this model:

1. Calcium is not spatially homogenious; channels are
controlled by local calcium concentration.

2. Channel openings are not deterministic.
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Calcium Sparks and Waves
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Discrete Release Sites

Cardiac Cell

Calcium release sites

∂c
∂t

= gmax
1
L

∑

n δ(x− xn) yn (ce − c) − JSERCA +D ∂2c
∂x2

with
yn a random variable with values 0 or 1, with transition
probability that depends on local calcium concentration.

Remark: When we replace yn with its expected value Po, we are

invoking the law of large numbers.
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Stochastic Fire-Diffuse-Fire Model

L

Suppose calcium c is released from
• a long line of evenly spaced release sites;
• Release of full contents σ is a stochastic process with

probability depending on the local calcium concentration.

∂c

∂t
= D

∂2c

∂x2
− ksc+

σ

L

∑

n

δ(x− nL)δ(t− tn)

Stochastic Calcium Oscillations – p.17/30



University of Utah
Mathematical Biology

theImagine 
Possibilities

Stochastic Analysis

Let Pn(t) be the probability that site n has fired before time t.
Then

dPn

dt
= kopen(c(xn, t))(1 − Pn)

where Pn(0) = 0, and

kopen(c) = KM
cN

θN + cN
.
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Remark: c(x, t) is known as before

c(x, t) =

n−1
X

j=0

1
p

4πD(t− tj)
exp(−

(x− xj)
2

4D(t− tj)
− ks(t− tj))

except that now the tj are continuous random variables.
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Site 1

Suppose site zero fires at time t = 0. What happens at site 1?
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, and mk =
∫

∞

0 tkp1(t)dt is the kth moment.
Therefore, m0 = P1(∞) is the probability of firing at all.

Observe: As σ
θL

increases, firing occurs sooner and with less

variance.
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Site n

Suppose site zero fires at time t = 0. What happens at site
n > 1? pn(t) satisfies the renewal equation (stochastic wave
equation):

pn(t) =

∫

∞

0
p1(t− s)pn−1(s)ds.
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Extent of Propagation

Extent of propagation Ne is exponentially distributed

P (Ne = n) = mn
0 (1 −m0).
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Whole Cell Calcium Release Events

Whole cell calcium release events are governed by three things:

• localized calcium release (sparks) - a Poisson process
• spark to wave transition - the rapid calcium transient
• removal of inactivation (a slow process).
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A Chapman-Kolmogorov Equation

Let h be fraction of sites that are not inhibited (0 ≤ h < 1),

p(h, t) be the probability that fraction of uninhibited sites is h,

∂p
∂t

= −kh
∂
∂h

((1 − h)p) − βMh p+
∫ 1
h
W (η, h) p(η, t)dη,

removal of inactivation at rate constant kh, (a Markov process)

,

rate of spark production βMh,

probability of jumping η → h when there is a spark.

For consistency,
βMh =

∫ h

0 W (h, η)dη +W (h, 0).

W (h, 0) = probability of whole cell release.

Stochastic Calcium Oscillations – p.23/30
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Whole Cell Calcium Release Events

There are three behaviors:
• Small h: Sparks do not propagate; (W (η, h)) ∼ δ(η − h))
• Intermediate h: Truncated waves;
• Large h: Whole cell release
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Whole Cell Calcium oscillations

Firing time distribution is

P (t) = 1 −

∫ 1

0
p(h, t)dt, p(h, 0) = δ(h).

Solving C-K equation numerically:
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Spontaneous Spark Rate

Question: At what rate are spontaneous sparks produced?
One way to approach this question:

• Suppose the limiting deterministic dynamics are governed
by the bistable equation

dc

dt
= f(c).

What is the appropriate Fokker-Planck equation

∂p

∂t
= −

∂

∂c
(f(c)p) +

∂2

∂c2
(D(c)p)?

• Since f(c) is bistable it is the derivative of a double well
potential F ′(c) = f(c). What is the mean rate of escape from
the smaller of the two wells?
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Example

For the stochastic differential equation

dc

dt
=

1

N

Nh
∑

n

ynf(c) − g(c),

with

yn : 0
α(c)

−→

←−

β(c)

1,

the deterministic limit is

dc

dt
= h

α

α+ β
f(c) − g(c),

but, what is the spark rate?
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The Fast Transition Limit

Two approaches:
• Fast uptake (Hinch, Hinch and Chapman, Coombes, Hinch

and Timofeeva), appropriate for cardiac cells;
• Fast transition rates:

Fokker-Planck equation is

∂p

∂t
= −

∂

∂c

(

(h
α

α+ β
f(c) − g(c))p

)

+
∂2

∂c2

(

h

N

αβ

(α+ β)3
f2(c)p

)

+h.o.t.

This suggests a scaling law

kspark ∼ A exp(−
λN

h
),

for small h.
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Summary

Deterministic whole cell calcium models fail because:

• Release sites are discrete and diffusion is too slow;
• Release is a stochastic event for which the law of large

numbers does not apply.
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Summary

Deterministic whole cell calcium models fail because:

• Release sites are discrete and diffusion is too slow;
• Release is a stochastic event for which the law of large

numbers does not apply.

Consequently, not this
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Summary

Deterministic whole cell calcium models fail because:

• Release sites are discrete and diffusion is too slow;
• Release is a stochastic event for which the law of large

numbers does not apply.

but this
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The End
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