# the McCormick-Huguenard channel models # # UNITS: millivolts, milliseconds, nanofarads, nanoamps, microsiemens # moles # cell is 29000 micron^2 in area so capacitance is in nanofarads # all conductances are in microsiemens and current is in nanofarads. # Author: Bard Ermentrout, 26/01/1998 # http://www.math.pitt.edu/~bard/classes/tutorial/tutorial.html par J=0,c=.29 v'=(J -ina-ik-ileak-ik2-inap-it-iahp-im-ia-ic-il-ih+istep(t))/c # the current is a step function with amplitude ip istep(t)=ip*heav(t-t_on)*heav(t_off-t) par ip=0.0,t_on=100,t_off=200 # passive leaks par gkleak=.007,gnaleak=.00265 Ileak=gkleak*(v-ek)+gnaleak*(v-ena) # aux i_leak=ileak # INA par gna=0,Ena=45 Ina=gna*(v-ena)*mna^3*hna amna=.091*(v+38)/(1-exp(-(v+38)/5)) bmna=-.062*(v+38)/(1-exp((v+38)/5)) ahna=.016*exp((-55-v)/15) bhna=2.07/(1+exp((17-v)/21)) mna'=amna*(1-mna)-bmna*mna hna'=ahna*(1-hna)-bhna*hna # aux i_na=ina # Delayed rectifier IK par gk=0,Ek=-105 Ik=gk*(v-ek)*nk^4 ank=.01*(-45-v)/(exp((-45-v)/5)-1) bnk=.17*exp((-50-v)/40) nk'=ank*(1-nk)-bnk*nk # aux i_k=ik # INap same tau as Na but diff activation par gnap=0 inap=gnap*map^3*(v-ena) map'=(1/(1+exp((-49-v)/5))-map)*(amna+bmna) # aux i_nap=inap # ia A-type inactivating potassium current # ia=ga*(v-ek)*(.6*ha1*ma1^4+.4*ha2*ma2^4) mainf1=1/(1+exp(-(v+60)/8.5)) mainf2=1/(1+exp(-(v+36)/20)) tma=(1/(exp((v+35.82)/19.69)+exp(-(v+79.69)/12.7))+.37) ma1'=(mainf1-ma1)/tma ma2'=(mainf2-ma2)/tma hainf=1/(1+exp((v+78)/6)) tadef=1/(exp((v+46.05)/5)+exp(-(v+238.4)/37.45)) tah1=if(v<(-63))then(tadef)else(19) tah2=if(v<(-73))then(tadef)else(60) ha1'=(hainf-ha1)/tah1 ha2'=(hainf-ha2)/tah2 par ga=0 aux i_a=ia # # Ik2 slow potassium current par gk2=0,fa=.4,fb=.6 Ik2=gk2*(v-ek)*mk2*(fa*hk2a+fb*hk2b) minfk2=1/(1+exp(-(v+43)/17))^4 taumk2=1/(exp((v-80.98)/25.64)+exp(-(v+132)/17.953))+9.9 mk2'=(minfk2-mk2)/taumk2 hinfk2=1/(1+exp((v+58)/10.6)) tauhk2a=1/(exp((v-1329)/200)+exp(-(v+129.7)/7.143))+120 tauhk2b=if((v+70)<0)then(8930)else(tauhk2a) hk2a'=(hinfk2-hk2a)/tauhk2a hk2b'=(hinfk2-hk2b)/tauhk2b aux i_k2=ik2 # # IT and calcium dynamics -- transient low threshold # permeabilites in 10-6 cm^3/sec # par Cao=2e-3,temp=23.5,pt=0,camin=50e-9 number faraday=96485,rgas=8.3147,tabs0=273.15 # CFE stuff xi=v*faraday*2/(rgas*(tabs0+temp)*1000) # factor of 1000 for millivolts cfestuff=2e-3*faraday*xi*(ca-cao*exp(-xi))/(1-exp(-xi)) IT=pt*ht*mt^2*cfestuff mtinf=1/(1+exp(-(v+52)/7.4)) taumt=.44+.15/(exp((v+27)/10)+exp(-(v+102)/15)) htinf=1/(1+exp((v+80)/5)) tauht=22.7+.27/(exp((v+48)/4)+exp(-(v+407)/50)) mt'=(mtinf-mt)/taumt ht'=(htinf-ht)/tauht # il L-type noninactivating calcium current -- high threshold par pl=0 il=pl*ml^2*cfestuff aml=1.6/(1+exp(-.072*(V+5))) bml=.02*(v-1.31)/(exp((v-1.31)/5.36)-1) ml'=aml*(1-ml)-bml*ml aux i_l=il # calcium concentration par depth=.1,beta=1,area=29000 ca'=-.00518*(it+il)/(area*depth)-beta*(ca-camin) ca(0)=50e-9 aux i_t=it # ic calcium and voltage dependent fast potassium current ic=gc*(v-ek)*mc ac=250000*ca*exp(v/24) bc=.1*exp(-v/24) mc'=ac*(1-mc)-bc*mc par gc=0 aux i_c=ic # ih Sag current -- voltage inactivated inward current ih=gh*(V-eh)*y yinf=1/(1+exp((v+75)/5.5)) ty=3900/(exp(-7.68-.086*v)+exp(5.04+.0701*v)) y'=(yinf-y)/ty par gh=0,eh=-43 # im Muscarinic slow voltage gated potassium current im=gm*(v-ek)*mm mminf=1/(1+exp(-(v+35)/10)) taumm=taumm_max/(3.3*(exp((v+35)/20)+exp(-(v+35)/20))) mm'=(mminf-mm)/taumm par gm=0,taumm_max=1000 aux i_m=im # Iahp Calcium dependent potassium current Iahp=gahp*(v-ek)*mahp^2 par gahp=0,bet_ahp=.001,al_ahp=1.2e9 mahp'=al_ahp*ca*ca*(1-mahp)-bet_ahp*mahp aux i_ahp=iahp aux cfe=cfestuff # set up for 1/2 sec simulation in .5 msec increments @ total=500,dt=.5,meth=qualrk,atoler=1e-4,toler=1e-5,bound=1000 @ xhi=500,ylo=-100,yhi=50 init v=-63,hna=.39,nk=.02,mna=.008 done