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Beyond weak coupling
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Biorobotics lab at EPFL
http://biorob.epfl.ch/

Phase oscillator networks in 
neuroscience
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… strong coupling, event driven interactions, …
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Challenge of studying networks of non smooth and 
discontinuous threshold elements. 



The approach for Wilson-Cowan applies to other PWL 
models and networks and no need for weak coupling 
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S Coombes, M Sayli, R Thul, R Nicks, M A 
Porter and Y M Lai 2024

Oscillatory networks: Insights from 
piecewise-linear modelling, SIAM Review, to 
appear



F(z) =

�
FL ⌘ ALz+ cL v < a

FR ⌘ ARz+ cR v > a
[for all models]

ż = F(z)

z(A, c; t, t0) = G(A; t- t0)z(t0) + K(A; t- t0)c,

G(A; t) = eAt, K(A; t) =

Zt

0

G(A; s)ds = A-1[G(A; t)- I2]

Matrix exponential solutions
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Floquet exponent
Need to be careful when propagating perturbations through switching manifold

� =
1

�

X

µ2L,R


�µ TrAµ + log

v̇(T+
µ )

v̇(T-
µ )

�

�smooth =
1

�

Z�

0

Tr DF(z(s))ds

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1v

w

-2

 0

 2

 4

-2  0  2 v

w Filippov
saltation



Network synchrony: MSF
L M Pecora and T L Carroll. Master stability functions for synchronized 
coupled systems. Physical Review Letters, 80:2109–2112, 1998. 

xi,F,H 2 Rm
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Synchronisation manifold

x1(t) = x2(t) = . . . = xN(t) = s(t) ṡ = F(s)

Graph Laplacian
Gij = -wij + �ij
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Variational problem xi(t) = s(t) + �xi(t)

Nice notation U = (�x1, . . . , �xN) 2 RN⇥m

U̇ = (IN ⌦DF(s))U- � (G ⌦DH(s))U

d

dt
�xi = DF(s)�xi - �DH(s)

NX

j=1

Gij�xj

Block diagonalise using 

V = (P ⌦ Im)-1U

GP = P⇤

⇤ = diag(�1, . . . , �N)

V̇ = (IN ⌦DF(s))V- � (⇤⌦DH(s))V
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(A⌦ B)(C⌦D) = (AC)⌦ (BD)

(A⌦ B)-1 = A-1 ⌦ B-1



N-block structure with the dynamics in each block, 
indexed by l = 1, . . . ,N :

⇠l 2 Cm

Saltation also 
acts blockwise

�l = ��l 2 C⇠̇l = [DF(s)- �lDH(s)] ⇠l

The MSF is defined as the function which maps the complex number    to the greatest 
Floquet exponent of the variational equation.  The synchronous state of the system of 
coupled oscillators is stable if the MSF is negative at               where     ranges over the 
eigenvalues of the matrix     (excluding             ).
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Non smooth result:

[coupling on one variable]Saltation matrix

What does it all look like?  Planar example:

… modified Floquet problem.
Geigenvalues of

⇠̇ = [DF(s)- �lDH(s)] ⇠, ⇠ 2 R2

�l = ��l 2 C

Gµ(l) = G(Aµ - �lJ;�µ), Kµ = K(Tµ), µ 2 {L, R}



Network of homoclinic oscillators
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Global linear coupling 
on “v”

Synchrony unstable for weak coupling and restabilises  
via an inverse period doubling bifurcation at               in  
excellent agreement with simulations (independent of    ).   



S Coombes and R Thul 2016 Synchrony in networks of coupled nonsmooth 
dynamical systems, European Journal of Applied Mathematics, Vol 27(6), 904–9

Star Network

Synchrony is always unstable
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… and now for event driven synaptic coupling
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S Coombes, R Thul and K C A Wedgwood 2012 Nonsmooth dynamics in spiking neuron 
models, Physica D, Vol 241, 2042–2057
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żi = F(zi) + �
NX

j=1

WijH(zj)

zi = (vi, wi, si, ui)

Synaptically coupled network

H(z) = (s, 0, 0, 0)
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R Nicks, L Chambon and S Coombes 2018 Clusters in nonsmooth oscillator networks, Physical Review E, 
Vol 97, 032213

A pwl system with saltation matrices that describe 
firing

Balance ensures synchrony



�l = K(�) exp{(AR + ��lDH)�}MSF:
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Wilson-Cowan network(s)
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PW-Linear and PW-constant choices
(non-smooth interactions)
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New variables (U,V);  switching 
manifolds U=0 and V=0 
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Clusters (and Computational Group Theory)
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FIG. 1. Three randomly generated networks with varying amounts of symmetry and

associated coupling matrices. (a) Nodes of the same color are in the same synchronization

cluster. The colors show the maximal symmetry the network dynamics can have given the graph

structure. (b) A graphic showing the structure of the adjacency matrices of each network (black

squares are 1, white squares are 0). (c) Block diagonalization of the coupling matrices A for each

network. Colors denote the cluster, as in (a). The 2 ⇥ 2 transverse block for the 32 symmetry

case comes from one of the IRRs being present in the permutation matrices two times. The

Supplementary Information displays the matrices.

iteratively according to:
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mod 2⇡ (3)

where � is the self-feedback strength, and the o↵set � is introduced to suppress the trivial

solution xi = 0. Eq. (3) is a discrete-time equivalent of Eq. (1). Depending on the values
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Irreducible representations of the  
graph automorphism 

B = TAT-1

b

c

a

0 symmetries
(11 clusters)

32 symmetries
(5 clusters)

5,760 symmetries
(3 clusters)

A =  

B =  

A =  A =  

B =  B =  

FIG. 1. Three randomly generated networks with varying amounts of symmetry and

associated coupling matrices. (a) Nodes of the same color are in the same synchronization

cluster. The colors show the maximal symmetry the network dynamics can have given the graph

structure. (b) A graphic showing the structure of the adjacency matrices of each network (black

squares are 1, white squares are 0). (c) Block diagonalization of the coupling matrices A for each

network. Colors denote the cluster, as in (a). The 2 ⇥ 2 transverse block for the 32 symmetry

case comes from one of the IRRs being present in the permutation matrices two times. The

Supplementary Information displays the matrices.

iteratively according to:

xt+1
i =

"
�I(xt

i) + �
X

j

AijI(x
t
j) + �

#
mod 2⇡ (3)

where � is the self-feedback strength, and the o↵set � is introduced to suppress the trivial

solution xi = 0. Eq. (3) is a discrete-time equivalent of Eq. (1). Depending on the values

5

b

c

a

0 symmetries
(11 clusters)

32 symmetries
(5 clusters)

5,760 symmetries
(3 clusters)

A =  

B =  

A =  A =  

B =  B =  

FIG. 1. Three randomly generated networks with varying amounts of symmetry and

associated coupling matrices. (a) Nodes of the same color are in the same synchronization

cluster. The colors show the maximal symmetry the network dynamics can have given the graph

structure. (b) A graphic showing the structure of the adjacency matrices of each network (black

squares are 1, white squares are 0). (c) Block diagonalization of the coupling matrices A for each

network. Colors denote the cluster, as in (a). The 2 ⇥ 2 transverse block for the 32 symmetry

case comes from one of the IRRs being present in the permutation matrices two times. The

Supplementary Information displays the matrices.

iteratively according to:

xt+1
i =

"
�I(xt

i) + �
X

j

AijI(x
t
j) + �

#
mod 2⇡ (3)

where � is the self-feedback strength, and the o↵set � is introduced to suppress the trivial

solution xi = 0. Eq. (3) is a discrete-time equivalent of Eq. (1). Depending on the values

5

A B

Nice variational formulation for M clusters 
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L M Pecora, et al. Cluster synchronization and isolated desynchronization in complex 
networks with symmetries. Nature Communications, 5(4079), 2014.

GAP - Groups, Algorithms, 
Programming: 

a System for Computational 
Discrete Algebra 

http://www.gap-system.org

http://www.gap-system.org
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European Journal of Applied Mathematics, Vol 27(6), 904–922

S Coombes, Y-M Lai, M Sayli and R Thul 2018 Networks of 
piecewise linear neural mass models,  

European Journal  
of Applied Mathematics, Vol 29, 869-890
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