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Figure 1: Some typical shells and their common

names. From top to bottom and left to right: Sol-

dier (California), Pelican’s Foot (Mediterranean),

Striped Whelk (Adriatic), Honey Whelk (Greece),

Screw (Italy), Moon (Philippines), Rock Snail

(Mombasa), Ring-Top Cowry (Africa), Dove (Tai-

wan).

Seashells are beautiful objects that are admired for

both their intricate shapes and the patterns on their

surfaces. Despite their complexity these shapes are

easily described using only elementary tools from ge-

ometry. Indeed a wide variety of natural shell shapes

can be composed as surfaces in a 3-space and rendered

using computer graphic imagery. Moreover, the pig-

mentation motifs that decorate many shells in the form

of wavy stripes and checks as well as chaotic and tent

designs can be generated by cellular automaton mod-

els, and in particular by the famous “Rule 30”.

The photograph in Fig. 1 shows some typical
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seashell shapes, all of which can be described in

terms of a spirally coiled cone. From a math-

ematical perspective a natural description may

be given in terms of a generating spiral and the

shape of the opening or generating curve. There

are now several algorithms for generating real-

istic seashell shapes, such as those described in

the wonderfully illustrated book [1]. To give the

main idea behind these algorithms it is enough

to consider the surface generated by rotating an

expanding semi-circle in an upward direction as

in Fig. 1 (right). Other mathematical shell sur-

faces can be generated by rotating more realis-

tic shell openings around helico-spirals. To learn

about such mathematical shapes we first need to

know more about circles, spirals and parametric

descriptions of surfaces.

Planar spirals. Points in the plane may be speci-

fied with a pair of numbers, such as those of the

Cartesian coordinate system. Alternatively one

may use the planar polar coordinate system as

shown in Fig. 2. A one-armed spiral is then de-

scribed by the equation θ = f(r). A classic exam-

ple is the Archimedean spiral with f(r) = r.

The parametric equation of a circle. A circle of

radius R may be described in terms of a single

parameter θ ∈ [0,2π) as

x = R cosθ, y = R sinθ.

If we let θ range over [0,2π) then we generate a
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Figure 2: Left: Cartesian and polar coordinate

systems. (x, y) = (r cosθ, r sinθ). Right: An

Archimedean spiral with f(r) = r.

circle. If θ ranges over [0, π] then we generate a

semi-circle.

3D spirals. A point in 3D may be described using

the 3D Cartesian coordinate system. In Cartesian

coordinates a point is specified with the triple

(x, y, z). A helico-spiral may be expressed in

terms of a single parameter θ by writing r = F (θ)

and z = G(θ). For a 3D Archimedean spiral these

functions are simply F (θ) = aθ and G(θ) = bθ for

given constants a and b.

Armed with the above geometric notions we

are now in a position to generate a simple seashell

shape formed by the rotation of a generating

curve along a helico-spiral. As an example let us

take the generating curve to be a semi-circle and

the helico-spiral to be a 3D Archimedean spiral as

in Fig. 3. To label a point on the surface we need

to specify how far along the spiral we are (using

θ) and how far round the semi-circle we are (us-

ing φ). This is easily calculated by letting

r→ r+R sinφ, z→ z +R(1− cosφ).

In terms of the 3D Cartesian system the co-

ordinates of the shell are given by (x, y, z) =

(r cosθ, r sinθ, z). Hence, the surface of the shell

is completely specified in terms of two parame-
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Figure 3: Left: The generator of a simple

seashell shape. Right: A mathematical seashell

obtained by rotating a semi-circular generating

curve around an Archimedean generating spiral.

ters, θ and φ ∈ [0, π):

x(θ,φ) = (aθ+R sinφ) cosθ,

y(θ,φ) = (aθ+R sinφ) sinθ,

z(θ,φ) = bθ+R(1− cosφ).

To make more interesting shapes we can use dif-

ferent helico-spirals, make the radius of the semi-

circle depend upon θ and φ (R = R(θ,φ)) or

choose more complicated shapes for the generat-

ing curve. In Fig. 4 we show some examples of

shells generated with a logarithmic helico-spiral

and various choices of the generating curve [2].

As well as having interesting shapes many

seashells also exhibit exotic patterns on their sur-

faces, such as that of the widespread species

Conus textile, shown in Fig. 5. These patterns

arise from the secretion of pigment from cells

which lie in a narrow band along the shell’s lip.

Each cell secretes pigments according to the activ-

ity of its neighbouring pigment cells and leaves

behind a coloured pattern as the shell grows. In

fact these secretions are controlled in part by the

mollusc nervous system and can be modelled

with mathematical tools for describing dynam-
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Figure 4: Mathematical seashell shapes. From

top to bottom and left to right: Conus, Nautilus,

Lyria, Epitonium, Turritella, Planorbis, Oxystele,

Turbo, Struthiolaria.

ical systems [4]. However, many shell patterns

can be described by simpler so-called cellular au-

tomaton (CA) models that do not track the details

of the neurosecretory process. A cellular automa-

ton is a discrete model often studied in mathe-

matics in the context of computability theory. It

consists of a regular grid of cells, each in one of a

finite number of states. Time is also discrete, and

the state of a cell at time t+ 1 is a function of the

states of the cells in its neighbourhood at time t.

The state update rules that define the creation of

a new generation can be specified in terms of a

simple table. For example “Rule 30” can be listed

in the form:

111 110 101 100 011 010 001 000

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 0 0 1 1 1 1 0

,

Figure 5: Conus textile (found in the waters of the

Indo-Pacific) exhibits a cellular automaton pat-

tern on its shell.

which tells us, for example, that if three adjacent

cells in the CA currently have the pattern 100 (on-

off-off), then the middle cell will become 1 (on) in

the next time step. The output 00011110 is inter-

preted as an 8-bit binary number, equal to 30, and

hence the name “Rule 30” [3]. Indeed there are

28 = 256, possible CA rules of this type, though

this rule is of particular interest because it pro-

duces complex, seemingly-random patterns like

those in Fig. 6. Here a black cell represents the

Space (shell lip)
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Figure 6: “Rule 30” cellular automaton – time de-

creasing down the page.

state 1 (on) and a white cell the state 0 (off). If we

imagine colouring the seashell lip at time t of its

growth with the pattern state obtained from the
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CA at time t then we would recover something

like the texture of the cone snail Conus textile,

with its “cloth of gold” pattern.
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