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Network Dynamical Systems

Network of dynamical units: ∈
{

, , , . . .

}

Network structure (topology):

Who interacts with whom?

Network interaction:

How does one oscillator influence
the other?

Q: How do structure and interactions shape the network dynamics?
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Network Dynamical Systems

Network of oscillatory units: ∈
{

, , . . .

}

Network structure (topology):

Who interacts with whom?

Network interaction:

How does one oscillator influence
the other?

Q: How do network structure, interactions, and dynamics interact?
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Oscillator Networks

Weak coupling approximation: Phase oscillators, θk ∈ T = R/2πZ with

θ̇k = ω +
N∑
j=1

g(θj − θk)

Network properties

Network structure (topology):

all-to-all, identical

Network interaction:

2π-periodic coupling
function g : T→ R

Three oscillators

θ1 = θ3

θ 1
=

θ 2

θ
2 =

θ
3τ
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Types of Coupling Functions

Single harmonic: Kuramoto–Sakaguchi coupling

g(φ) = sin(φ+ α)

Multiple harmonics: Daido and co.

g(φ) =
m∑

h=1

Ah sin(φ+ αh)

Coupling function with dead zones

Definition
A dead zone is a (maximal) open interval U ⊂ T such that g(U) ≡ 0.
Let A(g) denote the union of all dead zones of g . (T rA live zone.)
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Effective Interactions

Definition
The effective coupling graph Gg (θ) = G(θ) for N fully symmetric phase
oscillators with coupling function g at θ ∈ TN is the graph on N vertices
with edges

E (Gg (θ)) =
{

(j , k)
∣∣∣ θj − θk 6∈A(g)

}
.

Properties

I The symmetry action on TN permuting the phases yields a
symmetry action on the set of effective coupling graphs.

I The effective coupling graph inherits the symmetries of θ:

θ ∈ {θ1 = · · · = θN} =⇒ G(θ) ∈ {full graph, empty graph}
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Three Questions

(1) Realizing effective coupling graphs

Theorem
Let θ be a generic point on TN and H a graph on N vertices. Then there
exists a coupling function g such that G(θ) = H.

(2) Stably realizing effective coupling graphs

Theorem
Let θ be a generic point on TN and H a graph on N vertices. Under
some additional assumption on H there exists a coupling function g such
that G(θ) = H and θ is a stable (relative) equilibrium of the system.

(3) Interplay of structure and dynamics
...
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Awesome, Coloring Graphs!

Effective coupling graphs for N = 3 oscillators
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Almost Kuramoto–Sakaguchi Coupling

Kuramoto–Sakaguchi with one dead zone
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More Colorful Pictures!
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Asynchronous Networks

Properties of Asynchronous Networks

Local clocks. No global network clock is assumed and nodes may evolve
independent of each other.

Variable network topology. Changes in connection structure may depend
on the state of the system or be given by a stochastic
process.

Event driven dynamics. Synchronization events associated with stopping
or waiting states of nodes.

Nonsmooth dynamics. Dynamics is only piecewise smooth and there may
be a mix of continuous and discrete dynamics.

How to formalize the notion of an asynchronous network?

CB and M J Field (2017), Nonlinearity, 30(2), 558–594.
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A Model of an Asynchronous Network

Definition

I A network N has nodes, N1, . . . ,Nk with states in manifolds Mj .
Set M =

∏
Mj is the network phase space. Foliations Lj of Mj

describe constraints. Assume a constraining node N0 in N (no
phase space).

I A graph α (restrictions apply) determines a connection structure
on N (∅ denotes no connections). A collection A = {α, β, . . . } is a
generalized connection structure.

A =




 ,


 ,


 , . . .
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A Model of an Asynchronous Network

Definition (Continued)

I For each α ∈ A take a network vector field fα = (f α1 , . . . , f
α
k ) ∈ F

on M such that
I f αj depends nontrivially on x` ∈ M` if and only if N` → Nj ,
I f αj is tangent to the leaves of Lj if N0 → Nj .

I The event map E : M→ A defines events. Event sets
Eα = E−1(α) partition M.

An asynchronous network is a tuple N = (N ,A,F , E).

CB and M J Field (2017), Nonlinearity, 30(2), 558–594.
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Dynamics of an Asynchronous Network?

An asynchronous network defines a state dependent dynamical system
through

F(X) = fE(X)(X)

Solution Curves
Subject to some assumptions, an asynchronous network N gives rise to a
well-defined semiflow ΦN on M.

1. Let X0 denote the initial conditon.

2. Given Xk ∈ Eα = E−1(α) find minimal 0 < T ≤ ∞ such that
Φα(X, t) ∈ Eβ for t < T and Φα(X,T ) ∈ Eβ , β 6= α.

3. Set Xk+1 = Φα(X,T ).

The resulting semiflow ΦN, continuous in time t but not necessarily in X.
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Three Questions (Continued)

(3) Interplay of structure and dynamics

Theorem
A phase oscillator network with coupling function g such that A(g) 6= ∅
naturally defines an asynchronous network.

node state = phase in T

connection structure = effective coupling graph

event map E(X) = Gg (θ)

...
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Some More Questions

Questions about Asynchronous Networks

I Are there good conditions on the event sets that ensure existence
of trajectories?

I Asynchronous networks are related to Filippov systems and other
piecewise smooth systems.

I Products, when does an asynchronous network decompose into a
product?

CB and M J Field (2017), Nonlinearity, 30(2), 558–594.
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Dynamics of an Asynchronous Network!

The dynamics can be qualitatively
different than for example the dynam-
ics given by a Filippov system.

76 2 Qualitative theory of non-smooth dynamical systems

Definition 2.23. The sliding region of the discontinuity set of a system of
the form (2.27) with uniform degree of smoothness one is given by that portion
of the boundary of H(x) for which

(HxF1) · (HxF2) < 0.

That is, HxF1 (the component of F1 normal to H) has the opposite sign to
HxF2. Thus, the boundary is simultaneously attracting (or repelling) from both
sides.

(a) (b)

Fig. 2.16. A typical discontinuity boundary of a two-dimensional Filippov system
showing the behavior of the vector fields on both sides. Bold and dashed regions
represent (a) attracting and (b) repelling sliding motion, respectively. Dotted lines
indicate three individual trajectory segments.

Note that the case of most interest is when the sliding region is attracting
since, as is clear from Fig. 2.16, repelling sliding motion cannot be reached
by following the system flow forward in time. However, attracting sliding mo-
tion can be reached in finite time. Henceforth, sliding will always be taken to
mean ‘attracting sliding’ unless otherwise stated. Such motion leads to loss
of information on initial conditions. Compare for example the two trajecto-
ries A and B of the two-dimensional flow represented in Fig: 2.16; they enter
the sliding region at different points, but leave at the same point. Thus while
they came from different initial conditions in the past, their future evolution
is identical (the trajectory segment C). Thus, there is an infinite rate of at-
traction in forward time and the flow is not uniquely defined in reverse time.
Another simple example of non-inevitability in mechanics is that of plastic
impacts (e.g., imagine dropping a mature tomato on the floor!). Whatever
the pre-impact velocity, the post-impact velocity is always zero.

As a consequence, any Poincaré mapassociated with trajectories that in-
volve sliding motion will be noninvertible and have a multiplier that is zero
(corresponding to the infinite rate of attraction). Now, the formalism of
piecewise-smooth systems itself does not say how to define the evolution of
the system as it undergoes sliding. One has to do something extra.

Two approaches exist in the literature for formulating the equations for
flows that slide when written in the general form (2.27). These are Utkin’s

Asynchronous Network

0

T

Network N = {N0,N1} with M1 = R, A = {∅, α = N0 → N1}. Vector
fields f∅(X) = v > 0, fα(X) = 0 and F =

{
f∅, fα

}
. Event map

E(X) = α if X = 0, E(X) = ∅ otherwise.

Filippov Approximation on [−∞, 0]

0 ε

di Bernardo et al (2008). Piecewise-smooth Dynamical Systems.
CB (2015). Local Representation of Asynchronous Networks by Filippov Systems, Dynamical Equivalence and Approximation. In Prep.
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Example: Two Trains in Passing Loop

T2T1

T2T1

T1T2

t1
<

t2
<

t3
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Dynamical Decomposition

The dynamics can be decomposed into basic networks a, b equivalent to
a single passing loop.

1

2

3

a

b

spatiotemporal evolution temporal evolution

1

2

3

Dotted lines: stopped nodes, vertical bars: events. Temporal evolution
depends on initializations; stopping events may occur in any order in
contrast to the restarting events.

−q

p

r

L

T3

0 T1T2

CB and M J Field (2017), Nonlinearity, 30(2), 595–621.
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Decomposition Result

Theorem
We can decompose a (functional) asynchronous network into
spatiotemporal building blocks.

CB and M J Field (2017), Nonlinearity, 30(2), 595–621.
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Conclusions and Outlook

Conclusions

! Coupling functions with dead zones induce asynchronous networks.

! We can potentially understand the dynamics by looking at
transitions between effective network structures.

! Asynchronous networks provide a framework to describe dynamical
phenomena in science and engineering including stopping and
restarting events.

! Nonsmooth nature of networks allows for a reductionist approach
(factorization).

Outlook (i.e., More Questions)

? Understand the dynamics even for small networks?

? Larger networks and more complicated structural network?

? Approximation theorems for ε-A?
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Thank you for your attention!
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