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Introduction and Motivation

Connectivity: why do we care?
Clinical measurements:

White + grey matter connectivity is thought to form the substrate for
many different neurological and psychiatric disorders.

Modern MRI techniques allows in-vivo measurements specific to different
connections

Example:

Axonal degeneration/demyelination in Multiple Sclerosis (Evangelou et al.
2000)

left: Control right: MS
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Introduction and Motivation

Connections constrain function

Passingham et al., NNR (2002)

• The operations performed
by an area are determined
by its connectivity.

• Different regions have
distinct connectivity

fingerprints .

• Understanding regional
connectivity is essential for
understanding systems
neuroscience.
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Introduction and Motivation

Networks in Neuroscience
Brain connectivity and its emergent dynamics are organized

across multiple spatiotemporal scales
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Introduction and Motivation

Investigating Brain Connectivity

Diffusion-weighted MR imaging
obtains similar pictures in vivo for

humans

Sacrificial tracer studies carried out
on primates represent the gold

standard

Tractography algorithms construct a
vector field describing the connectivity

structure
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Introduction and Motivation

From MRI to Complex Brain Network

Hagmann et al., PLOS One (2007)
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Introduction and Motivation

Multilayered Neural Connectivity

C. elegans electrical versus
chemical connections (Nicosia &
Latora, 2015; Kleineberg et al., 2016;
Bentley et al., 2016)

Scale dependent connectivity e.g.
different frequency bands (Domenico
et al., 2016; Brookes et al., 2016)

Time varying functional networks
(Mucha et al. 2010; Bassett et al., 2011;
Calhoun et al., 2014)
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Brain Networks

2-Layer Structure-Function Multiplex
Layer 1

Layer 2

Both networks define a multiplex structure in which the SC level shapes or
imposes constraints on the FC level
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Brain Networks

Mathematical Representation

A multiplexM of N nodes and M layers can be represented by a set of
M adjacency matrices

A[α] for α = 1, . . .M

That is

A[α]
ij =

{
1 if node i and node j are connected in layer α
0 otherwise
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Brain Networks

Basic Multiplex Measures

It follows that a multiplex is fully specified by the vector

A = [A[1],A[2], . . . ,A[M]]

The degree vector naturally extends the notion of network degree to
the multiplex setting

k(i) = [
∑

a[1]
ij ,
∑

a[2]
ij , . . . ,

∑
a[M]

ij ]

with obvious extensions to directed multiplexes.
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Brain Networks

Basic Multiplex Measures

Total overlap measures the total of pairs of nodes connected at the
same time by a link in any two layers.

Oα,α′ =
∑
i<j

a[α]
ij a[α′]

ij

Measures similarity between structural & functional networks
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Brain Networks

Structure-Function Duplex: Layer 1

We choose the structural network (layer 1) to be the known cortical
network of the Macaque monkey

47 brain regions (nodes) which are linked by 505 directed fibres (edges)

Binary connectivity matrix, i.e. A[1]
ij = 1 if brain region i projects to brain

region j
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Brain Networks

Structure-Function Duplex: Layer 2
Activity in each cortical region is modelled as a Wilson-Cowan node

dui

dt
= −ui + f

(
c1ui − c2vi + P +

∑
w [1]

ij uj

)
dvi

dt
= −vi + f (c3ui − c4vi + Q) i = 1, . . .47

Parameters: c1 = c2 = c3 = 10, c4 = −2 as in (Hlinka & Coombes, 2012)

The firing rate function is taken to be sigmoidal

f (x) = 1/(1 + exp (−x))
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Brain Networks

Structure-Function Duplex: Layer 2

The model supports transition
between trivial steady state dynamics

and oscillatory neural-like behaviour
as P,Q are varied

0 10 20 30 40 50

t

0.3

0.6

0.9

u i

0 10 20 30 40 50

t

0.8

0.9

1

u i

The functional layer is derived by
calculating the Pearson’s
correlation between the time
series of each cortical area

The functional layer is binarised to
have the same number of links as
the structural layer
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Clustering

Recall that the local clustering coefficient accounts for the number of
triangles in a network and is given by the ratio

Ci =
#∆s

#two-paths
=
|∆|
|P2|

e.g.

Ci = {0,0,0,0} Ci = {1,1,1,1} Ci = {1,0,1, 1
3}
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Multiplex Clustering

A number of different extensions are
possible

Here we employ the approach in
(Battiston et al. 2015) in that we exclude
intra-layer ∆s

That is
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Multiplex Clustering

Multiplex clustering

C(i) =

∑
α

∑
α6=α′

∑
j 6=i,m 6=i

(
a[α]

ij a[α′ ]
jm a[α]

mi

)
(M−1)

∑
α k [α]

i (k [α]
i −1)

Here M is the number of layers and k [α]
i is the degree of node i in layer α

Or in the case of a two-layer network

C(i) =

∑
j 6=i,m 6=i

(
a[1]

ij a[2]
jm a[1]

mi +a[2]
ij a[1]

jm a[2]
mi

)
k [1]

i (k [1]
i −1)+k [2]

i (k [2]
i −1)

=
(A[1]A[2]A[1]+A[2]A[1]A[2])ii

k [1]
i (k [1]

i −1)+k [2]
i (k [2]

i −1)
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Random Surrogates
All multiplex (and network) measures are normalised

More specifically
the structural layer is rewired by swapping edge pairs (or triples!)

100 functional layers are constructed and their average used for
normalisation

e.g. clustering: C/〈Crand〉
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Results: Multiplex Measures

(a) standard clustering (b) global overlap (c) multiplex clustering

Single versus multiplex measures as a function of the basal activation
parameters P,Q

Dark regions correspond to
non-oscillatory regions of parameter space
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Structure-Function Clustering

We consider two variations of the standard multiplex clustering

Structural tuples closed by a functional
edge (

A[1]A[2]A[1] +
XXXXXA[2]A[1]A[2]

)
ii

k [1]
i (k [1]

i − 1) +
XXXXXXk [2]

i (k [2]
i − 1)

In the absence of a structural edge

– #∆SF =
∑

a[1]
ij a[2]

jm a[1]
mi (1− a[1]

jm )

– How to count # two-paths now?
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Structure-Function Clustering
Note that structure-function clustering is given by

CSF(i) = |∆SF|
|P [1]

2 |−|∆[1]|
=

∑
a[1]

ij a[2]
jm a[1]

mi (1−a[1]
jm )∑

a[1]
ij a[1]

mi−
∑

a[1]
ij a[1]

jm a[1]
mi

and recalling the definition for standard CC we get

1− Ci = 1−
∑

j
∑

m,m 6=j aij ajmami∑
j
∑

m,m 6=j aij ami
=
∑

j
∑

m,m 6=j aij ami−
∑

j
∑

m,m 6=j aij ajmami∑
j
∑

m aij ami−
∑

j(aij)
2

so that

|P [1]
2 | − |∆

[1]| =

(∑∑
a[1]

ij a[1]
mi −

∑(
a[1]

ij

)2
)

(1− c[1]
i ) = k [1]

i (k [1]
i − 1)(1− c[1]

i )
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Multiplex Clustering Coefficients

Structure-Function Clustering

This results in the following structure-function clustering coefficient

C̃ i =
(A[1](A[2]◦(E−A[1]))A[1])ii

k [1]
i (k [1]

i −1)(1−c[1]
i )

◦ denotes element wise multiplication & c[1]
i clustering of node i in layer 1

Specific ‘motifs’ of interest

– Cycles: nodes that communicate indirectly

– outward: nodes that receive a common drive

k

ji

k

ji

k

ji
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Specific Motifs of Interest

Patterns Graphs Structure-Function Clustering

Cycle

k

ji

k

ji

C̃ cyc(i) =

(
A[1]

(
A[2] ◦

(
E −A[1]

)
◦
(
E −A[1]T

))
A[1]

)
ii(

k
[1]
in (i)k

[1]
out(i)− (A[1])

2
ii

)(
1− c

[1]
cyc(i)

)

Out

k

ji

C̃ out(i) =

(
A[1]

(
A[2] ◦

(
E −A[1]

)
◦
(
E −A[1]T

))
A[1]T

)
ii

k
[1]
out(i)

(
k
[1]
out(i)− 1

)(
1− c

[1]
out(i)

)

Both All graphs above C̃ both(i) =

(
A[1]

(
A[2] ◦

(
E −A[1]

)
◦
(
E −A[1]T

))(
A[1] + 0.5A[1]T

))
ii(

k
[1]
in (i)k

[1]
out(i)− (A[1])

2
ii + 0.5k

[1]
out(k

[1]
out − 1)

)(
1− c

[1]
both(i)

)

c[1]
# (i) with {#} ∈ {cyc, out, both} denotes directed clustering (Fagiolo, 2007)

of node i in layer 1
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Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Results: SF Clustering

(a) C̃ both/〈C̃ both
rand〉 (b) C̃ both/〈C̃ both

rand〉 − C̃ cyc/〈C̃ cyc
rand〉 (c) C̃ both/〈C̃ both

rand〉 − C̃ out/〈C̃ out
rand〉

Multiplex clustering corresponding to neurologically relevant patterns

Distinct regions of parameter space exist in which clustering is dominated
either by common drive or by indirect functional connectivity
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Structure-Function Clustering in Multiplex Brain Networks

Extensions to Weighted Networks

Weighted Clustering Coefficient
In the previous experiments networks where thresholded in order to
obtain binary connectivity matrices

Next we consider weighted clustering coefficients

Multiple definitions exist but we consider here the following definition due
to Grindrod-Zhang-Horvath (Kalna & Higham, 2007):

Cw(i) =

∑
j
∑

k,k 6=j wijwjk wki∑
j
∑

k,k 6=j wijwki
=

(
W 3
)

ii
kw (i)2 − (W 2)ii

Here, kw (i) is the weighted degree of node i

The weights are assumed to lie in [0,1]
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Structure-Function Clustering in Multiplex Brain Networks

Extensions to Weighted Networks

Extension to Weighted Multiplexes

Similar to before we have that

Cwm(i) =

∑
α

∑
α′ 6=α

∑
j,m

(
w [α]

ij w [α′]
jm wα]

mi

)
(M − 1)

∑
α

∑
j 6=m

(
w [α]

ij w [α]
mi

)
or

Cwm(i) =

∑
α

∑
α′ 6=α

(
W [α]W [α′]W [α]

)
ii

(M − 1)
∑
α

(
k [α]

w (i)2 −
(
W [α]2

)
ii

)

Here k [α]
w denotes the weighted degree
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Structure-Function Clustering in Multiplex Brain Networks

Extensions to Weighted Networks

Extension to Weighted Multiplexes

And for structure-function clustering:

Cwsf(i) =

(
W [1]

(
W [2] ◦

(
I −W [1]

))
W [1]

)
ii(

k [1]
w (i)k [1]

w (i)−
(
W [1]2

)
ii

)(
1− c[1]

w (i)
)

• Here k [1]
w (i) denotes the weighted degree and c[1]

w (i) the weighted clustering
due to Grindrod-Zhang-Horvath for the i th node in the structural layer

• Note that the above formulation is easily extended to undirected structural
networks
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Structure-Function Clustering in Multiplex Brain Networks

Extensions to Weighted Networks

Extension to Weighted Multiplexes
In our experiments to date

we have structural topology (i.e. layer 1 is binarised)

functional layer is either

binary (A[2] is thresholded to have the same number of links as layer 1)
weighted in one of three ways:

• W [2] = abs(C). ∗ A[2]

• W [2] = abs(C)

• W [2] = abs(C). ∗ (C > 0)

Here C is the correlation matrix and I am using Matlab notation (i.e. ‘.∗’
means element-wise multiplication, etc.).
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Extensions to Weighted Networks

Extension to Weighted Multiplexes: Macaque Brain
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Extensions to Weighted Networks

Human Brain
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We have repeated the above analysis on a healthy human brain obtained from
the Human Connectome Project:

N = 78,m = (thresholded to retain ≈ 35% of connections)

considered the same 4 cases as before (1 binary, 3 weighted)
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Extensions to Weighted Networks

Extension to Weighted Multiplexes: Human Brain
Binary

-12 -2 8  

4  

-6 

-16 0

0.1

0.2

0.3
W1

-12 -2 8  

4  

-6 

-16 0

0.1

0.2

0.3

W2

-12 -2 8  

4  

-6 

-16 0

0.5

1
W3

-12 -2 8  

4  

-6 

-16 0

0.5

1
Q

P

Structure-Function clustering on the human brain (unnormalised)
J. J. Crofts, NTU Threshold Networks 2019 July 24, 2019 34 / 50



Threshold Networks 2019

Structure-Function Clustering in Multiplex Brain Networks

Extensions to Weighted Networks

Future work

Weighted structure/function (i.e. no topology)

How to normalise the structural network

Weighted null models

MEG/EEG data (89 healthy patients currently)

2-layer (structure-function – both weighted)
5-layer multiplex (different frequency bands)
5-layer temporal multiplex
structure-function temporal multiplex
healthy Vs diseased study
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Outline

1 Introduction and Motivation

2 Structure-Function Clustering in Multiplex Brain Networks
Multiplex Brain Networks
Multiplex Clustering Coefficients
Extensions to Weighted Networks

3 Spatially Constrained Brain Networks
Spreading dynamics on cortical structures

4 Connecting it all Together
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The Brain as a Spatial Network

Spatial aspect of brain networks important for a number of reasons:

Brain regions that are spatially close have a larger probability of being
connected than remote regions

wiring costs are distant dependent

A number of neurological conditions are accompanied by alterations in
both gross anatomy and structural connectivity

Relation between surface morphology and brain connectivity unclear
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The Brain as a Spatial Network - Motivation

To date white matter connectivity studies
dominate

Recent evidence suggests grey +

white matter deficiencies are important

It has been hypothesised
grey matter connectivity can be inferred

via cortical folding
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Spreading dynamics on cortical structures

Neural Network Structure - Setup

(a) ∆tion (b) Connectivity Rules

Network construction:
Construct minimally connected network , G0, via a triangulation
Additional links added between vertex pairs, vi and vj , if they are sufficiently
close as measured by

(a) Euclidean distance , i.e. ||vi − vj ||2 < r ; and

(b) path-length , d(vi , vj ), measured on G0
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Spreading dynamics on cortical structures

Neural network structure - Setup

(a) Lattice graph (b) Random network (c) Rat cortex

Use a simple cellular automata model to compare spreading dynamics
on a lattice, random graph and rat brain (N ≈ 9600)

Activity spreads according to the following simple rules:
nodes are in one of two states: active (xi = 1) or inactive (xi = 0);
an inactive node becomes active if it is connected to at least m active nodes
(active nodes remain active)
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Spreading dynamics on cortical structures

Neural Network Structure - Statistics

Path Shortest Path

The average, or characteristic, path-length is given by

〈l〉 =
1

n(n − 1)

∑
i,j

aij ,

where the matrix A is the network adjacency matrix (i.e. aij = 1 if node i ∼ j).
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Spreading dynamics on cortical structures

Neural Network Structure - Results

(a) Path-length (b) Clustering coefficient

WS clustering for the geometric random graph approaches theoretical value:

1− 1
Γ
( 3

2

)√
π

(
3
4

) 3
2

≈ 0.58650
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Spreading dynamics on cortical structures

Neural network structure - Results

Example spreading behaviour in the 3 different architectures

Initial conditions comprised a small region of activation (1% of nodes)
surrounding a randomly chosen node

m = 2, r = 0.35 in all the above
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Spreading dynamics on cortical structures

Neural Network Structure - Results

Quantify via t∗: time to full
activation

Significant difference in:

Average activation time

Strong dependence on initial state
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Spreading dynamics on cortical structures

Extensions: the human brain

PSfrag replacements
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⋆

ni

p

white matter grey matter
(a) (b)

1/1

The human brain is higly convoluted.
We consider a simple model of grey matter connectivity that allows for
short-cuts due to cortical folding. (N ≈ 150,000)
Again, we deploy a simple cellular automata model of neural activity
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Spreading dynamics on cortical structures

Extensions: the human brain
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Spreading dynamics on cortical structures

Extensions: human brain
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Clustering was maximised
at r = 4mm

Experimentally observed
grey matter connections
typically 4-5mm

Grey matter connectivity
maximises information
processing abilities
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Connecting it altogether

� Multiplex brain betworks:

Proposed duplex model of structure-function networks
Multiplex measures display emergent features not present in single layer
represntation
Interesting behaviour found close to criticality and beyond...
Extensions to weighted networks and clinical data next

� Spatial network properties:

Combining different forms of neuroimaging data important
By not including spatial information we risk over-simplifying the resulting
network models.
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