Welcome

Complex Brain Networks

Jonathan J. Crofts

Department of Physics & Mathematics Nottingham Trent University

July 2019

jonathan.crofts@ntu.ac.uk

J. J. Crofts, NTU

Outline

- 1 Introduction and Motivation
- 2 Structure-Function Clustering in Multiplex Brain Networks
 - Multiplex Brain Networks
 - Multiplex Clustering Coefficients
 - Extensions to Weighted Networks
- Spatially Constrained Brain Networks
 Spreading dynamics on cortical structures
- 4 Connecting it all Together

Outline

1 Introduction and Motivation

- 2 Structure-Function Clustering in Multiplex Brain Networks
 - Multiplex Brain Networks
 - Multiplex Clustering Coefficients
 - Extensions to Weighted Networks
- Spatially Constrained Brain Networks
 Spreading dynamics on cortical structures
- 4 Connecting it all Together

Connectivity: why do we care?

Clinical measurements:

- White + grey matter connectivity is thought to form the substrate for many different neurological and psychiatric disorders.
- Modern MRI techniques allows in-vivo measurements specific to different connections

Example:

Axonal degeneration/demyelination in Multiple Sclerosis (Evangelou *et al.* 2000)

Connections constrain function

Passingham et al., NNR (2002)

• The operations performed by an area are determined by its connectivity.

Different regions have distinct connectivity fingerprints.

• Understanding regional connectivity is essential for understanding systems neuroscience.

Networks in Neuroscience

Brain connectivity and its emergent dynamics are organized

across multiple spatiotemporal scales

Investigating Brain Connectivity

Sacrificial tracer studies carried out on primates represent the gold standard

Investigating Brain Connectivity

Sacrificial tracer studies carried out on primates represent the gold standard

Diffusion-weighted MR imaging obtains similar pictures *in vivo* for humans

Investigating Brain Connectivity

Sacrificial tracer studies carried out on primates represent the gold standard

Diffusion-weighted MR imaging obtains similar pictures *in vivo* for humans

Tractography algorithms construct a vector field describing the connectivity structure

From MRI to Complex Brain Network

Weighted network of brain connectivity: 500-4'000 nodes, 26'000-100'000 edges

Hagmann et al., PLOS One (2007)

Threshold Networks 2019

Multilayered Neural Connectivity

 C. elegans electrical versus chemical connections (Nicosia & Latora, 2015; Kleineberg et al., 2016; Bentley et al., 2016)

Multilayered Neural Connectivity

- C. elegans electrical versus chemical connections (Nicosia & Latora, 2015; Kleineberg et al., 2016; Bentley et al., 2016)
- ^{(o} Scale dependent connectivity e.g. different frequency bands (Domenico et al., 2016; Brookes et al., 2016)

Multilayered Neural Connectivity

- C. elegans electrical versus chemical connections (Nicosia & Latora, 2015; Kleineberg et al., 2016; Bentley et al., 2016)
- ^{(o} Scale dependent connectivity e.g. different frequency bands (Domenico et al., 2016; Brookes et al., 2016)
- Time varying functional networks (Mucha et al. 2010; Bassett et al., 2011; Calhoun et al., 2014)

Outline

1 Introduction and Motivation

2 Structure-Function Clustering in Multiplex Brain Networks

- Multiplex Brain Networks
- Multiplex Clustering Coefficients
- Extensions to Weighted Networks
- Spatially Constrained Brain Networks
 Spreading dynamics on cortical structures
- 4 Connecting it all Together

Multiplex Brain Networks

2-Layer Structure-Function Multiplex

^o Both networks define a multiplex structure in which the SC level shapes or imposes constraints on the FC level

J. J. Crofts, NTU

Threshold Networks 2019

Mathematical Representation

A multiplex *M* of *N* nodes and *M* layers can be represented by a set of *M* adjacency matrices

$$\pmb{A}^{[lpha]}$$
 for $lpha=\pmb{1},\dots \pmb{M}$

Part of the test of test of

$$A_{ij}^{[\alpha]} = \begin{cases} 1 & \text{if node } i \text{ and node } j \text{ are connected in layer } \alpha \\ 0 & \text{otherwise} \end{cases}$$

Multiplex Brain Networks

Basic Multiplex Measures

It follows that a multiplex is fully specified by the vector

$$\mathbf{A} = [A^{[1]}, A^{[2]}, \dots, A^{[M]}]$$

The degree vector naturally extends the notion of network degree to the multiplex setting

$$\mathbf{k}(i) = [\sum a_{ij}^{[1]}, \sum a_{ij}^{[2]}, \dots, \sum a_{ij}^{[M]}]$$

with obvious extensions to directed multiplexes.

Multiplex Brain Networks

Basic Multiplex Measures

It follows that a multiplex is fully specified by the vector

$$\mathbf{A} = [A^{[1]}, A^{[2]}, \dots, A^{[M]}]$$

[®] The degree vector naturally extends the notion of network degree to the multiplex setting

$$\mathbf{k}(i) = [\sum oldsymbol{a}_{ij}^{[1]}, \sum oldsymbol{a}_{ij}^{[2]}, \dots, \sum oldsymbol{a}_{ij}^{[M]}]$$

with obvious extensions to directed multiplexes.

Multiplex Brain Networks

Basic Multiplex Measures

Total overlap measures the total of pairs of nodes connected at the same time by a link in any two layers.

$$\mathcal{O}^{lpha,lpha'} = \sum_{i < j} \pmb{a}_{ij}^{[lpha]} \pmb{a}_{ij}^{[lpha']}$$

Basic Multiplex Measures

Total overlap measures the total of pairs of nodes connected at the same time by a link in any two layers.

$$\mathcal{O}^{lpha,lpha'} = \sum_{i < j} \pmb{a}_{ij}^{[lpha]} \pmb{a}_{ij}^{[lpha']}$$

[®] Measures similarity between structural & functional networks

Multiplex Brain Networks

Structure-Function Duplex: Layer 1

We choose the structural network (layer 1) to be the known cortical network of the Macaque monkey

- 47 brain regions (nodes) which are linked by 505 directed fibres (edges)
- Binary connectivity matrix, i.e. $A_{ij}^{[1]} = 1$ if brain region *i* projects to brain region *j*

Multiplex Brain Networks

Structure-Function Duplex: Layer 2

Octivity in each cortical region is modelled as a Wilson-Cowan node

$$\frac{du_i}{dt} = -u_i + f\left(c_1 u_i - c_2 v_i + P + \sum w_{ij}^{[1]} u_j\right)$$

$$\frac{dv_i}{dt} = -v_i + f\left(c_3 u_i - c_4 v_i + Q\right) \qquad i = 1, \dots 47$$

- ^(e) Parameters: $c_1 = c_2 = c_3 = 10, c_4 = -2$ as in (Hlinka & Coombes, 2012)
- [©] The firing rate function is taken to be sigmoidal

$$f(x) = 1/(1 + \exp(-x))$$

Multiplex Brain Networks

Structure-Function Duplex: Layer 2

The model supports transition
 between trivial steady state dynamics
 and oscillatory neural-like behaviour
 as P, Q are varied

- Multiplex Brain Networks

Structure-Function Duplex: Layer 2

The model supports transition
 between trivial steady state dynamics
 and oscillatory neural-like behaviour
 as P, Q are varied

The functional layer is derived by calculating the Pearson's
 correlation between the time series of each cortical area

^(e) The functional layer is binarised to have the same number of links as the structural layer

Clustering

Recall that the local clustering coefficient accounts for the number of triangles in a network and is given by the ratio

$$C_i = rac{\#\Delta s}{\# ext{two-paths}} = rac{|\Delta|}{|P_2|}$$

🤨 e.g.

Multiplex Clustering Coefficients

Multiplex Clustering

- A number of different extensions are possible
- ^(e) Here we employ the approach in (Battiston *et al.* 2015) in that we exclude intra-layer Δs
- Part That is

Threshold Networks 2019

L Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Multiplex Clustering

Multiplex clustering

$$C(i) = \frac{\sum_{\alpha} \sum_{\alpha \neq \alpha'} \sum_{j \neq i, m \neq i} \left(a_{ij}^{[\alpha]} a_{jm}^{[\alpha']} a_{mi}^{[\alpha]}\right)}{(M-1) \sum_{\alpha} k_i^{[\alpha]} (k_i^{[\alpha]} - 1)}$$

Here *M* is the number of layers and $k_i^{[\alpha]}$ is the degree of node *i* in layer α

• Or in the case of a **two-layer network**

$$C(i) = \frac{\sum_{j \neq i, m \neq i} \left(a_{ij}^{[1]} a_{jm}^{[2]} a_{mi}^{[1]} + a_{ij}^{[2]} a_{jm}^{[1]} a_{mi}^{[2]} \right)}{k_i^{[1]}(k_i^{[1]} - 1) + k_i^{[2]}(k_i^{[2]} - 1)} = \frac{\left(A^{[1]} A^{[2]} A^{[1]} + A^{[2]} A^{[1]} A^{[2]} \right)_{ii}}{k_i^{[1]}(k_i^{[1]} - 1) + k_i^{[2]}(k_i^{[2]} - 1)}$$

Threshold Networks 2019

L Structure-Function Clustering in Multiplex Brain Networks

Multiplex Clustering Coefficients

Multiplex Clustering

Multiplex clustering

$$C(i) = \frac{\sum_{\alpha} \sum_{\alpha \neq \alpha'} \sum_{j \neq i, m \neq i} \left(a_{ij}^{[\alpha]} a_{jm}^{[\alpha']} a_{mi}^{[\alpha]}\right)}{(M-1) \sum_{\alpha} k_i^{[\alpha]} (k_i^{[\alpha]} - 1)}$$

Here *M* is the number of layers and $k_i^{[\alpha]}$ is the degree of node *i* in layer α

^o Or in the case of a **two-layer network**

$$C(i) = \frac{\sum_{j \neq i, m \neq i} \left(\hat{a}_{ij}^{(1)} a_{jm}^{(2)} a_{mi}^{(1)} + a_{ij}^{(2)} a_{jm}^{(1)} a_{mi}^{(2)} \right)}{k_i^{(1)} (k_i^{(1)} - 1) + k_i^{(2)} (k_i^{(2)} - 1)} = \frac{\left(A^{(1)} A^{(2)} A^{(1)} + A^{(2)} A^{(1)} A^{(2)} \right)_{ii}}{k_i^{(1)} (k_i^{(1)} - 1) + k_i^{(2)} (k_i^{(2)} - 1)}$$

Multiplex Clustering Coefficients

Random Surrogates

- ^o All multiplex (and network) measures are normalised
- More specifically
 - the structural layer is rewired by swapping edge pairs (or triples!)

- 100 functional layers are constructed and their average used for normalisation
- ^{\circ} e.g. clustering: $C/\langle C_{\rm rand} \rangle$

Multiplex Clustering Coefficients

Results: Multiplex Measures

- ^o Single versus multiplex measures as a function of the basal activation parameters *P*, *Q*
- Dark regions correspond to non-oscillatory regions of parameter space

Multiplex Clustering Coefficients

Structure-Function Clustering

[©] We consider **two variations** of the standard multiplex clustering

Multiplex Clustering Coefficients

Structure-Function Clustering

- [©] We consider **two variations** of the standard multiplex clustering
 - Structural tuples closed by a functional edge

$$\frac{\left(A^{[1]}A^{[2]}A^{[1]} + \overline{A^{[2]}}A^{[1]}A^{[2]}\right)_{ii}}{k_i^{[1]}(k_i^{[1]} - 1) + \overline{k_i^{[2]}}(k_i^{[2]} - 1)}$$

Multiplex Clustering Coefficients

Structure-Function Clustering

- [©] We consider **two variations** of the standard multiplex clustering
 - Structural tuples closed by a functional edge

$$\frac{\left(A^{[1]}A^{[2]}A^{[1]} + \overline{A^{[2]}}A^{[1]}A^{[2]}\right)_{ii}}{k_i^{[1]}(k_i^{[1]} - 1) + \overline{k_i^{[2]}}(k_i^{[2]} - 1)}$$

In the absence of a structural edge

$$- \ #\Delta_{\rm SF} = \sum a_{ij}^{[1]} a_{jm}^{[2]} a_{mi}^{[1]} (1 - a_{jm}^{[1]})$$

How to count # two-paths now?

Multiplex Clustering Coefficients

Structure-Function Clustering

Note that structure-function clustering is given by

$$C_{
m SF}(i) = rac{|\Delta_{
m SF}|}{|P_2^{[1]}| - |\Delta^{[1]}|} = rac{\sum a_{j_i}^{[1]} a_{j_m}^{[2]} a_{mi}^{[1]}(1-a_{j_m}^{[1]})}{\sum a_{j_i}^{[1]} a_{mi}^{[1]} - \sum a_{j_i}^{[1]} a_{j_m}^{[1]} a_{mi}^{[1]}}$$

Multiplex Clustering Coefficients

Structure-Function Clustering

Note that structure-function clustering is given by

$$C_{
m SF}(i) = rac{|\Delta_{
m SF}|}{|P_2^{[1]}| - |\Delta^{[1]}|} = rac{\sum a_{ij}^{[1]} a_{jm}^{[2]} a_{mi}^{[1]}(1 - a_{jm}^{[1]})}{\sum a_{ij}^{[1]} a_{mi}^{[1]} - \sum a_{ij}^{[1]} a_{mi}^{[1]} a_{mi}^{[1]}}$$

and recalling the definition for standard CC we get

$$1 - C_{i} = 1 - \frac{\sum_{j} \sum_{m,m \neq j} a_{ij}a_{jm}a_{mi}}{\sum_{j} \sum_{m,m \neq j} a_{ij}a_{mi}} = \frac{\sum_{j} \sum_{m,m \neq j} a_{ij}a_{mi} - \sum_{j} \sum_{m,m \neq j} a_{ij}a_{jm}a_{mi}}{\sum_{j} \sum_{m} a_{ij}a_{mi} - \sum_{j} \left(a_{ij}\right)^{2}}$$

Multiplex Clustering Coefficients

Structure-Function Clustering

Note that structure-function clustering is given by

$$C_{
m SF}(i) = rac{|\Delta_{
m SF}|}{|P_2^{[1]}| - |\Delta^{[1]}|} = rac{\sum a_{ij}^{[1]} a_{jm}^{[2]} a_{mi}^{[1]}(1 - a_{jm}^{[1]})}{\sum a_{ij}^{[1]} a_{mi}^{[1]} - \sum a_{ij}^{[1]} a_{mi}^{[1]} a_{mi}^{[1]}}$$

and recalling the definition for standard CC we get

$$1 - C_{j} = 1 - \frac{\sum_{j} \sum_{m, m \neq j} a_{ij} a_{jm} a_{mi}}{\sum_{j} \sum_{m, m \neq j} a_{ij} a_{mi}} = \frac{\sum_{j} \sum_{m, m \neq j} a_{ij} a_{mi} - \sum_{j} \sum_{m, m \neq j} a_{ij} a_{jm} a_{mi}}{\sum_{j} \sum_{m} a_{ij} a_{mi} - \sum_{j} (a_{ij})^{2}}$$

so that

$$|P_2^{[1]}| - |\Delta^{[1]}| = \left(\sum \sum a_{ij}^{[1]} a_{mi}^{[1]} - \sum \left(a_{ij}^{[1]}\right)^2\right) (1 - c_i^{[1]}) = k_i^{[1]} (k_i^{[1]} - 1) (1 - c_i^{[1]})$$

Multiplex Clustering Coefficients

Structure-Function Clustering

[©] This results in the following **structure-function clustering coefficient**

$$\widetilde{C}_{i} = \frac{\left(A^{[1]}(A^{[2]} \circ (E - A^{[1]}))A^{[1]}\right)_{ii}}{k_{i}^{[1]}(k_{i}^{[1]} - 1)(1 - c_{i}^{[1]})}$$

• denotes element wise multiplication & $c_i^{[1]}$ clustering of node *i* in layer 1

Multiplex Clustering Coefficients

Structure-Function Clustering

O Specific 'motifs' of interest

- Cycles: nodes that communicate indirectly

- outward: nodes that receive a common drive

Multiplex Clustering Coefficients

Specific Motifs of Interest

^(e) $c_{\#}^{[1]}(i)$ with {#} ∈ {cyc, out, both} denotes directed clustering (Fagiolo, 2007) of node *i* in layer 1

- Structure-Function Clustering in Multiplex Brain Networks
 - Multiplex Clustering Coefficients

Results: SF Clustering

- ^o Multiplex clustering corresponding to neurologically relevant patterns.
- Obstinct regions of parameter space exist in which clustering is dominated either by common drive or by indirect functional connectivity

Extensions to Weighted Networks

Weighted Clustering Coefficient

- In the previous experiments networks where thresholded in order to obtain binary connectivity matrices
- Performance in the second s
- Multiple definitions exist but we consider here the following definition due to Grindrod-Zhang-Horvath (Kalna & Higham, 2007):

$$C_{w}(i) = \frac{\sum_{j} \sum_{k,k \neq j} w_{ij} w_{jk} w_{ki}}{\sum_{j} \sum_{k,k \neq j} w_{ij} w_{ki}} = \frac{(W^{3})_{ii}}{k_{w}(i)^{2} - (W^{2})_{ii}}$$

- ^{\circ} Here, $k_w(i)$ is the weighted degree of node *i*
- ^o The weights are assumed to lie in [0, 1]

Extensions to Weighted Networks

Extension to Weighted Multiplexes

Similar to before we have that

$$C_{\rm wm}(i) = \frac{\sum_{\alpha} \sum_{\alpha' \neq \alpha} \sum_{j,m} \left(w_{ij}^{[\alpha]} w_{jm}^{[\alpha']} w_{mi}^{\alpha]} \right)}{(M-1) \sum_{\alpha} \sum_{j \neq m} \left(w_{ij}^{[\alpha]} w_{mi}^{[\alpha]} \right)}$$

or

$$C_{\rm wm}(i) = \frac{\sum_{\alpha} \sum_{\alpha' \neq \alpha} \left(W^{[\alpha]} W^{[\alpha']} W^{[\alpha]} \right)_{ii}}{(M-1) \sum_{\alpha} \left(k_{\rm w}^{[\alpha]}(i)^2 - \left(W^{[\alpha]2} \right)_{ii} \right)}$$

Here $k_{\rm w}^{[\alpha]}$ denotes the weighted degree

Extensions to Weighted Networks

Extension to Weighted Multiplexes

And for structure-function clustering:

$$C_{\rm wsf}(i) = \frac{\left(W^{[1]}\left(W^{[2]}\circ\left(I-W^{[1]}\right)\right)W^{[1]}\right)_{ii}}{\left(k_{\rm w}^{[1]}(i)k_{\rm w}^{[1]}(i) - \left(W^{[1]2}\right)_{ii}\right)\left(1-c_{\rm w}^{[1]}(i)\right)}$$

• Here $k_{w}^{[1]}(i)$ denotes the weighted degree and $c_{w}^{[1]}(i)$ the weighted clustering due to Grindrod-Zhang-Horvath for the *i*th node in the structural layer

• Note that the above formulation is easily extended to undirected structural networks

Extensions to Weighted Networks

Extension to Weighted Multiplexes

In our experiments to date

- ^(e) we have structural topology (i.e. layer 1 is binarised)
- [©] functional layer is either
 - binary (A^[2] is thresholded to have the same number of links as layer 1)
 weighted in one of three ways:
 - $W^{[2]} = abs(C) \cdot * A^{[2]}$
 - $W^{[2]} = abs(C)$
 - $W^{[2]} = abs(C). * (C > 0)$

Here *C* is the correlation matrix and I am using Matlab notation (*i.e.* '.*' means element-wise multiplication, etc.).

Extensions to Weighted Networks

Extension to Weighted Multiplexes: Macaque Brain

[®] Structure-function clustering on the Macaque brain (unnormalised)

J. J. Crofts, NTU

- Structure-Function Clustering in Multiplex Brain Networks
 - Extensions to Weighted Networks

Human Brain

We have repeated the above analysis on a healthy human brain obtained from the Human Connectome Project:

- ^{\circ} N = 78, m = (thresholded to retain $\approx 35\%$ of connections)
- considered the same 4 cases as before (1 binary, 3 weighted)

Extensions to Weighted Networks

Extension to Weighted Multiplexes: Human Brain

Ostructure-Function clustering on the human brain (unnormalised)

J. J. Crofts, NTU

Extensions to Weighted Networks

Future work

- Weighted structure/function (*i.e.* no topology)
- e How to normalise the structural network
- Weighted null models
- MEG/EEG data (89 healthy patients currently)
 - 2-layer (structure-function both weighted)
 - 5-layer multiplex (different frequency bands)
 - 5-layer temporal multiplex
 - structure-function temporal multiplex
 - healthy Vs diseased study

Outline

1 Introduction and Motivation

- 2 Structure-Function Clustering in Multiplex Brain Networks
 - Multiplex Brain Networks
 - Multiplex Clustering Coefficients
 - Extensions to Weighted Networks
- Spatially Constrained Brain Networks
 Spreading dynamics on cortical structures
- 4 Connecting it all Together

The Brain as a Spatial Network

- [©] Spatial aspect of brain networks important for a number of reasons:
 - Brain regions that are spatially close have a larger probability of being connected than remote regions
 - wiring costs are distant dependent

A number of neurological conditions are accompanied by alterations in both gross anatomy and structural connectivity

Relation between surface morphology and brain connectivity unclear

The Brain as a Spatial Network

- [©] Spatial aspect of brain networks important for a number of reasons:
 - Brain regions that are spatially close have a larger probability of being connected than remote regions

wiring costs are distant dependent

A number of neurological conditions are accompanied by alterations in both gross anatomy and structural connectivity

Relation between surface morphology and brain connectivity unclear

The Brain as a Spatial Network - Motivation

- [®] To date white matter connectivity studies dominate
- Recent evidence suggests grey +
 white matter deficiencies are important

 It has been hypothesised grey matter connectivity via cortical folding

Spreading dynamics on cortical structures

Neural Network Structure - Setup

Output Network construction:

- **Construct minimally connected network**, \mathcal{G}_0 , via a triangulation
- Additional links added between vertex pairs, v_i and v_j , if they are sufficiently close as measured by
 - (a) Euclidean distance , i.e. $||v_i v_j||_2 < r$; and
 - (b) **path-length** , $d(v_i, v_j)$, measured on \mathcal{G}_0

Spreading dynamics on cortical structures

Neural Network Structure - Setup

- Provide the image of the ima
 - Construct **minimally connected network**, *G*₀, via a triangulation
 - Additional links added between vertex pairs, v_i and v_j , if they are sufficiently close as measured by
 - (a) Euclidean distance, i.e. $||v_i v_j||_2 < r$; and
 - (b) **path-length**, $d(v_i, v_j)$, measured on \mathcal{G}_0

- Spreading dynamics on cortical structures

Neural network structure - Setup

^(e) Use a simple cellular automata model to compare spreading dynamics on a lattice, random graph and rat brain ($N \approx 9600$)

- Output the second se
 - nodes are in one of two states: active ($x_i = 1$) or inactive ($x_i = 0$);
 - an inactive node becomes active if it is connected to at least *m* active nodes (active nodes remain active)

- Spreading dynamics on cortical structures

Neural Network Structure - Statistics

Path

The average, or characteristic, path-length is given by

$$\langle l \rangle = \frac{1}{n(n-1)} \sum_{i,j} a_{ij},$$

where the matrix A is the network adjacency matrix (i.e. $a_{ij} = 1$ if node $i \sim j$).

J. J. Crofts, NTU

- Spatially Constrained Brain Networks
 - Spreading dynamics on cortical structures

Neural Network Structure - Results

WS clustering for the geometric random graph approaches theoretical value:

$$1 - \frac{1}{\Gamma(\frac{3}{2})\sqrt{\pi}} \left(\frac{3}{4}\right)^{\frac{3}{2}} \approx 0.58650$$

Spreading dynamics on cortical structures

Neural network structure - Results

- Example spreading behaviour in the 3 different architectures
- Initial conditions comprised a small region of activation (1% of nodes) surrounding a randomly chosen node
- m = 2, r = 0.35 in all the above

Spreading dynamics on cortical structures

Neural Network Structure - Results

- Quantify via t*: time to full activation
- Significant difference in:

Average activation time

Strong dependence on initial state

- Spatially Constrained Brain Networks
 - Spreading dynamics on cortical structures

Extensions: the human brain

- [©] The human brain is higly convoluted.
- ^(e) We consider a simple model of grey matter connectivity that allows for short-cuts due to cortical folding. ($N \approx 150,000$)
- [®] Again, we deploy a simple cellular automata model of neural activity

- Spatially Constrained Brain Networks
 - Spreading dynamics on cortical structures

Extensions: the human brain

- Spatially Constrained Brain Networks
 - Spreading dynamics on cortical structures

Extensions: human brain

- Clustering was maximised at r = 4mm
- Experimentally observed grey matter connections typically 4-5mm
- Grey matter connectivity maximises information processing abilities

J. J. Crofts, NTU

Outline

- 1 Introduction and Motivation
- 2 Structure-Function Clustering in Multiplex Brain Networks
 - Multiplex Brain Networks
 - Multiplex Clustering Coefficients
 - Extensions to Weighted Networks
- Spatially Constrained Brain Networks
 Spreading dynamics on cortical structures
- 4 Connecting it all Together

Connecting it all Together

Connecting it altogether

Multiplex brain betworks:

- Proposed duplex model of structure-function networks
- Multiplex measures display emergent features not present in single layer representation
- Interesting behaviour found close to criticality and beyond...
- Extensions to weighted networks and clinical data next

Spatial network properties:

- Combining different forms of neuroimaging data important
- By not including spatial information we risk over-simplifying the resulting network models.

Connecting it all Together

Connecting it altogether

Multiplex brain betworks:

- Proposed duplex model of structure-function networks
- Multiplex measures display emergent features not present in single layer representation
- Interesting behaviour found close to criticality and beyond...
- Extensions to weighted networks and clinical data next

Spatial network properties:

- Combining different forms of neuroimaging data important
- By not including spatial information we risk over-simplifying the resulting network models.

Connecting it all Together

Acknowledgements

COLLABORATORS & THANK YOU!

PhD students: Michael Forrester (UoN)

