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Motivation
Large-scale data generated by, or relevant to, human
behaviour, e.g., social media, on-line behaviour

Potential to
validate theories from social science
inform customer-facing industries and organisations

Based on material from
Centrality-friendship paradoxes: When our friends are more important
than us , D. J. Higham, Journal of Complex Networks, 2018
Infering and Calibrating Triadic Closure in a Dynamic Network, A. V.
Mantzaris and D. J. Higham, in Temporal Networks, edited by P. Holme
and J. Saramaki, 2013
Bistability through triadic closure, P. Grindrod, D. J. Higham and M. C.
Parsons, Internet Mathematics, 2012
Models for evolving networks: with applications in telecommunication
and online activities, P. Grindrod and D. J. Higham, IMA J. Management
Mathematics, 2012
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Part 1

Triadic Closure. . .
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Triadic Closure
Suggested by German sociologist Georg Simmel in 1908
Popularized by US sociologist Mark Granovetter in 1973
In terms of friendships, suppose X is a friend of Y, and X is
a friend of Z, but Y is not a friend of Z

Then Y is likely to become friends with Z
Reasons include:

Y is likely to meet Z
Y and Z are vouched for by X
X saves time/energy if Y and Z become friends

Nott. Des Higham Triadic closure 4 / 31

http://www.mims.manchester.ac.uk/


Simple Unweighted Graph

Adjacency matrix A Graph G

For i 6= j , the expression(
A2)

ij :=
n∑

p=1

aipapj

counts the number of friends that nodes i and j have in
common
Develop a time-dependent model. . .

Nott. Des Higham Triadic closure 5 / 31

http://www.mims.manchester.ac.uk/


Evolving Graph Model Framework

Fixed number of of nodes, n

Edges may appear or disappear at discrete timepoints
0,1,2,3, . . .

At each timepoint we have an undirected graph,
represented by a symmetric, binary adjacency matrix A[k ]

Our model will be a discrete time Markov chain. Given
A[k ] at time k there is a transition probability to every
possible adjacency matrix at time k + 1

To simplify the framework, we assume edge
independence: between timepoints, the probability of an
edge appearing or disappearing is independent of that for
all other edges
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Triadic Closure Model
Friends of friends become friends

We have n people, “friending” and “unfriending”
A[k ] is the adjacency matrix at time k

Edge death probability is a constant ω ∈ (0,1)
Edge birth probability between nodes i and j given by

δ + ε
((

A[k ])2
)

ij

where 0 < δ � 1 and 0 < ε(n − 2) < 1− δ

Consider n = 100, ω = 0.01, ε = 5× 10−4, δ = 4× 10−4
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Triadic closure: start with ER(0.3)
time=0 time=50 time=100 time=150

time=200 time=250 time=300 time=350

time=400 time=450 time=500 time=550

time=600 time=650 time=700 time=750

Edge density at time 750 is 0.712
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Triadic closure: start with ER(0.15)
time=0 time=50 time=100 time=150

time=200 time=250 time=300 time=350

time=400 time=450 time=500 time=550

time=600 time=650 time=700 time=750

Edge density at time 750 is 0.051
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Mean field analysis for δ + ε
((

A[k ]
)2
)

ij

Ergodicity and symmetry⇒ Erdös-Rényi limit: every edge
present with probablity p?

Heuristic mean field approach: insert the ansatz
“A[k ] = ER(pk)” into the model to obtain

pk+1 = pk(1− ω) + (1− pk)(δ + ε(n − 2)p2
k)

Generically: three real roots

Two are stable, one is unstable

n = 100, ω = 0.01, ε = 5× 10−4, δ = 4× 10−4

Stable fixed points 0.049 & 0.721 Unstable 0.229
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Fixed points 0.049, 0.721 and 0.229
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Mean-field vs. simulation from ER(0.4)
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Four simulations from ER(0.23)
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Stable fixed points 0.049 & 0.721 Unstable 0.229
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Calibration/Inference
Likelihood, L(A[k+1]|A[k ]), has the form∏

remain alive

(1− death)
∏
born

birth
∏

remain dead

(1− birth)
∏
die

death

Then the sequence A[1],A[2],A[3], . . . ,A[K ] has likelihood

L(A[1]|A[0])L(A[2]|A[1])L(A[3]|A[2]) · · · L(A[K−1]|A[K ])

Constrained model with ε = 0 is nested within the
unconstrained model. We used a likelihood ratio test, and
also computed the Akaike information criterion (AIC)
Tests on synthetic data show that we can correctly infer the
triadic closure effect and recover a good estimate for ε

On Wealink data from Hu and Wang, Phys. Lett. A, 2009
with 26 Million time stamps, over 841 days and 0.25 Million
nodes (no edge death), we found statistical support for
triadic closure
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Part 2

The Friendship Paradox. . .
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Example
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Let’s Count Average Num. Friends
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Let’s Count Average Num. Friends
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Average Num. of Friends of Friends
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Average Num. of Friends of Friends
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Average Num. of Friends of Friends
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On average, our friends have more friends
than we do

This is now called The Friendship Paradox

Why Your Friends Have More Friends Than You Do,
Scott L. Feld, The American Journal of Sociology, 1991

Quote: “most individuals have friends who have more
friends than average and so provide an unfair basis for
comparison”

We can blame the Cauchy–Schwarz inequality. . .
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The Maths
Let A ∈ Rn×n be the symmetric adjacency matrix
Let d = A1 be the degree vector

Average number of friends over the nodes is

1
n

n∑
i=1

di , i.e.,
‖d‖1

n

Friend-of-friend average is∑n
i=1 d2

i∑n
i=1 di

, i.e.,
‖d‖2

2

‖d‖1

For u,v ≥ 0, Cauchy–Schwarz⇒ uT v ≤ ‖u‖2‖v‖2

Take u = 1, so ‖v‖1 ≤
√

n‖v‖2 ⇒ ‖v‖2
2 ≥ ‖v‖2

1/n, or

‖v‖2
2

‖v‖1
≥ ‖v‖1

n
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Follow on Work

Paradox applies to any mutual pairwise interactions:
minisymposium co-organisation, coauthorship, sexual
partnership, . . .

Measured for many networks in social science, and
implications extensively debated

A related idea has been used as a sensing strategy:
Social Network Sensors for Early Detection of Contagious
Outbreaks,
Nicholas A. Christakis, James H. Fowler, PLoS ONE, 2010

Using Friends as Sensors to Detect Global-Scale Contagious
Outbreaks,
Manuel Garcia-Herranz, Esteban Moro, Manuel Cebrian, Nicholas A.
Christakis, James H. Fowler, PLoS ONE, 2014
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Generalized Friendship Paradox

Generalized Friendship Paradox in Complex Networks: The case
of scientific collaboration,
Young-Ho Eom, Hang-Hyun Jo, Scientific Reports, 2014

Do our friends have more of attribute x than us, on average?

E.g., for scientific collaboration networks, our coauthors
seem to have more citations and publications than us, on
average

They showed question boils down to Cov(x,d) ≥ 0?
Equivalently

xT d
‖d‖1

≥ ‖x‖1

n
?

Always true when x is eigenvector centrality
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Theorem: Eigenvector Centrality Paradox
For any connected graph the inequality

xT d
‖d‖1

≥ ‖x‖1

n
holds when x is the P-F vector of A. We have equality if
and only if the graph is regular.
Proof Let Ax = λx, with λ = ρ(A). Then

λ = ‖A ‖2 ≥ ‖A
1√
n
‖2 = ‖ d√

n
‖2 ≥

1
n
‖d‖1.

Now
xT d
‖d‖1

=
xT A1
‖d‖1

= λ
xT 1
‖d‖1

= λ
‖x ‖1

‖d‖1
≥ ‖x ‖1

n
.

⇒ our friends are always at least as eigenvector central
as us, on average.
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Triangle Paradox Inequality

Consider the case where xi counts the number of
triangles that node i participates in

Do we always have

xT d
‖d‖1

− ‖x‖1

n
≥ 0 for xi = (A3)ii?

Not true in general

Related open question: when does adding an edge make
the LHS larger?

See how the LHS evolves under the Markov chain triadic
closure model. . .
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Triangle Paradox Inequality from ER(0.3)
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Triangle Paradox Inequality from ER(0.15)
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Summary

Edge-independent dynamic networks form a useful
class of Markov chain models that can incorporate
hypotheses from application areas
Triadic closure model has cubic nonlinearity that leads
to bistable behaviour
Closing triangles over time can contribute to a Triangle
Paradox Inequality
Many opportunites for further analysis
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