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Motivation

Mathematically tractable epidemic models are valuable tools
for understanding, predicting, mitigating, planning, . . . in the
context of infectious diseases.

Classical models include several assumptions of homogeneity,
many of which are unrealistic.

A popular/common/useful/interesting departure from
homogeneous mixing of homogeneous individuals is to
incorporate structure through networks, modelled with
random graphs, to (hopefully) capture population structures
like social networks in human/animal populations, network
connectivity of computers.

Such models typically involve an epidemic spreading on a
static network. We investigate a simple model where the
network changes in response to the epidemic.
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Outline

SIR epidemics on a network/graph, in particular a
configuration model random graph.

Preventive behaviour during the epidemic:
Individuals can ‘drop’ edges and possibly ‘rewire’ too.

Without rewiring: results on the mean and variance of the
temporal evolution and final outcome of the epidemic.
With rewiring: not nearly that much detail, but some
interesting qualitative results.

Ball, Britton, Leung and Sirl (2019). A stochastic SIR network epidemic model

with preventive dropping of edges. J. Math. Biol. 78:1875–1951.

Leung, Ball, Sirl and Britton (2018). Individual preventive social distancing

during an epidemic may have negative population-level outcomes. J. R. Soc.

Interface 15:20180296.
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Stochastic SIR epidemic on a network

Given a graph G (undirected), identify nodes with individuals and
edges with ‘friendships’ and define an epidemic model:

SIR (suceptible → infectious → removed) progression.

Initially 1 infectious (chosen UAR) and N − 1 susceptible.

Infectious individuals remain so for a random time distributed
as I , then become removed.

Infectious individuals make contacts with each neighbour in G
at the points of Poisson Processes of rate λ > 0; if neighbour
is susceptible it becomes infectious.

Infectious periods and PPs mutually independent.

Continue until no infectious individuals remain.

Classical model has G = KN , λ(N) = λ/N. Another simple-ish case
is G = G (N, p). Analysis is typically as N →∞.
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Configuration model and SIR epidemics

A random graph model with specified degree distribution.

Two versions
Molloy-Reed: prescribed degrees d(N) = (d

(N)
i )Ni=1.

Newman-Strogatz-Watts: IID degrees Di ∼ D.

Both have the key feature that, asymptotically as N →∞,
the degree of a uniformly chosen node is distributed as some
random variable D. (MR/NSW: same mean, different variability.)

Construction (NSW): Given N ∈ Z+ and {pk}∞k=0 ∼ D,

Assign Di
iid∼ D stubs / half-edges to node i = 1, 2, . . . ,N,

Pair half-edges UAR to form edges in a graph.

Run an SIR epidemic on the graph.

(Possible imperfections; no clustering, no assortativity, . . . )
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SIR epidemics on networks: methods/results

Early stages & Final outcome

Generation-based (GW) or real-time (CMJ) branching process
approximations for early stages: threshold results and chance
of a large outbreak with few initial infectives.
Susceptibility sets, generation based approach for investigating
final outcome: mean (and variance) of final size.

Full temporal behaviour

Usually deterministic: mean-field models, pair approximations,
moment closure, . . . .
Varying degrees of rigour and interpretation of ‘approximate’.

For the CM-SIR epidemic, quite a bit known in the former
category but in the latter category known results are in the
Markov case and address the mean but not the variability.

5 / 24



Front matter Background/Model CM-SIR with dropping . . . with rewiring too End matter

Our model: CM-SIR with preventive measures

CM network model, SIR progression as before but Markov
(so I ∼ exp(γ)).

Also let each susceptible neighbour of an infective drop their
connection to the infective at rate ω ≥ 0.

So infectives

infect each neighbour at rate λ,

recover at rate γ,

‘inform’ each neighbour at rate ω,

Later:

With probability α, a susceptible that drops an edge replaces
it with an edge to an individual chosen uniformly from the
population.
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Analysis of model with dropping

Model proposed by Britton et al.1, with SEIR dynamics.

Britton et al. analyse the early stages (reproduction number
R0 and Malthusian/exponential growth rate r).

Branching process approximation.
Pair approximation (deterministic ODEs for the number of
singletons, pairs, triples, . . . of individuals in the various disease
states); system of 10 ODEs (7 for SIR).
Amongst other things, they show that rewiring can make the
epidemic worse (in terms of R0 and r) in the SEIR case.
Explanation: E-I links rewire to E-S, which become I-S after the

latent period, facilitating more infection than without rewiring.

We investigate, for the SIR model,

temporal and final size behaviour without rewiring, and
some final size properties with rewiring.

1Britton, Juher & Saldaña (2016).
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Results I

Construct the network and the epidemic at the same time;
using an effective degree approach2.

Theory of density dependent Markov chains3 yields LLNs and
CLTs for many quantities of interest.

Example 1: Final size Z satisfies, for large outbreaks in large
populations of size N,

Z
D
≈ N · z +

√
N ·N(0, σ2)

with z ∈ (0, 1) and σ2 > 0 available theoretically and
numerically.

2Ball and Neal (2008).
3Ethier & Kurtz (1986, Chapter 11).
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Results II

Example 2: The number of infectives I (t) (t ≥ 0) satisfies

I (t)
D
≈ N · x(t) +

√
N · G (t),

with x(·) solving a system of ODEs and G (·) a zero-mean
Gaussian process with covariance function computable
numerically at the same time as x(·).

ICs involve starting with a positive fraction of infectives.
Total of (2M + 4)(2M + 3) ODEs if allowing degrees ≤ M.

The system of ODEs underlying x(·) reduces to a single driving
ODE4.

4cf. Volz (2008); Miller, Slim & Volz (2012) when ω = 0
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Some numerical illustration

Use D ∼ Geo(1/6); has µD = 5, σD ≈ 5.5.

(Has unbounded degrees, even though theory ‘requires’ a maximum

degree M.)
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Temporal CLT
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100 simulated trajectories of I (t) and CLT predictions.

Parameters are N = 1000, λ = 3/2, γ = 1, ω = 1, i0 = 0.05N.
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Temporal CLT 2
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Mean and sd of 1000 simulated trajectories of I (t) and CLT predictions.

Parameters are N = 1000, λ = 3/2, γ = 1, ω = 1, i0 = 0.05N.
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Exploring the model

The asymptotic results provide good approximations to
quantities of interest for finite populations.

So (with only minor caveats) we can explore the behaviour of
the asymptotics to learn about the properties of our model in
finite populations with N in the hundreds (or larger).
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Effect of dropping
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Impact of increasing the dropping rate ω from zero.

Baseline model has λ = 3/2, γ = 1, i0/N ↓ 0.
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Effect of graph type
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Comparison of final size variability for NSW and MR graphs as dropping

rate increases. Baseline model has λ = 3/2, γ = 1, i0/N = 0.
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Effect of graph type 2
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Some observations/comments

DD theory assumes a positive initial fraction infected; we let
this fraction go to zero with initial infectives being chosen
UAR, not as those infected by an emerging outbreak5.

DD theory applies only when there is a maximum degree.

Bounded degree sufficient for most practical purposes.
Would like to extend to unbounded degree

(∃ LLNs for ω = 0 and a CLT for γ = ω = 0
with moment assumptions on D).

Numerical results support the conjectured extensions.

Extend to non-Markov case?

Extend to more complex population structures?

5Ball & House (2017).
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Our model: CM-SIR with preventive measures

CM network model, Markov SIR epidemic (so I ∼ exp(γ)).

Also let each susceptible neighbour of an infective drop their
connection to the infective at rate ω ≥ 0.

So infectives

infect each neighbour at rate λ,

recover at rate γ,

‘inform’ each neighbour at rate ω,

Additionally:

With probability α, a susceptible that drops an edge replaces
it with an edge to an individual chosen uniformly from the
population.
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Social distancing is beneficial...

Suppose that I’m susceptible and my neighbour ‘informs’ me
that they are infectious; so I drop the edge.

What can happen next?

No rewiring.
Rewire to a removed individual.
Rewire to a susceptible individual.
Rewire to an infectious individual.

=⇒ I might be better off; and I cannot be worse off.

But is the population as a whole necessarily better off?
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Some networks

We study this model on:

The standard CM network.

A CM network with cliques.

In the CM network model, partition the population into
groups/cliques of 3 individuals. In addition to CM connections,
connect individuals in the same clique.

Empirical networks.

arXiv General Relativity collaboration network
and Facebook social circles network6.
2 ‘Infectious sociopatterns’ networks, SG1 and SG27.

6Leskovec & Krevl (2014).
7SocioPatterns collaboration (2011).
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Results

With CM network structure:

Threshold parameter R0 decreases with ω.
The mean final size of a large outbreak can increase with ω.

With CM network + clique structure:

A threshold parameter R∗ (clique-to-clique reproduction
number) can increase with ω;
possibly from below to above threshold.
But R∗ always decreases with ω for sufficiently large ω.
The mean final size of a large outbreak can increase with ω
(even when R∗ doesn’t).

On the empirical networks:

We ‘usually’ observe straightforward ‘social distancing helps’,
but
we also observe all possible combinations of these behaviours,
for some plausible values of other parameters.
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Some observations/comments II

A variety of behaviours of final size properties as dropping is
introduced/increased.

Final size increasing with dropping rate ω is more likely when

the ‘baseline’ epidemic is well above criticality,
the network has many individuals of low degree,
the network has many components,
the rewiring probability α is higher.

22 / 24



Front matter Background/Model CM-SIR with dropping . . . with rewiring too End matter

Summary & future

Temporal and final size LLN and CLT for a SIR-CM epidemic
with dropping of edges.

Some interesting behaviour when rewiring is allowed too.

Further work on the model with rewiring.

Obvious extensions like households, the non-Markov case,
vaccination, . . . .

Ball, Britton, Leung and Sirl (2019). A stochastic SIR network
epidemic model with preventive dropping of edges. J. Math. Biol.
78:1875–1951.
Leung, Ball, Sirl and Britton (2018). Individual preventive social
distancing during an epidemic may have negative population-level
outcomes. J. R. Soc. Interface 15:20180296.
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