A network epidemic model with preventive behaviour

David Sirl University of Nottingham david.sirl@nottingham.ac.uk

> Threshold Networks meeting Nottingham, July 2019

Based on joint work with Frank Ball (Nottingham); Tom Britton, and KaYin Leung (Stockholm)

Thanks to Simons Foundation and Isaac Newton Institute / EPSRC

Front matter ●○	Background/Model	CM-SIR with dropping	with rewiring too	End matter 00
Motivatio	n			

- Mathematically tractable epidemic models are valuable tools for understanding, predicting, mitigating, planning, ... in the context of infectious diseases.
- Classical models include several assumptions of homogeneity, many of which are unrealistic.
- A popular/common/useful/interesting departure from homogeneous mixing of homogeneous individuals is to incorporate structure through networks, modelled with random graphs, to (hopefully) capture population structures like social networks in human/animal populations, network connectivity of computers.
- Such models typically involve an epidemic spreading on a static network. We investigate a simple model where the network changes in response to the epidemic.

Front matter ○●	Background/Model 00000	CM-SIR with dropping	with rewiring too	End matter 00
Outline				

- SIR epidemics on a network/graph, in particular a *configuration model* random graph.
- Preventive behaviour during the epidemic: Individuals can 'drop' edges and possibly 'rewire' too.
 - Without rewiring: results on the mean and variance of the temporal evolution and final outcome of the epidemic.
 - With rewiring: not nearly that much detail, but some interesting qualitative results.

Ball, Britton, Leung and Sirl (2019). A stochastic SIR network epidemic model with preventive dropping of edges. *J. Math. Biol.* 78:1875–1951.

Leung, Ball, Sirl and Britton (2018). Individual preventive social distancing during an epidemic may have negative population-level outcomes. *J. R. Soc. Interface* 15:20180296.

Profit matterBackground/ModelCM-SIR with dropping with rewiring tooEnd matter00000000000000000000000	Stochast	ic SID onidom	vic on a notwork		
	Front matter	Background/Model	CM-SIR with dropping	with rewiring too	End matter 00

Given a graph G (undirected), identify nodes with individuals and edges with 'friendships' and define an epidemic model:

- SIR (suceptible \rightarrow infectious \rightarrow removed) progression.
- Initially 1 infectious (chosen UAR) and N-1 susceptible.
- Infectious individuals remain so for a random time distributed as *I*, then become removed.
- Infectious individuals make contacts with each neighbour in G at the points of Poisson Processes of rate $\lambda > 0$; if neighbour is susceptible it becomes infectious.
- Infectious periods and PPs mutually independent.
- Continue until no infectious individuals remain.

Classical model has $G = K_N$, $\lambda^{(N)} = \lambda/N$. Another simple-ish case is G = G(N, p). Analysis is typically as $N \to \infty$.

Configuration model and SID enidemics					
00	0000	000000000	00000	00	
Front matter	Background/Model	CM-SIR with dropping	with rewiring too	End matter	

Configuration model and SIR epidemics

- A random graph model with specified degree distribution.
- Two versions
 - Molloy-Reed: prescribed degrees $d^{(N)} = (d_i^{(N)})_{i=1}^N$.
 - Newman-Strogatz-Watts: IID degrees $D_i \sim D$.

Both have the key feature that, asymptotically as $N \to \infty$, the degree of a uniformly chosen node is distributed as some random variable D. (MR/NSW: same mean, different variability.)

- Construction (NSW): Given $N \in \mathbb{Z}_+$ and $\{p_k\}_{k=0}^\infty \sim D$,
 - Assign $D_i \stackrel{\text{iid}}{\sim} D$ stubs / half-edges to node $i = 1, 2, \dots, N$,
 - Pair half-edges UAR to form edges in a graph.
- Run an SIR epidemic on the graph.

(Possible imperfections; no clustering, no assortativity, ...)

Front matter 00	Background/Model ○○●○○	CM-SIR with dropping	with rewiring too	End matter 00
SIR epider	nics on netwo	orks: methods	/results	

- Early stages & Final outcome
 - Generation-based (GW) or real-time (CMJ) branching process approximations for early stages: threshold results and chance of a large outbreak with few initial infectives.
 - Susceptibility sets, generation based approach for investigating final outcome: mean (and variance) of final size.
- Full temporal behaviour
 - Usually deterministic: mean-field models, pair approximations, moment closure,
 - Varying degrees of rigour and interpretation of 'approximate'.
- For the CM-SIR epidemic, quite a bit known in the former category but in the latter category known results are in the Markov case and address the mean but not the variability.

\wedge		the second second second		
00	00000	000000000	00000	00
Front matter	Background/Model	CM-SIR with dropping	with rewiring too	End matter

Our model: CM-SIR with preventive measures

- CM network model, SIR progression as before but Markov (so $I \sim \exp(\gamma)$).
- Also let each susceptible neighbour of an infective drop their connection to the infective at rate $\omega \ge 0$.

So infectives

- infect each neighbour at rate λ ,
- recover at rate γ ,
- 'inform' each neighbour at rate ω ,

Later:

• With probability α , a susceptible that drops an edge replaces it with an edge to an individual chosen uniformly from the population.

00	00000	000000000	00000	00			
Analysis of model with dropping							

- Model proposed by Britton *et al.*¹, with SEIR dynamics.
- Britton *et al.* analyse the early stages (reproduction number R_0 and Malthusian/exponential growth rate r).
 - Branching process approximation.
 - Pair approximation (deterministic ODEs for the number of singletons, pairs, triples, ... of individuals in the various disease states); system of 10 ODEs (7 for SIR).
 - Amongst other things, they show that rewiring can make the epidemic worse (in terms of R_0 and r) in the SEIR case. *Explanation:* E-I links rewire to E-S, which become I-S after the latent period, facilitating more infection than without rewiring.
- We investigate, for the SIR model,
 - temporal and final size behaviour without rewiring, and
 - some final size properties with rewiring.

¹Britton, Juher & Saldaña (2016).

Front matter 00	Background/Model	CM-SIR with dropping ●○○○○○○○○	with rewiring too	End matter 00
Results I				

- Construct the network and the epidemic at the same time; using an effective degree approach².
- Theory of *density dependent* Markov chains³ yields LLNs and CLTs for many quantities of interest.
- Example 1: Final size Z satisfies, for large outbreaks in large populations of size N,

$$Z \stackrel{D}{\approx} \mathbf{N} \cdot \mathbf{z} + \sqrt{\mathbf{N}} \cdot \mathrm{N}(\mathbf{0}, \sigma^2)$$

with $z \in (0,1)$ and $\sigma^2 > 0$ available theoretically and numerically.

²Ball and Neal (2008).

³Ethier & Kurtz (1986, Chapter 11).

Front matter	Background/Model	CM-SIR with dropping	with rewiring too	End matter 00
Results II				

• Example 2: The number of infectives I(t) ($t \ge 0$) satisfies

$$I(t) \stackrel{D}{\approx} N \cdot x(t) + \sqrt{N} \cdot G(t),$$

with $x(\cdot)$ solving a system of ODEs and $G(\cdot)$ a zero-mean Gaussian process with covariance function computable numerically at the same time as $x(\cdot)$.

- ICs involve starting with a positive fraction of infectives.
- Total of (2M + 4)(2M + 3) ODEs if allowing degrees $\leq M$.
- The system of ODEs underlying $x(\cdot)$ reduces to a single driving ODE⁴.

⁴cf. Volz (2008); Miller, Slim & Volz (2012) when $\omega = 0$

Front matter	Background/Model 00000	CM-SIR with dropping	with rewiring too	End matter 00		
Some numerical illustration						

• Use $D \sim \text{Geo}(1/6)$; has $\mu_D = 5$, $\sigma_D \approx 5.5$.

(Has unbounded degrees, even though theory 'requires' a maximum degree M.)

Front matter 00	Background/Model	CM-SIR with dropping	with rewiring too	End matter 00
Tempora				

Mean and sd of 1000 simulated trajectories of I(t) and CLT predictions. Parameters are N = 1000, $\lambda = 3/2$, $\gamma = 1$, $\omega = 1$, $i_0 = 0.05N$.

Front matter	Background/Model	CM-SIR with dropping	with rewiring too	End matter 00
Exploring	the model			

- The asymptotic results provide good approximations to quantities of interest for finite populations.
- So (with only minor caveats) we can explore the behaviour of the asymptotics to learn about the properties of our model in finite populations with *N* in the hundreds (or larger).

Front matter 00	Background/Model 00000	CM-SIR with dropping	with rewiring too	End matter 00
= ~~	<u> </u>			

Effect of dropping

Front matter	Background/Model 00000	CM-SIR with dropping ○○○○○○●○○	with rewiring too	End matter 00
	C I I			

Effect of graph type

Comparison of final size variability for NSW and MR graphs as dropping rate increases. Baseline model has $\lambda = 3/2$, $\gamma = 1$, $i_0/N = 0$.

Effect of graph type 2

Comparison of final size variability for NSW and MR graphs as dropping rate increases. Baseline model has $\lambda = 3/2$, $\gamma = 1$, $i_0/N = 0$.

00	00000	00000000	00000	00			
Some observations / comments							

- DD theory assumes a positive initial fraction infected; we let this fraction go to zero with initial infectives being chosen UAR, not as those infected by an emerging outbreak⁵.
- DD theory applies only when there is a maximum degree.
 - Bounded degree sufficient for most practical purposes.
 - Would like to extend to unbounded degree $(\exists LLNs \text{ for } \omega = 0 \text{ and a CLT for } \gamma = \omega = 0 \text{ with moment assumptions on } D).$
 - Numerical results support the conjectured extensions.
- Extend to non-Markov case?
- Extend to more complex population structures?

⁵Ball & House (2017).

		the second second second		
00	00000	000000000	0000	00
Front matter	Background/Model	CM-SIR with dropping	with rewiring too	End matter

Our model: CM-SIR with preventive measures

- CM network model, Markov SIR epidemic (so $I \sim \exp(\gamma)$).
- Also let each susceptible neighbour of an infective drop their connection to the infective at rate $\omega \ge 0$.

So infectives

- infect each neighbour at rate λ ,
- recover at rate γ ,
- 'inform' each neighbour at rate ω ,

Additionally:

• With probability α , a susceptible that drops an edge replaces it with an edge to an individual chosen uniformly from the population.

00		000000000000000000000000000000000000000		00			
Social distancing is heneficial							

- Suppose that I'm susceptible and my neighbour 'informs' me that they are infectious; so I drop the edge.
- What can happen next?
 - No rewiring.
 - Rewire to a removed individual.
 - Rewire to a susceptible individual.
 - Rewire to an infectious individual.
 - \implies I might be better off; and I cannot be worse off.
- But is the population as a whole necessarily better off?

Front matter	Background/Model 00000	CM-SIR with dropping	with rewiring too ००●००	End matter 00
Some netw	vorks			

We study this model on:

- The standard CM network.
- A CM network with cliques.
 - In the CM network model, partition the population into groups/cliques of 3 individuals. In addition to CM connections, connect individuals in the same clique.
- Empirical networks.
 - arXiv General Relativity collaboration network and Facebook social circles network⁶.
 - 2 'Infectious sociopatterns' networks, SG1 and SG2⁷.

⁶Leskovec & Krevl (2014).

⁷SocioPatterns collaboration (2011).

Front matter	Background/Model	CM-SIR with dropping	with rewiring too	End matter
00	00000		०००●०	00
Results				

- With CM network structure:
 - Threshold parameter R_0 decreases with ω .
 - $\bullet\,$ The mean final size of a large outbreak can increase with $\omega.$
- With CM network + clique structure:
 - A threshold parameter R_{*} (clique-to-clique reproduction number) can increase with ω; possibly from below to above threshold.
 - But R_* always decreases with ω for sufficiently large ω .
 - The mean final size of a large outbreak can increase with ω (even when R_* doesn't).
- On the empirical networks:
 - We 'usually' observe straightforward 'social distancing helps', but
 - we also observe all possible combinations of these behaviours, for some plausible values of other parameters.

Front matter	Background/Model	CM-SIR with dropping	with rewiring too ○○○○●	End matter		
Some observations/comments II						

- A variety of behaviours of final size properties as dropping is introduced/increased.
- $\bullet\,$ Final size increasing with dropping rate ω is more likely when
 - the 'baseline' epidemic is well above criticality,
 - the network has many individuals of low degree,
 - the network has many components,
 - ${\, \bullet \,}$ the rewiring probability α is higher.

Front matter	Background/Model 00000	CM-SIR with dropping	with rewiring too	End matter ●○
Summary	& future			

- Temporal and final size LLN and CLT for a SIR-CM epidemic with dropping of edges.
- Some interesting behaviour when rewiring is allowed too.
- Further work on the model with rewiring.
- Obvious extensions like households, the non-Markov case, vaccination,

Ball, Britton, Leung and Sirl (2019). A stochastic SIR network epidemic model with preventive dropping of edges. J. Math. Biol. 78:1875–1951.
Leung, Ball, Sirl and Britton (2018). Individual preventive social distancing during an epidemic may have negative population-level outcomes. J. R. Soc. Interface 15:20180296.

Front matter	Background/Model 00000	CM-SIR with dropping	with rewiring too	End matter ○●
Reference	s l			

Ball & Neal (2008). *Math. Biosci.* 212:69–87.

Ball & House (2017). J. Math. Biol. 75:577-619.

Britton, Juher & Saldaña (2016). Bull. Math. Biol. 78:2427-2454.

Ethier & Kurtz (1986). Markov Processes: Characterization and Convergence.

Leskovec & Krevl (2014). http://snap.stanford.edu/data

Miller, Slim & Volz (2012). J. R. Soc. Interface 9:890-906.

The SocioPatterns collaboration (2011).

http://www.sociopatterns.org/datasets/infectious-sociopatterns

Volz (2008). J. Math. Biol. 56:293-310.