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Front matter
°

Motivation

@ Mathematically tractable epidemic models are valuable tools
for understanding, predicting, mitigating, planning, ...in the
context of infectious diseases.

@ Classical models include several assumptions of homogeneity,
many of which are unrealistic.

@ A popular/common /useful /interesting departure from
homogeneous mixing of homogeneous individuals is to
incorporate structure through networks, modelled with
random graphs, to (hopefully) capture population structures
like social networks in human/animal populations, network
connectivity of computers.

@ Such models typically involve an epidemic spreading on a
static network. We investigate a simple model where the
network changes in response to the epidemic.
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Front matter
.

Outline

@ SIR epidemics on a network/graph, in particular a
configuration model random graph.

@ Preventive behaviour during the epidemic:
Individuals can ‘drop’ edges and possibly ‘rewire’ too.

e Without rewiring: results on the mean and variance of the
temporal evolution and final outcome of the epidemic.

e With rewiring: not nearly that much detail, but some
interesting qualitative results.

Ball, Britton, Leung and Sirl (2019). A stochastic SIR network epidemic model
with preventive dropping of edges. J. Math. Biol. 78:1875-1951.

Leung, Ball, Sirl and Britton (2018). Individual preventive social distancing
during an epidemic may have negative population-level outcomes. J. R. Soc.
Interface 15:20180296.
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Background /Model
.

Stochastic SIR epidemic on a network

Given a graph G (undirected), identify nodes with individuals and
edges with ‘friendships’ and define an epidemic model:

SIR (suceptible — infectious — removed) progression.
Initially 1 infectious (chosen UAR) and N — 1 susceptible.

Infectious individuals remain so for a random time distributed
as I, then become removed.

Infectious individuals make contacts with each neighbour in G
at the points of Poisson Processes of rate A > 0; if neighbour
is susceptible it becomes infectious.

Infectious periods and PPs mutually independent.

Continue until no infectious individuals remain.

Classical model has G = Ky, A(M) = A/N. Another simple-ish case
is G = G(N, p). Analysis is typically as N — oo.
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Background /Model
.

Configuration model and SIR epidemics

@ A random graph model with specified degree distribution.

@ Two versions
o Molloy-Reed: prescribed degrees d(™) = (d™)N .
o Newman-Strogatz-Watts: 11D degrees D; ~ D.
Both have the key feature that, asymptotically as N — oo,
the degree of a uniformly chosen node is distributed as some
random variable D. (MR/NSW: same mean, different variability.)

e Construction (NSW): Given N € Z and {pi}32, ~ D,

o Assign D; % D stubs / half-edges to node i =1,2,..., N,
o Pair half-edges UAR to form edges in a graph.

@ Run an SIR epidemic on the graph.

(Possible imperfections; no clustering, no assortativity, . ..)
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Background /Model
.

SIR epidemics on networks: methods/results

o Early stages & Final outcome
o Generation-based (GW) or real-time (CMJ) branching process
approximations for early stages: threshold results and chance
of a large outbreak with few initial infectives.
e Susceptibility sets, generation based approach for investigating
final outcome: mean (and variance) of final size.
@ Full temporal behaviour
o Usually deterministic: mean-field models, pair approximations,
moment closure, . ...
e Varying degrees of rigour and interpretation of ‘approximate’.

@ For the CM-SIR epidemic, quite a bit known in the former
category but in the latter category known results are in the
Markov case and address the mean but not the variability.
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Background/Model
°

Our model: CM-SIR with preventive measures

@ CM network model, SIR progression as before but Markov
(so I ~ exp(7)).

@ Also let each susceptible neighbour of an infective drop their
connection to the infective at rate w > 0.

So infectives
@ infect each neighbour at rate A,
@ recover at rate v,

@ ‘inform’ each neighbour at rate w,

Later:

@ With probability «, a susceptible that drops an edge replaces
it with an edge to an individual chosen uniformly from the
population.
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Analysis of model with dropping

@ Model proposed by Britton et al.l, with SEIR dynamics.

@ Britton et al. analyse the early stages (reproduction number
Ro and Malthusian/exponential growth rate r).

e Branching process approximation.

e Pair approximation (deterministic ODEs for the number of
singletons, pairs, triples, ... of individuals in the various disease
states); system of 10 ODEs (7 for SIR).

e Amongst other things, they show that rewiring can make the
epidemic worse (in terms of Ry and r) in the SEIR case.
Explanation: E-1 links rewire to E-S, which become I-S after the
latent period, facilitating more infection than without rewiring.

o We investigate, for the SIR model,
e temporal and final size behaviour without rewiring, and
e some final size properties with rewiring.

!Britton, Juher & Saldafia (2016).
7/24



CM-SIR with dropping
°

Results |

@ Construct the network and the epidemic at the same time;
using an effective degree approach?.

o Theory of density dependent Markov chains® yields LLNs and
CLTs for many quantities of interest.

@ Example 1: Final size Z satisfies, for large outbreaks in large
populations of size N,

ZRN-z4VN-N(©,0?)

with z € (0,1) and 02 > 0 available theoretically and
numerically.

2Ball and Neal (2008).
3Ethier & Kurtz (1986, Chapter 11).
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CM-SIR with dropping
°

Results |l

@ Example 2: The number of infectives /(t) (t > 0) satisfies

I(t) & N-x(t) + VN - G(¢),

with x(+) solving a system of ODEs and G(-) a zero-mean
Gaussian process with covariance function computable
numerically at the same time as x(-).

e ICs involve starting with a positive fraction of infectives.
o Total of (2M + 4)(2M + 3) ODEs if allowing degrees < M.

o The system of ODEs underlying x(-) reduces to a single driving
ODE*.

“cf. Volz (2008); Miller, Slim & Volz (2012) when w =0
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CM-SIR with dropping
.

Some numerical illustration

@ Use D ~ Geo(1/6); has up =5, op ~ 5.5.

(Has unbounded degrees, even though theory ‘requires’ a maximum
degree M.)
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CM-SIR with dropping
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Temporal CLT
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100 simulated trajectories of /(t) and CLT predictions.
Parameters are N = 1000, A =3/2, vy =1, w =1, iy = 0.05N.
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Temporal CLT 2
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Mean and sd of 1000 simulated trajectories of /(t) and CLT predictions.
Parameters are N = 1000, A =3/2, v =1, w =1, iy = 0.05N.
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CM-SIR with dropping
°

Exploring the model

@ The asymptotic results provide good approximations to
quantities of interest for finite populations.

@ So (with only minor caveats) we can explore the behaviour of
the asymptotics to learn about the properties of our model in
finite populations with N in the hundreds (or larger).
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CM-SIR with dropping
.

Effect of dropping

Impact of increasing the dropping rate w from zero.
Baseline model has A =3/2, v =1, iy/N | 0.
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CM-SIR with dropping
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Effect of graph type
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Comparison of final size variability for NSW and MR graphs as dropping

rate increases. Baseline model has A =3/2, vy =1, ip/N = 0.
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Effect of graph type 2
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Comparison of final size variability for NSW and MR graphs as dropping

rate increases. Baseline model has A =3/2, vy =1, ip/N = 0.
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CM-SIR with dropping
°

Some observations/comments

@ DD theory assumes a positive initial fraction infected; we let
this fraction go to zero with initial infectives being chosen
UAR, not as those infected by an emerging outbreak®.

@ DD theory applies only when there is a maximum degree.

e Bounded degree sufficient for most practical purposes.
e Would like to extend to unbounded degree

(3 LLNs for w =0 and a CLT for y =w =0

with moment assumptions on D).
o Numerical results support the conjectured extensions.

@ Extend to non-Markov case?

@ Extend to more complex population structures?

®Ball & House (2017).
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... with rewiring too
°

Our model: CM-SIR with preventive measures

@ CM network model, Markov SIR epidemic (so / ~ exp(7)).

@ Also let each susceptible neighbour of an infective drop their
connection to the infective at rate w > 0.

So infectives
@ infect each neighbour at rate A,
@ recover at rate -,

@ ‘inform’ each neighbour at rate w,

Additionally:

@ With probability «, a susceptible that drops an edge replaces
it with an edge to an individual chosen uniformly from the
population.
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... with rewiring too
°

Social distancing is beneficial...

@ Suppose that I'm susceptible and my neighbour ‘informs’ me
that they are infectious; so | drop the edge.

@ What can happen next?

No rewiring.

Rewire to a removed individual.
Rewire to a susceptible individual.
Rewire to an infectious individual.

= | might be better off; and | cannot be worse off.

@ But is the population as a whole necessarily better off?
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... with rewiring too
°

Some networks

We study this model on:

@ The standard CM network.
@ A CM network with cliques.
o In the CM network model, partition the population into

groups/cliques of 3 individuals. In addition to CM connections,
connect individuals in the same clique.

@ Empirical networks.

e arXiv General Relativity collaboration network
and Facebook social circles network®.
o 2 ‘Infectious sociopatterns' networks, SG1 and SG27.

®leskovec & Krevl (2014).
"SocioPatterns collaboration (2011).
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... with rewiring too
°

Results

@ With CM network structure:

e Threshold parameter Ry decreases with w.
e The mean final size of a large outbreak can increase with w.

e With CM network + clique structure:
o A threshold parameter R, (clique-to-clique reproduction
number) can increase with w;
possibly from below to above threshold.
e But R, always decreases with w for sufficiently large w.

o The mean final size of a large outbreak can increase with w
(even when R, doesn't).

@ On the empirical networks:

o We ‘usually’ observe straightforward ‘social distancing helps’,
but

e we also observe all possible combinations of these behaviours,
for some plausible values of other parameters.
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... with rewiring too
.

Some observations/comments |l

@ A variety of behaviours of final size properties as dropping is
introduced /increased.
@ Final size increasing with dropping rate w is more likely when

the ‘baseline’ epidemic is well above criticality,
the network has many individuals of low degree,
the network has many components,

the rewiring probability « is higher.
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End matter
°

Summary & future

@ Temporal and final size LLN and CLT for a SIR-CM epidemic
with dropping of edges.

@ Some interesting behaviour when rewiring is allowed too.

@ Further work on the model with rewiring.

@ Obvious extensions like households, the non-Markov case,
vaccination, . ...

Ball, Britton, Leung and Sirl (2019). A stochastic SIR network
epidemic model with preventive dropping of edges. J. Math. Biol.
78:1875-1951.

Leung, Ball, Sirl and Britton (2018). Individual preventive social
distancing during an epidemic may have negative population-level
outcomes. J. R. Soc. Interface 15:20180296.
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