Piecewise Approximate Bayesian Computation (PW–ABC)

Fast inference for discretely observed Markov models

Theo Kypraios

http://www.maths.nott.ac.uk/~tk

Department of Mathematics and Statistics, Lancaster University
Joint work:

- Simon Preston (University of Nottingham)
- Simon White (Biostatistics Unit, MRC @ Cambridge)

Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution

S. R. White, T. Kypraios, S. P. Preston

Funding:

The University of Nottingham

THE ROYAL SOCIETY

EPSRC
Engineering and Physical Sciences Research Council
A Motivating Example: Lotka–Volterra

Suppose our data are a set of observations denoted \(\mathcal{X} = \{x_1, \ldots, x_n\} = \{x(t_1), \ldots, x(t_n)\} \) of state variable \(x \in \mathbb{R}^m \) at time points \(t_1, \ldots, t_n \).
Motivation:

1. Given some observed data . . .

2. . . . that we assume to have been generated by a (stochastic) model, for example . . .

\[Y_1 \xrightarrow{r_1} 2Y_1, \quad Y_1 + Y_2 \xrightarrow{r_3} 2Y_2, \quad Y_2 \xrightarrow{r_3} \emptyset, \quad (1) \]

which respectively represent prey birth, predation and predator death.

3. . . . we wish to make inference for the model parameters \((r_1, r_2, r_3)\).
Motivation:

1. Given some observed data . . .

2. . . . that we assume to have been generated by a (stochastic) model, for example . . .

\[Y_1 \xrightarrow{r_1} 2 Y_1, \quad Y_1 + Y_2 \xrightarrow{r_3} 2 Y_2, \quad Y_2 \xrightarrow{r_3} \emptyset, \quad (1) \]

which respectively represent prey birth, predation and predator death.

3. . . . we wish to make inference for the model parameters \((r_1, r_2, r_3)\).
Motivation:

1. Given some observed data . . .

2. . . . that we assume to have been generated by a (stochastic) model, for example . . .

\[Y_1 \xrightarrow{r_1} 2 Y_1, \quad Y_1 + Y_2 \xrightarrow{r_2} 2 Y_2, \quad Y_2 \xrightarrow{r_3} \emptyset, \quad (1) \]

which respectively represent prey birth, predation and predator death.

3. . . . we wish to make inference for the model parameters \((r_1, r_2, r_3)\).
Denote by X our observed data and by θ the parameter(s) of interest.

If we were to employ a maximum likelihood approach then we must be able to write down/evaluate the likelihood $\pi(X|\theta)$ i.e. the probability of observing the data X (what we have observed) for all parameter values θ . . .

. . . and then find which parameter(s) θ maximise the likelihood.

Use asymptotic theory and obtain (approximate) confidence intervals to quantify uncertainty around θ.
Denote by \mathcal{X} our observed data and by θ the parameter(s) of interest.

If we were to employ a maximum likelihood approach then we must be able to write down/evaluate the likelihood $\pi(\mathcal{X} | \theta)$ i.e. the probability of observing the data \mathcal{X} (what we have observed) for all parameter values θ ...

... and then find which parameter(s) θ maximise the likelihood.

Use asymptotic theory and obtain (approximate) confidence intervals to quantify uncertainty around θ.
Interested in cases where conventional methods fail simply don’t work, for example:
- intractable likelihood;
- likelihood is costly to compute;
- …

Idea: Explore model dynamics to design efficient designing new methods/algorithms.

For the purposes of this talk we adopt a Bayesian framework.
Suppose we have discrete data \mathcal{X}, prior $\pi(\theta)$ for parameter(s) θ; interested in the posterior, $\pi(\theta|\mathcal{X})$.

Consider the following algorithm:

Algorithm 1

Exact Bayesian Computation (EBC)

1: Sample θ^* from $\pi(\theta)$.
2: Accept θ^* with probability equal to $\pi(\mathcal{X}|\theta^*)$
3: Repeat.

* The accepted values will be (exact) draws from $\pi(\theta|\mathcal{X})$.

* Note that this algorithm requires that we are able to compute the likelihood, $\pi(\mathcal{X}|\theta)$, for any θ (Step 2).
Consider the following algorithm1:

Algorithm 2

Exact Bayesian Computation (EBC)

1: Sample θ^* from $\pi(\theta)$.
2: Simulate dataset x^* from the model using parameters θ^*.
3: Accept θ^* if $x^* = x$, otherwise reject.
4: Repeat.

* Algorithm 2 is equivalent to Algorithm 1 and evaluating $\pi(X|\theta)$ \iff simulate an event which occurs with that probability.

* That means that the calculation of the likelihood is unnecessary as long as we can simulate from our stochastic model.

Algorithm 2 is only of practical use if \mathcal{X} is discrete, else the acceptance probability in Step 3 is zero.

For continuous distributions Pritchard et al. (1999) suggested the following algorithm:

Algorithm 3

Approximate Bayesian Computation (ABC)

As Algorithm 2, but with step 3 replaced by:

3′: Accept θ^* if $d(s(\mathcal{X}'), s(\mathcal{X}^*)) \leq \varepsilon$, otherwise reject.

where $d(\cdot, \cdot)$ is a distance function, usually taken to be the L^2-norm of the difference between its arguments; $s(\cdot)$ is a function of the data; and ε is a tolerance.
In practice iss rarely possible to use an $s(\cdot)$ which is sufficient, or to take ε especially small (or zero).

ABC requires a careful choice of $s(\cdot)$ and ε to make the acceptance rate tolerably large, at the same time as trying not to make the ABC posterior too different from the true posterior, $\pi(\theta|X)$.

Over the last decade, a wide range of extensions to the original ABC algorithm have been developed (MCMC-ABC, SMC-ABC, Semi-Automatic ABC . . .)

. . . , however, computational cost remains a central issue since it determines the balance that can be made between Monte Carlo error/bias (via summary stats).
Interested in exploring cases (i.e. models/data) and methods where ideally, exact Monte-Carlo inference can be drawn in practice without having to compute likelihoods either because it is

- too expensive to compute
- or, intractable;

or, difficult to maximise or sample from the posterior distribution of interest.

If exact inference seems infeasible → efficient, but approximate likelihood-free inference.

A guiding principle is to take every opportunity to exploit model structure to minimize computational costs.
The Markov property enables the likelihood to be written as

$$\pi(\mathcal{X}|\theta) = \pi(x_1, x_2, \ldots, x_n|\theta)$$

$$\pi(\mathcal{X}|\theta) = \pi(x_1|\theta) \left(\prod_{i=2}^{n} \pi(x_i|x_{i-1}, \ldots, x_1, \theta) \right)$$

$$= \pi(x_1|\theta) \left(\prod_{i=2}^{n} \pi(x_i|x_{i-1}, \theta) \right), \quad (2)$$

if n is large then we can ignore the contribution of the first data point (x_1) to the likelihood, and write

$$\pi(\mathcal{X}|\theta) = \prod_{i=2}^{n} \pi(x_i|x_{i-1}, \theta)$$
Hence the posterior as

\[\pi(\theta | \mathcal{X}) \propto \pi(\theta) \cdot \pi(\mathcal{X} | \theta) \]

\[\propto \pi(\theta) \cdot \prod_{i=2}^{n} \pi(x_i | x_{i-1}, \theta) \]

\[\propto \pi(\theta) \cdot \prod_{i=2}^{n} \left(\frac{\pi(x_i | x_{i-1}, \theta)\pi(\theta)}{\pi(\theta)} \right) \]

\[\propto \pi(\theta)^{(2-n)} \prod_{i=2}^{n} \pi(x_i | x_{i-1}, \theta)\pi(\theta) \]

\[\propto \pi(\theta)^{(2-n)} \prod_{i=2}^{n} \phi_i(\theta). \]

where

\[\phi_i(\theta) = c_i^{-1} \pi(x_i | x_{i-1})\pi(\theta) \]

\[c_i = \int \pi(x_i | x_{i-1})\pi(\theta) \, d\theta \text{ [normalising constant]} \]

[don’t have to necessarily use \(\pi(\theta) \) here!]
Essentially, the density of the posterior distribution of interest, $\pi(\theta|X)$, has been decomposed into a product involving densities $\phi_i(\theta)$, each of which depends only on a pair of data points $\{x_{i-1}, x_i\}$:

$$\pi(\theta|X) \propto \pi(\theta)^{(2-n)} \prod_{i=2}^{n} \phi_i(\theta)$$

(3)

where $\phi_i(\theta) = c_i^{-1}\pi(x_i|x_{i-1})\pi(\theta)$.

- If $\pi(x_i|x_{i-1}, \theta)$ is not available/intractable/difficult to compute then so $\phi_i(\theta)$ is and decomposing $\pi(\theta|X)$ will not be of much help.

- However, if we can simulate from each distribution with density $\propto \phi_i(\theta)$, i.e. simulate $x_i|x_{i-1}$, then it turns out that we can recover the posterior density, $\pi(\theta|X)$.
Although the transition density $\pi(x_i|x_{i-1})$ might be intractable, we can draw samples from each density

$$\phi_i(\theta) \propto \pi(\theta)\pi(x_i|x_{i-1}, \theta), \quad i = 2, \ldots n.$$ using the following algorithm:

Algorithm 4 : EBC (ABC) within each interval

1: Sample θ^* from $\pi(\theta)$.
2: Simulate $x_i^*|x_{i-1}$ from the model using θ^*.
3: Accept θ^* if $x_i = x_i^*$ (or $d(s(x_i), s(x_i^*)) \leq \varepsilon$), otherwise reject.
4: Repeat.

In other words, apply (independent) EBC/ABC for each pair/interval (x_i, x_{i-1}) to draw from each density $\phi_i(\theta)$.
Algorithm 5 Piece-Wise Approximate Bayesian Computation

for $i = 2$ to n do

a: Apply the ABC Algorithm to draw m approximate (or exact, if $s(\cdot) = \text{Identity}(\cdot)$ and $\varepsilon = 0$) samples from $\tilde{\phi}_i(\theta)$;

b: Using the samples calculate a density estimate, $\hat{\phi}_i(\theta)$, of $\tilde{\phi}_i(\theta)$.

end for

Substitute the density estimates $\hat{\phi}_i(\theta)$ into (19) to calculate an estimate, $\hat{\pi}(\theta|x)$, of $\pi(\theta|x)$.
The rationale of the piecewise approach is to reduce the dimension for ABC . . .

. . . replacing a high-dimensional problem with multiple low-dimensional ones.

In standard ABC the summary statistic, $s(\cdot)$, is the tool used to reduce the dimension.

In PW-ABC, with dimension already reduced by the factorisation in (3), we can take $s(\cdot) = \text{Identity}(\cdot)$ and typically use a much smaller ε.
How to Compute the Density Estimates $\hat{\phi}_i(\theta)$?

Recall that the full posterior distribution of the parameters has been re-written as

$$\pi(\theta|\mathcal{X}) \propto \pi(\theta)^{(2-n)} \prod_{i=2}^{n} \phi_i(\theta)$$

However, the question remains of how to calculate the density estimates, $\hat{\phi}_i(\theta)$.

We propose two approaches:

1. using a Gaussian approximation,
2. using a kernel density estimate.
This approach requires a kernel density estimation (KDE) on each \(\phi_i(\theta) \) . . .

. . . and then multiplying the KDEs pointwise adjusting for the \((n - 2)\) prior densities.

In principle this should work . . . and it does work, as long as you are careful and you have a descent number of posterior samples in each interval! [marginal likelihood]
KDEs can be hard to deal with; especially in high dimensions!

Alternatively, we could approximate each $\phi_i(\theta)$ with a (multivariate) Gaussian distribution

$$\hat{\phi}_i(\theta) = \text{MVN}(\mu_i, \Sigma_i)$$

where μ_i and Σ_i could be the sample mean and the sample variance-covariance matrix;

Take advantage of the appealing property that the product

$$\prod_{i=2}^{n} \hat{\phi}_i(\theta)$$

leads to another Gaussian density too . . . ,

. . . which combined with $(n - 2)$ (Gaussian) prior densities leads, finally, to a Gaussian approximation to the full posterior density $\pi(\theta|X)$.

As a by-product we get the marginal likelihood $\pi(X)$ which can be used for model choice.
KDEs are known to perform poorly on bounded supports → transform the parameters (θ).

Which Kernel to use?

We follow Fukunaga (1972) “sphering approach” which selects the bandwidth so that the shape of the kernel mimics the shape of the sample;

Easy to select an “optimal” bandwidth when doing KDE in each interval, but not so easy when looking at the product of KDEs.

The Gaussian approximation to each $\phi_i(\theta)$ may not be necessarily good and this will lead to biased estimates $\pi(\theta|\mathcal{X})$.
Applications
Consider the following integer-valued autoregressive model of order 1, known as INAR(1) [Al-Osh and Alzaid, 1987],:

\[X_t = \alpha \circ X_{t-i} + Z_t, \quad t \in \mathbb{Z}, \]

where \(Z_t \) are i.i.d. integer-valued random variables and assumed to be independent of the \(X_t \).

The operator \(\alpha \circ \) denotes binomial thinning defined by

\[\alpha \circ W = \begin{cases}
\text{Binomial}(W, \alpha), & W > 0, \\
0, & W = 0,
\end{cases} \]

This model falls into the class of models that one can take advantage of Piecewise approaches.
We generated 100 observations from an INAR(1) process using parameters \(\theta = (\alpha, \lambda) = (0.7, 1) \) and \(X(0) = 2 \).

We make inference on the transformed parameters \(\tilde{\alpha} = \logit(\alpha) = \log(\alpha) - \log(1 - \alpha) \) and \(\tilde{\lambda} = \log(\lambda) \) . . .

. . . with priors of \(\text{Norm}(0, 3^2) \) on the transformed parameters.

For the EBC algorithm (on the whole dataset) the probability of acceptance is around \(10^{-100} \), which is prohibitively small.

Even the ABC algorithm requires a value of \(\epsilon \) so large that sequential approaches are needed, e.g. SMC-ABC, [Toni et al., 2009].
The INAR Dataset
PWEBC on INAR Models
(Gaussian)PW-EBC Does Not Seem to Work
The CIR model is a stochastic differential equation (SDE) describing evolution of an interest rate, $X(t)$:

$$dX(t) = a(b - X(t))dt + \sigma \sqrt{X(t)}dW(t),$$

where a, b and σ respectively determine the reversion speed, long-run value and volatility, and $W(t)$ denotes a standard Brownian motion.

The density of $X(t_i)|X(t_j)$, a, b, σ $(t_i > t_j)$ is a non-central chi-square and hence the likelihood is known in closed form.

This example allows to illustrate the use of PW-ABC in the context of continuous data.
We generated $n = 10$ equally spaced observations from a CIR process with parameters $(a, b, \sigma) = (0.5, 1, 0.15)$ and $X(0) = 1$ on the interval $t \in [0, 4.5]$.

Treating a and σ as known, we performed inference on the transformed parameter $\theta = \log(b)$ with a Uniform prior on the interval $(-5, 2)$.

Using $\varepsilon = 10^{-2}$ we drew samples of size $m = 10,000$ for each $\varphi_i(\theta), \ i = 1, \ldots, 9$, achieving acceptance rates around 1.5% on average.
The Figure below shows how the posterior density targeted by PW-ABC depends on ε, and how it converges to the true posterior density as $\varepsilon \to 0$.
The stochastic(LV) model is a model of predator–prey dynamics.

Let Y_1 and Y_2 denote the number of prey and predators respectively, and suppose Y_1 and Y_2 are subject to the following reactions

$$Y_1 \xrightarrow{r_1} 2Y_1, \quad Y_1 + Y_2 \xrightarrow{r_2} 2Y_2, \quad Y_2 \xrightarrow{r_3} \emptyset,$$

which respectively represent prey birth, predation and predator death.

We wish to make inference for vector of rates $\mathbf{r} = (r_1, r_2, r_3)$.
Likelihood-Based Inference for the LV model

- Inference is simple if the type and precise time of each reaction is observed.

- However, a more common setting is where the population sizes are only observed at discrete time points → likelihood is not available.

- Reversible-Jump MCMC has been developed in this context [e.g. Boys et al., 2008] but require considerable expertise to implement.

- Other approaches include model approximations using SDEs (e.g. Golightly and Wilkinson 2006, 2007) and more recently, Particle MCMC (Wilkinson, 2012)

- On the other hand, simulating realizations from this model is straightforward (e.g. using the Gillespie algorithm).
PW-EBC vs Particle MCMC (sd=2)
Conclusions – Future Work

- PW–ABC takes advantage of the model’s dynamics → inference.

- If $\pi(\theta)$ is too uninformative then PW–ABC will suffer from the same problems as (standard) ABC → use SMC–ABC within each interval.

- PW–SMC–ABC?

- Use a mixture of Gaussians – For efficiency, use some sort of sparsity–induced priors.

- Scope for the theoretical development on the choice of bandwidth for products of KDES.

Suppose that x follow as a distribution whose density

$$p(x) = \prod_{i=1}^{n} p_i(x)$$

where

- we know how to sample from each $p_i(x), \quad i = 1, \ldots, n$
- but we don’t have an explicit expression for $p_i(x)$.

Is it possible to (efficiently) draw samples from $p(x)$?