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Abstract. A quantum stochastic model for an open dynamical system (quan-
tum receiver) and output multi-channel of observation with an additive nonva-
cuum quantum noise is given. A Master equation for the moment generating
operator of the corresponding instrument is derived and quantum stochastic
�ltering equations both for the Heisenberg operators and the reduced density
matrix of the system under the nondemolition observation are found. Thus
the dynamical problem of quantum �ltering is generalized for a noncommu-
tative output process, and a quantum stochastic model and optimal �ltering
equation for the dynamical estimation of an input Markovian process is found.
The results are illustrated on an example of optimal estimation of an input
Gaussian di¤usion signal, an unknown gravitational force say in a quantum
optical or Weber�s antenna for detection and �ltering a gravitational waves.

Introduction. The time evolution of quantum system under a continuous ob-
servation can be obtained in the frame work of quantum stochastic (QS) calculus
of output nondemolition processes, �rstly introduced in [2] and recently developed
in a quite general form in [11, 3, 4, 1, 5]. A stochastic posterior Schrödinger wave
equation for an observed spinless particle derived in [4] by using the quantum �l-
tering method [5], provided an explanation of the quantum Zeno paradox [7, 9].
In this paper we give a derivation of the reduced wave equation for a Markovian
open system described by Heisenberg quantum stochastic operators X (t) with re-
spect to noncommuting Bose output �elds Y (s) ; s 2 R+ which are assumed to
be nondemolition in the sense [4, 1, 5] of the commutativity [X(t); Y (s)] = 0 at
each time t � s. We shall obtain it by a non�unitary dilation of the characteristic
operator of an instrument for the observable output process, but in contrast to [6]
we restrict ourselves to the di¤usion observation, i.e. to a continuous nondemo-
lition measurement of a quantum Brownian motion. This gives the possibility to
solve the dynamical problems of quantum detection and estimation theory [12] as
demonstrated in an example.

1. The dynamical model

We are going to describe a dynamical model for continuous in time indirect
nondemolition observation of an arbitrary family Q = (Q1; : : : ; Qn) of Hermitian
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operators Qj = Qyj , acting in initial Hilbert space H0 of an open quantum system
(antenna), with additive ��correlated Bose type quantum error-noises in linear n-
dimensional output channel of observation ej(t); j = 1; : : : ; n. We shall describe the
output quantum error-noise e(t) = (e1; : : : ; en) (t) by the components evi (t) = ei (t)
of a quantum stochastic process which is opposite, or inverse to an input quantum
noise v� = (vi) of the same or higher dimensionalitym � n. The total quantum out-
put noise ev� = (evi) as the opposite to v� can be de�ned as a compatible (commuting
with v�) but maximaly closed (maximally entangled with v�) quantum stochastic
process ev� which simply coincides with the input v� if it is is self-compatible, i.e. is
classical, having all commutig components vi.
Let us describe the quantum input noise v� by the classical white noise compo-

nents vi(t) represented by noncommuting Hermitian operator-valued distributions
vi = vi

y. They are completely determined in a quantum Gaussian state by the �rst
and second moments

(1.1) hvi(t)i = 0; hvi(t)vk(t0)i = �ik�(t
0 � t):

Here �ik are complex elements of a Hermitian-positve matrix � = [�ik] of the
same or higher dimensionality m � n, with imaginary part Im� de�ning the Bose
commutation relations

[vi (t) ; vk (t
0)] = 2i Im�ik� (t� t0) 1 ; 2i Im�ik = �ik � �ik;

such that complex conjugate components �ij = �ji � e�ij de�ne the intensity
covariance matrix e� = [e�ij ] of the output noise ev� = (evi) :

hevi(t)evk(t0)i = e�ik�(t� t0); [evi (t0) ; evk (t)] = 2i Im e�ik0� (t� t0) 1
as transposed (or complex conjugate, � = e�) to �. Thus all output components evi
commute with all input components vk, and ev must also be maximally correlated
with v in the sense that the intensities 
jk of real covariances

hevi(t)vk(t0)i = 
ik�(t� t0) = 
ki�(t
0 � t) = hvk(t)evi(t0)i

are the elements of a symmetric m � m-matrix 
 = [
ik] as the geometric mean

 = (� � e�)1=2. The geometric mean with e� for an invertible � is de�ned as a
Hermitian-positive matrix 
 such that e� = 
��1
. The matix 
 is symmetric and
invertible, with the inverse 
�1 =

�

ik
�
determining the inverse matrix ��1 as the

intensity matrix ��1 = 
�1e�
�1 � he�iki for the covariances
hevi(t)evk(t0)i = e�ik�(t� t0); [evi (t) ; evk (t0)] = 2i Im e�ik� (t� t0) 1

of the contravariant components evi (t) = 
i;�ev� (t) for the output noise ev� (t). (We
assume that Hermitian matrix � = [�ik] is strictly positive, with the inverse ��1 =he�iki corresponding to a �nite temperature of the output quantum noise ev� = �evi�).
As usual the operator-valued distributions vi (t) can be described as general-

ized derivatives vi (t) = d
dtv

t
i of quantum Wiener vector-process vt� represented by

selfadjoint quantum stochastic integrators vti = vtyj with v0j = 0 and independent
increments dvtj = vt+dtj � vtj satisfying the multiplication table dv

t
idv

t
k = �ikdt

which is noncommutative if Im�ik 6= 0. Assuming for simplicity that matrix �
commutes with the transposed e� one can realize such quantum Wiener noise with
respect to the faithful state given by the vacuum vector �; in a Fock space F as
vtj = �atj + �a

t
j
y � 2<�atj , the doubled Hermitian parts of the linear combinations
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�at� = �1=2a�t. Here a
k
t are the canonical annihilation integrators which are adjoint to

the creation operators atj
y in the intervals [0; t) de�ned on the symmetrical tensors

over the complex vector-functions ��(t) = [�1; �2; : : :] (t) with

(��j��) =
X
ik

Z
�(t)�(t)dt �k � k2<1

as the symmetric tensor multiplication by the indicator function 1[0;t). The canon-
ical commutation relations

(1.2) [a(��� ); a
y(�0�)] = (��j�0�) ; [a(��); a(�0�)] = 0

then are realized by the quantum stochastic integrals a(��� ) =
R
��k(t)da

k
t , a

y(��) =

a(��� )
y. (We use Einstein notations for the convolution ��k�

k =
P
��k�

k over the
indices k = 1; 2; : : : in contrast to the scalar product notations � ��� for the �nite
sums

Pn
j=1 �

j ��j , and omit the identity operator 1).

The output vector-process _Y (t) = Q(t) + I0 
 e(t), de�ned by the integrals

(1.3) Yj(t) =

Z t

0

Qj(r)dr + I0 
 etj ; j = 1; : : : ; n

of the Heisenberg operators Qj(t) = U(t)y (Qj 
 1)U(t), can be realized for a singu-
lar coupling of the system with Bose �elds akt by the output observables e

t
j = 2<âtj ,

ât� = e�1=2a�t in the interaction picture
(1.4) Yj(t) = U(t)y

�
I0 
 etj

�
U(t) = 2<Bj(t);

where Bj(t) = U(t)y(I 
 atj)U(t) are the annihilation output processes, introduced
in [11, 3, 4, 1], and I0 is the identity operator in H0. The unitary evolution U(t)
will be described on the tensor product H = H0
F� by a Schrödinger-Itô quantum
stochastic equation [14]

(1.5) dU(t) +KU(t)dt = i

�
1

~
Q
 df (#t)� 2=(Lyk 
 d�a

k
t )

�
U(t);

in terms of the input integrators �a�t = e��1=2a�t = 
�1�at� , where Lk; k = 1; 2; ::: are
the operators in H0 with Lj + L

y
j = Qj ; j = 1; : : : ; n,

K =
1

2
(
�2

~2
Q2f 0 (#t)

2
+ Lyi�

ikLk) +
i

~
H;

f 0(#) = d
d# f(#), H = Hy is a Hamiltonian of the system, andQ = Qy is an operator

in H0 of a generalized coordinate conjugate to the generalized force f (t) = d
dtf (#t)

depending on an independent input di¤usive signal #t, the random position of a
gravitational source say, with (d#t)2 = �2dt. Note that in the case Lk = Lyk this
equation can be written as

dU(t) +KU(t)dt =
i

~

�
Q
 df (#t) +Qk 
 dfkt

�
U(t)

in terms of the integrators fkt = �~=�akt of quantum Langevin forces fk (t) = d
dt f

k
t

satisfying the canonical commutation relations�
ej (t

0) ; fi (t)
�
=
~
i
�ij� (t� t0) ; [fi (t) ; fk (t0)] = i

~2

2
Im�ik� (t� t0)
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corresponding to noncommutative multiplication tables

detjdf
k
t =

~
2i
�kjdt; dfitdf

k
t =

�
~
2

�2
�ikdt;

including e�i;0 = (2�f 0=~)2 �i0 for f0t = f (#t).
The solution t 7! U(t) of the equation (1.4) for U(0) = I is adaptive U(s) =

Us
I[s with respect to the tensor decompositionH = Hs
F[s, whereHs = H0
Fs
and Fs; F[s are the Fock spaces, generated by the vector�function with �s(t) =
0; 8t � s and �[s(t) = 0; t < s respectively. Hence (I0 
 esj)U(t) = U(t)Yj(s) for
any s � t, and

[Yj(s); Yk(t)] = U(t)y(I0 
 [2<âsi ; 2<âtk])U(t) = 2is Im e�jkI
[Yj(s); X(t)] = U(t)y[I0 
 esj ; X 
 1]U(t) = 0; 8s � t(1.6)

for any operator X(t) = U(t)y(X 
 1)U(t) of the system in the Heisenberg picture.
This proves the nondemolition property of any observable process Yj(t) with respect
to the system. It was introduced as the nondemolition causality principle for the
output quantum processes in [2, 11]. Using the quantum Itô formula (1.4) for [4]
with dej = 2<dâj and multiplication table

(1.7) d�aitd�a
ky
t = �ikdt; d�aitdâ

ty
k = �ikdt; dâ

t
idâ

ty
k = e�ikdt

with all other products being zero, one can derive the equation (1.3): dY (t) =
Q(t)dt+ I0 
 de(t), where Q(t) = [Q1; : : : ; Qn](t), Qj(t) = U(t)y(Lj + L

y
j)U(t).

Theorem 1. Let us suppose that the input real�valued signal #t satis�es the sto-
chastic di¤erential equation

(1.8) d#t + �(#t)dt = �dwt;

where wt is an independent standard Wiener process, de�ned by the moments:
hwti = 0; hwswti = s for any s � t with respect to the vacuum state as wt = 2<a0t
for the canonical annihilation integrator a0t in the Fock space F . Then any twice
di¤erentiable in the strong operator topology function X : # 2 R 7! X(#) 2 B(H0)

in the Heisenberg picture X(t) = Xt(#t), where Xt = U (t)
y
XU (t), satis�es the

following quantum stochastic Langevin equation

dX(t) +

�
��X(t) +

i

~
[X (t) ;H (t)]� 1

2
�2�2X(t)� ��tL [X (t)]

�
dt

= [X(t); 2<Ltk]

i

~
dfkt + [X(t); i=Ltk]
 dvkt + ��X(t)
 dwt:(1.9)

Here vit = 2<�ait = 
ikvtk; �X(#) = X 0(#) + f 0 (#) [X(#); i~Q], X
0(#) = d

d# X(#)
and

(1.10) ��tL [X
t(#)] =

1

2

mX
i;k�1

�ik(Ltyi [X
t(#); Ltk] + [L

ty
i ; X

t(#)]Ltk):

2. The reduced evolution

Let A denote the input-system algebra which is assumed to be the von Neumann
algebra of all essentially bounded operator-valued functions X : # 2 R 7! X(#) 2
B(H0), b̂t � B (Ft) be von Neumann subalgebra generated by the error-noises
fes1; : : : ; esng for all s 2 [0; t), and Gt � Ft be subspace generated by b̂t on the
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vacuum �; 2 Ft for each t > 0, where Ft are Fock subspaces generated on �;
by all input processes vis, ws or, equivalently, by forces

�
f0s ; f

1
s ; : : :

�
up to time

t. The increasing family
n
b̂t : t > 0

o
with respect to the output states induced

by  (t) = U (t) ( 0 
 �;) 2 Ft,  0 2 H0 will be called the output �ltration in
the Schrödinger picture; It is equivalent to the Heisenberg �ltration fBt; t > 0g
with Bt � A 
 B (Ft) generated by the output family fY1 (s) ; : : : ; Yn (s)g for all
s 2 [0; t) with respect to the initial states induced by  (0) =  0 
 �;, since
Uyt Yj (s)Ut = I0 
 esj with U

y
t = U (t) jHt for any s � t. The �ltered dynamics of a

quantum stochastic system, described in the Heisenberg picture by homomorphisms
X (t) = UtXU

y
t of A 3 X into A 
 B (Ft), is de�ned by the cocycle of CP maps

��t : A ! A
 �̀t, where �̀t are (unbounded) commutants of b̂t on Gt, such that these
dynamics induce the same input-output states on A
 b̂t with respect to the initial
vacuum state:

(2.1) �;

h
��t [X]

�
I0 
 b̂

�i
= �;

h
Ut

�
X (#t)
 b̂

�
Uyt

i
for all X 2 A and b̂ 2 b̂t. Here �; [�] = (I0 
 ��;) [�] (I0 
 �;) is the vacuum (condi-
tional) expectation A
 B (F)! A such that the composition � � �; � �; � � with
any normal state � on A is the product state �
 �;.
Since each ��t is normalized as ��t (I0) = �Pt to a positive element �Pt 2 A
 �̀

t

de�ning typically unbounded density operator �pt = �
�
�Pt
�
2 �̀t for the output state

&t

�
b̂
�
= �

�
�;

h
Ut

�
I0 
 b̂

�
Uyt

i�
= �;

h
b̂�pt

i
with respect to the input state �;

h
b̂
i
on the algebra b̂t, it is necessary to give a

more precise meaning of the unbounded commutant �̀t of b̂t.
First of all let us note that due to the nondegeneracy of the covariance matrix-

function [e�jj0 min fs; s0g] of es : s < t for each t > 0, the cyclic representation b̂tjGt
on the minimal invariant subspace Gt containing �; is faithful in the sense that b̂ = 0
in b̂t if b̂�; = 0 in Ft. Therefore b̂t is transposed to its bounded commutant b̂0t,
coinciding with �bt = J b̂tJ , where J is a standard isometric involution de�ning the
transposition b̂t ! �bt by b̂0t = J�bytJ common for all subspaces Gt. Moreover, the von
Neumann algebras b̂t and b̂0t are in one-to-one correspondence with the achieved
Tomita algebras bt = �bt�;, b0t = b̂t�; [15] as dense subspaces of b = b̂0�;, b0 = b̂�; in
Gt, where �b = Jb̂yJ , b̂ 2 b̂t, with common identity 1 := �;, involutions b] := �by�;,

b0[ := b̂y�; such that b]0 = b0[ and the norm k b k1:=


�b

 = 


b̂


 �k b0 k1.

Let us de�ne a dual space `t to the Banach algebra b0t as the completion of
bt � Gt with respect to the dual norm

k a k1= supf
��(b0; a);�� : b 2 b0t; k b0 k1� 1g � k�ak� ;

where the bilinear form is the standard pairing of bt and b0t,

(2.2) (b0; a); := �;

h
b̂�a
i
�
D
b̂; �a
E
;
;

which we will extend by continuity on all a 2 `t � bt. Thus the co-algebra �̀t
of the operator algebra b̂t can be described as the Banach space of operators �a :
b0 7! b̂a, mapping b0t � Gt into `t � Gt, bounded with respect to the predual norm
k�ak� =k a k1. This space is a linear span of positive cone

�
�p 2 �̀t : �p � 0

	
such
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that
D
b̂yb̂; �p

E
;
� 0 for all b̂ 2 b̂t, and therefore is invariant under the right and left

action �p 7! �by�p�b of �bt which is de�ned as the dual to the selfaction q̂ 7! b̂yq̂b̂ on b̂t,

(2.3)


q̂;�by�p�b

�
; =

D
b̂yq̂b̂; �p

E
;

8q̂ 2 b̂t; �p 2 �bt

extending the transposed selfaction on �bt by �b = Jb̂yJ for all b̂ 2 b̂t. The coalgebra
�̀
t is also equipped with involution �a 7! �ay de�ned by �ayb0 = b̂a];8�a 2 �̀t such that
hb0; a]i = hb̂; �ayi;, and with the identity �1 = 1̂, corresponding to the vacuum state

�;

�
b̂
�
= hb̂; �1i;. Note that the elements �a 2 �̀ obviously commute with b̂ 2 b̂t:

�ab̂c0 = b̂ĉa = b̂�ac0 8�a 2 `t; b̂; ĉ 2 b̂t;
but are unbounded in the Hilbert space Gt if a =2 bt. However they are densely
de�ned as the bounded kernels in the Gelfand triple bt � Gt � `t, and k�pk� =

1̂; �p
�
; for any positive element �p 2 �̀

t which means that it is density operator

of a normal state on b̂t if


1̂; �p
�
; = 1. Moreover, every normal state is uniquely

given by such density, i.e. that the space �̀t is predual to b̂t as is preadjoint to �bt
which we denote as �̀|t = b̂t, �̀�t = �bt. In most cases the density operator �p 2 �̀

of an output state &t
�
b̂
�
=
D
b̂; �p
E
;
has the range �p` in Ft, as it is in the case

of a majorized positive form &(b̂yb̂) � ��;(b̂
yb̂) for a � > 0, corresponding to the

bounded �p on Ft: k�pk � �; moreover, any operator �p 2 �̀ can be approximated by
the density operators from the bounded commutant �bt in the norm k�pk� =k p k1,
where p = �p�;.
In order to derive a quantum stochastic equation for the reduced dynamics ��t,

let us �nd the di¤erential evolution for the factorial generating map �(�)t : A ! A,

(2.4) �
(�)
t [X] = �;

h
��t[X](I 
 ẑ(�)t )

i
= (�;jX(�)(t)j�;):

Here b̂t = ẑ
(�)
t are exponential elements, de�ned by the Wick (normal) exponent

(2.5) ẑ
(�)
t = eâ

y(�t)eâ(�t) �: exp [et(�)] :

of the observable e(�t) = â (�t)+â
y (
�t) �

R t
0
�(r)�der, where � =

�
�i
�
is a column

of locally square-integrable functions with �js(t) = 0 for t � s; j > n, �js(r) = �j(r)

for r < s, and X(�)(t) = Ut(X(#t)
 ẑ
(�)
t )Uyt = X(t)Z(t). Taking into account the

equation (1.9) and

dZ(t) = Z(t)�j(t)(I 
 2d<âtj + UtQjU
y
t dt)

for Z(t) = Ut

�
I0 
 ẑ(�)t

�
Uyt , one can obtain by quantum Itô formula [14]

d(X(t)Z(t)) = Ut(�
�[X](#t) + (L

yX
(�)
t +X

(�)
t L)�(t))Uyt dt

+�Ut�X
(�)
t Uyt 
 dwt + UtX

(�)
t Uyt �

j(t)
 d2<âtj
+Ut[L

y
k; X

(�)
t ]Uyt 
 d�akt + d�akt y 
 Ut[X

(�)
t ; Lk]U

y
t ;

where X(�)
t = X(#t) 
 ẑ

(�)
t ; � = @=@#t + f 0 [�; i~Q]. Hence the map �

(�)
t : X 2

A 7! (�;jUtX(�)
t Uyt j�;) satis�es the equation

(2.6)
d

dt
�
(�)
t [X] = �

(�)
t [��[X] + (LyX +XL)�(t)]; �

(�)
0 [X] = X;
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where �� [X] (#) = �� (#) �X (#)� i
~ [X (#) ;H] +

1
2�

2 �2X (#) + ��L [X (#)].
In the same way, using the Itô formula for the product �GtẐt of �Gt = ��t[X] and

the Wick exponent (2.5), one can obtain the equation for (2.4) if

(2.7) d��t[X]� ��t[��[X]]dt =
nX
j=1

��t[L
y
jX +XLj ]
 dvjt ;

where the operators vjt = 2<�a
j
t , satisfying the canonical commutation relations

[vj
0

t ; v
j
t0 ] = 2i Ime�j0j minft; t0g; hvjt0 ; etj0i = 0;

generate the predual coalgebra �̀t as the unbounded commutant of b̂t = fesj : s < tg00
since vjs; j = 1; : : : ; n leave the subspaces Gt invariant for any t � s, and fesj : s <
t; j � ng0 = �bt = fvjs : s < t; j � ng00 on Gt. This proves the following theorem.

Theorem 2. Let the initial state � : A ! C be a normal one, described by a
density % : # 7! %(#) with values in trace�class operators on H0 such that� (X) =R
Tr%(#)X (#)d#. Then the conditional state

(2.8) ��t[X] =

Z
TrH0

[%(#)��t[X](#)]d#

is described in the standard representation by the operator-function �'t(#) as ��t[X] =R
TrH0

[�'t(#)X(#)]d# satisfying the quantum stochastic equation

(2.9) d�'t(#) = �[�'t](#)dt+
nX
j=1

(Lj �'t(#) + �'t(#)L
y
j)
 dv

j
t :

with �'0(#) = %(#). Here the quantum stochastic di¤erentials dvjt together with de
t
j

have the canonical multiplication table

dvjtdv
j0

t = e�jj0dt; dvjtdetj0 = �jj0dt; de
t
jde

t
j0 = e�jj0dt;

and � ['] = � (�')+ i
~ [';H] +

1
2�

2 �2'+�L ['] is preadjoint generator de�ned on
A� by �' (#) = '0 (#) + f 0 (#)

�
' (#) ; i~Q

�
,

�2'(#) = '00(#) + (2f 0 (#) + f 00 (#)) ['0(#);
i

~
Q] + f 0 (#)

2
[['(#);

i

~
Q];

i

~
Q];

�L ['] (#) =
1

2

X
i;k�0

�ki([Li; '(#)L
y
k] + [Li'(#); L

y
k]);(2.10)

It is normalized to a positive martingale �pt =
R
TrH0 �'t(#)d# 2 �̀

t as the den-
sity operator de�ning by (2.1) the output state hb̂(t)i = � (�; [B (t)]) on `0 3 z for
B(t) = U(t)y(I 
 b̂)U(t) with respect to the vacuum state vector �; 2 F simply as
hB(t)i = h�pt; b̂i;.

Note that since all the input components vit; i = 1; : : : ; n commute with the
output components etj and have with them zero correlations and thus are indepen-
dent of etj unless i = j, they generate the same subspaces Gt as etj ; j = 1; : : : ; n.

On these subspaces they simply coincide with the transposed ei0t = JeitJ = e
i0y
t to

the contravariant components eit = 2<âit of the output noises etk, having the same
autocorrelation and mutual correlation matrices with etk as v

i
t and being given by
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â�t = ��1=2a�t = 
�1ât� such that e
i
t =

Pm
k=1 


iketk. Thus in the �ltering equation
(2.9) the input noises vjt on Gt can be replaced by e

j0
t which can be given in the

Gaussian case as linear combinations of the transposed noises e0j = JejJ = e
0y
j .

3. The optimal measurement.

The quantum �lter de�nes a quantum measurement on the output of the system
at a time instant t 2 R+. In general it is described by a Bt-valued positive measure
M(t;dx) on a Borel space X , normalized to the identity operator in H = H0 

F :
R
M(t;dx) = I. The problem of optimal quantum observation is the problem of

�nding the optimal measurement M�(t), giving the minimal value of the mean

(3.1)
Z
hS(t; x)M(t;dx)i =

Z
(m0

t(dx); ct(x)); =

Z
hm̂t(dx); �ct(x)i;

for an A-valued measurable function S : x 2 X 7! S(x) = S(x)y in the Heisenberg
picture S(t; x) = UtS(x; #t)U

y
t with respect to an initial state h�i = � � �; [�] on

A 
 Bt. Here the mean (3.1) is given in the standard representation Bt ! b̂t
according to (2.1) as the integral of the pairing (2.2) for

(3.2) m0
t(dx) = m̂t(dx)�;; ct(x) = �ct(x)�;;

where m̂t de�nes the measure M(t) = Ut(I 
 m̂t)U
y
t in the Schrödinger picture,

and

(3.3) �ct(x) =

Z
TrH0 [�'t(#)S(x; #)]d# =

��t[St(x)]:

The duality principle gives the necessary and su¢ cient conditions [13] of optimality

(3.4)
Z
hm̂�

t (dx); �ct(x)i = inf
m̂�0

f
Z
hm̂t(dx); �ct(x)i :

Z
m̂�
t (dx) = 1̂g

of a positive b̂t-valued measure m̂�
t � 0 with

R
m̂�
t (dx) = 1̂ as the conditions for

the dual problem

supfh1̂; �li; : �lt � �ct(x); x 2 Xg = h1̂; �l�t i;;

where �lt = �l�t de�ned by �ltb
0 = b̂lt is the operator �l�t � �ct(x); 8x 2 X , for whichR

hm̂�
t (dx); �ct(x)i; = h1̂; �l�t i;. The last condition of optimality can be written in the

form of the equation

(�ct(x)� �lt)m0
t(dx); or m̂t(dx)(ct(x)� lt) = 0:

Let us consider now the problem of optimal estimation [12] of a selfadjoint
operator-process X(t) = Xt(#t), given in the Schrödinger picture by a B(H0)-
valued function X(#) = X(#)y, with real x = � 2 R and S(x; #) = (X(#) � xI)2.
One can treat in such a way the problem of �ltering of a real measurable function
x(#t) of the input di¤usion signal #t taking X(#) = x(#)I. In order to formulate
the optimal estimate in terms of the measurement of the optimal output observable
x̂�t 2 b̂t as an appropriate posterior mean of X (t) we need the quantum stochastic
equation for �̂t [X] = J��

�
Xy� J in terms of the output noise eti. It can be obtained

by complex conjugation

(3.5) d�̂t [X] = �̂t � ��[X](#)dt+
nX
j=1

�̂t

h
LjX +XLyj

i

 dejt
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of the equation for the CP map ��t : A ! �bt described in (2.8) by the density

operator �'t satisfying the equation (2.9). Here e
j
t =

Pn
j=1 �

jj0etj0 , where
h
�jj

0
i
�

��1 is real symmetric n�n-matrix with the inverse � = [�jj0 ] as an intensity matrix
of the standard covariaces

hej0(t0)e0j(t)i = �j0j�(t
0 � t) = �jj0� (t� t0) =



e0j (t) ej0 (t

0)
�

of the output noises ej0 with the transposed components e0j = JejJ = e
0y
j such that

���1�| = � for the n�n-submatrix � of �. (It is the geometric mean of � and �,
e.g. � = �

1
2�

1
2 if � and � commute.) Note that since in general � is smaller than

the n� n-submatrix 
 =
�

jj0

�
of the mutual covariance matrix 
 for ei = evi and

vk, e0j 6= vj unless m = n, and similar ejt 6= evjt since e0t = vt on Gt and 
�1 � ��1.
Theorem 3. The solution of the optimization problem (3.4) for the quadratic cost
function

�ct(�) = �2�pt � 2���t[X] + ��t[X2]

is given by the spectral measure m̂�
t of a selfadjoint operator x̂

�
t 2 b̂t de�ned by

x̂�t = J �xtJ as transposed to the operator �xt = �x
y
t resolving in �bt the equation

(3.6) �xt�pt + �pt�xt = 2

Z
TrH0

[X (#) �'t(#)]d#:

It is given as the symmetric posterior expectation x̂� = �̂t [X] by an operator-
function # 7! %̂t (#) 2 B� (H) 
 ^̀t with ^̀t = J �̀tJ as the density of the solution to
the equation

(3.7) p̂t�̂t [X] + %̂t [X] p̂t = 2�̂t [X] 8X 2 A;

where p̂t = J �ptJ . The symmetric posterior density %̂t = %̂yt satis�es the nonlinear
quantum stochastic equation

(3.8) d%̂t(#) = �t[%̂t](#)dt+
nX
j=1

�jt [%̂t]
 detj ; %̂0(#) = %(#);

where �t(#) and �
j
t (#) are de�ned by the solutions to the equations

<P̂t�j [%̂](#) = <
�
P̂t(L

j %̂(#) + %̂(#)Ljy)� P jt %(#)
�
;

<P̂t�t[%̂](#) = <(P̂t�[%̂](#)�
nX

i;j=1

�jiP̂ it�
j
t [%̂]);(3.9)

with Lj =
Pn

i=1 Li�
ij, P̂t = I0
 p̂t and P̂ jt = I0
 p̂jt de�ned by Qj = Lj +Ljy and

%̂t as

(3.10) p̂jt = <[p̂tq̂
j
t ]; q̂

j
t =

Z
TrH0 [%̂t(#)Q

j ]d#:

Proof. Denoting ût =
R
�m̂t(d�) for an orthogonal projective-valued measure

m̂t(d�) 2 b̂t, one obtainsZ
hm̂t(d�); �ct(�)i = hû2t ; �pti � 2hût; ��t[X]i+ h1; ��t[X2]i

= hû2t ; �pti � 2h< (x̂tût) ; �pti+ h1; ��t[X2]i � h1̂; �l�t i;
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where x̂t is de�ned by the duality (2.3) as the transposed to the solution �x of the
equation (3.6) written as <�pt�xt = ��t[X], and �l�t 2 �̀t is de�ned as

�l�t =
��t[X

2]� �xt�pt�xt:
The inequality is due to positivity of �pt = �� [I0] 2 �̀t and (û� x̂)2 2 b̂t:Z

hm̂t(d�); �ct(�)i � h1̂; �l�t i = h(ût � x̂t)2; �pti � 0;

and the equality is achieved at the spectral measure m̂�
t of the selfadjoint operator

x̂t 2 b̂t de�ning ût as x̂t.
Representing the solution of the equation (3.6) as

�xt =

Z
TrH0

X (#) �%t (#) d# � ��t [X]

in terms of the density function �%t 2 A� 
 �̀t we note that ��t satis�es the equation
transposed to (3.7), and therefore �̂t [X] = J��t

�
Xy� J satis�es the equation (3.7).

Looking for the operator x̂t = �̂t [X] as the solution of a quantum stochastic
equation

dx̂t = ĝtdt+
nX
j=1

ĉjt 
 detj

with some ĝt = ĝyt ; ĉ
j
t = ĉjyt , we should compare the quantum stochastic di¤erential

for �̂t [X] = J��t
�
Xy� J , with the di¤erential

d<p̂tx̂t = <(dp̂tdx̂t + dp̂tx̂t + p̂tdx̂t) = <
nX
i;j=

�ji�̂t[Q
i]ĉjtdt

+<
nX
i=1

�̂t[Q
i]x̂t 
 deti + <p̂t(

nX
j=1

ĉjt 
 detj + ĝtdt);

for <p̂tx̂t = �̂t[X] obtained applying the quantum Itô formula, where we took

dp̂t =
nX
j=1

�̂t[Q
j ]
 detj ; Qj =

nX
i=i

Qi�
ij

for the martingale p̂t = �̂t [I0]. Here e
t
i =

Pn
j=1 �ije

j
t as we have expressed the

di¤erential dp̂t =
Pn

j=1 �̂t[Qj ] 
 de
j
t for the martingale p̂t = J �ptJ in terms of the

driving output error noises etj by the real linear transformation �
�1. Comparing

d<p̂tx̂t with the equation (3.5) for d�̂t [X]

d�̂t [X] = �̂t � ��[X](#)dt+
nX
j=1

�̂t
�
LjX +XLjy

�

 detj

written in terms of etj , we derive

<[�̂t[Qj ]x̂+ p̂tĉkt ] = �̂t[L
jyX +XLj ] = <p̂t�̂t[LjyX +XLj ];

<[�ji�̂t[Qi]ĉ
j
t + p̂tĝt] = �̂t[�

�[X]] = <p̂t�̂t[��[X]];

where �̂t[X] = x̂t. This gives (3.8)�(3.10) in terms of �
j
t ; �t, de�ning

ĉjt =

Z
TrH0

[�jt [%̂t](#)X(#)]d#; ĝt =

Z
TrH0

[�t[%̂t](#)X(#)]d#:
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Note that the unnormalized posterior expectation �̂t : X 7! �̂t [X], as well as its
normalized version �̂t [X] =

R
TrH0 [X (#) %̂t(#)]d# is not CP map but transpose-

CP, in the contrast to the CP map ��t : A ! �bt and its normalized version ��t [X] =
J�̂
�
Xy� J .
Example. Let us consider the case n = 1 with L1 = 1

2 Q = Ly1, 

1=2�at = a

1
t =


�1=2ât, where a1t is the standard annihilation integrator [a
1
s; a

1y
t ] = minfs; tg de�n-

ing the input noise vt = 2<�at and nondemolition observation of the commutative
output process

dY (t) = Q(t)dt+ I0 
 det; Q(t) = U(t)yQU(t)

by et = 2<ât = 
vt. In this case et = vt, yt := et�; is v0t = 
vt, where vt = vt�;
is given as 
�1=2w1t by the standard Wiener process w

1
t identi�ed with the vector

process a1yt �; in Fock space, and the output process Y (t) on the initial state vector
 0
�; is identi�ed with the classical output process yt = 
1=2w1t = 
vt relatively to
the probability density pt (v) � p̂t�; with respect to the Wiener probability measure
P
 of the input Wiener process fvtg with the intensity 
�1. The equations (3.5)
and (3.8) are classical stochastic equations in the linear (for the nonnormalized
't(#; v) � '̂t(#)�;) and nonlinear (for %t(#; v) = 't(#; v)=pt(v)) posterior density
operators with respect to the output states

h 
 �;jBt 
 �;i =
Z
bt (v) pt (v) P
 (dv) � hbt(v); pt(v)i;

on B (t) = bt
�

�1Y

�
given by any adapted functional bt of v.

Suppose that the quantum receiver is an open oscillator (e.g. Weber�s antenna),
described by the Hamiltonian H = 1

2 A
yA, where A = iP + !Q and Q;P are the

canonical coordinate and momentum operators: [Q;P ] = i~I0. Then the quantum
Langevin equation (1.9) for A(t) = UtAU

y
t is the linear one

dA(t) + i!A(t)dt = iI 
 (d#t + dft);

where ft = ~=�ayt is the Langevin force (thermal noise) as a classical Wiener process
of the intensity �2
 = ~2=4
 acting on the coordinate Q, de�ning the total force in
the right hand side of the equation as the sum #t+ ft of the unknown gravitational
force f (#t) = #t and the thermal noise through the additive channel #t (w) + ft.
In the case of Gaussian input process #t, corresponding to the linear �(#) = �#
and Gaussian initial state � the optimal estimate of X(#t) = #tI � X (t) is given
by the linear posterior mean value #̂t = x̂t with respect to the output coordinate
process Y (t). In the standard Fock representation it is given as the last component
of the stochastic row x̂t = (q̂t; p̂t; x̂t) of the posterior mean values for X(t) =
(Q(t); P (t); X(t)), satisfying the Kalman equation

dx̂t + x̂t�dt = ktd~vt; � =

0@ 0 !2 0
�1 0 0
0 �� �

1A ;

where kt = (k11t ; k
12
t ; k

13
t ) is the �rst row of the symmetric 3�3�matrixKs

t = (k
ij
t )

satisfying the Riccati equation

d

dt
Kt +Kt�+�

>Kt +
1



k>t kt = �; � =

0@ 0 0 0
0 �2 + �2
 �2

0 �2 �2

1A ;
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with an initial symmetric covariance matrix Ks
0 of (Q;P; #0) and ~vt = vt � 
�1q̂t.

The pair (x̂t;Kt) de�nes the posterior (normalized) Gaussian state of the quantum

system with input signal xt = #t and the mean square error h
�
#
2

t i,
�
#t = #t � #̂t is

given by the component k33t of the posterior correlation matrix Kt.
A posterior dynamics of the quantum system under another nondemolition mea-

surement of the received electromagnetic �eld by a photon counter is considered in
[8].
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