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Abstract. A ?�algebraic inde�nite structure of quantum stochastic (QS) cal-
culus is introduced and a continuity property of generalized nonadapted QS
integrals is proved under the natural integrability conditions in an in�nitely
dimensional nuclear space. The class of nondemolition output QS processes in
quantum open systems is characterized in terms of the QS calculus, and the
problem of QS nonlinear �ltering with respect to nondemolition continuous
measurments is investigated. The stochastic calculus of a posteriori condi-
tional expectations in quantum observed systems is developed and a general
quantum �ltering stochastic equation for a QS process is derived. An applica-
tion to the description of the spontaneous collapse of the quantum spin under
continuous observation is given.

Introduction

The problem of description of continuous observation and �ltering in quantum
dynamical systems can be e¤ectively solved in the framework of quantum stochastic
(QS) calculus of nondemolition input-output processes �rst developed for quantum
unitary Markovian evolutions in [1].
In contrast to classical probability theory, the conditional expectations de�ning

à posteriori states of a quantum system with respect to a subalgebra may not exist
in general and the existence depends on the algebra of observables and on the à
priori state.
During the preparation of the measurement of a Quantum System the change

necessary to produce the à priori compatible state as a mixture of the à posteriori
states is referred to in quantum physics as the demolition of the system. The
latter involves a change in the initial state by the reduction of the algebra of the
system during such a preparation. The nondemolition principle provides a su¢ cient
condition for the algebra of the quantum system to be prepared for the measurement
in an initial state.
The mathematical formulation of the nondemolition principle for the observ-

ability of a class of quantum processes was given in [2] and investigated in subse-
quent papers [3, 4]. This fundamental principle of quantum measurement theory
means that if a QS process Xt is indirectly observable by the measurement of an-
other process Yt then X and Y must satisfy the one sided commutativity condition
[Xt; Ys] � XtYs � YsXt = 0 for all t � s but not for t < s.
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In the physical language this means that the measurements of Y in real time do
not demolish the quantum system X (which has been prepared for the observation)
at the present time or in the future. The condition given above, however, shows
that, though the past of X (priori to t) can never be observed, it is demolished
by the observation of the Y process. Mathematically it can be expressed as the
decomposability of the algebra At generated by fX(s) : s � tg, describing the
present and future of the system with respect to the spectral resolution of any
Hermitian operator of the algebra Bt generated by fY (s) : s � tg.
In this paper we show using method of quantum �ltering that the nondemolition

condition given above is necessary and su¢ cient for the evaluation of a posteriori
mean values of X 2 At given are arbitrary initial state. In other words we prove
that a quantum system is statistically predictable by a measurement procedure, i¤
the observable process satis�es the nondemolition condition.
In the Sections 1 and 2 of the paper we develop the general QS calculus of

nondemolition input�output quantum processes in Fock space, tensored by an initial
Hilbert space. We introduce the QS calculus of such processes using the ?�algebraic
Minkowski metric structure of the basic quantum processes and the simple and
convenient notation developed in [5]. The Fock representation of this structure is
closely connected with the Lindsay�Maassen kernel calculus of [6] but is given in
terms of the matrix elements of operators for general quantum noise in Fock space
instead of their kernels. We de�ne the QS integrals in the framework of the new
noncommutative stochastic analysis in the Fock scale which is described in the �rst
section.
In the Sections 3 and 4 we give complete proofs of the results, �rst formulated

in [7], for the general (non Markovian) quantum �ltering from the viewpoint of QS
calculus. The advantage of the ? �matrix notation enables us to prove the main
�ltering theorem for general output process as by using the inde�nite metric for
the corresponding ? �algebra of generators of these nondemolition processes.
The Markovian nonlinear �ltering problem in the framework of quantum opera-

tional (non-stochastic) approach was �rst investigated in [8], and the possibility of
deriving the stochastic equations of quantum �ltering within this framework was
shown in [9]. The Markovian �ltering for the quantum Gaussian case and the corre-
sponding quantum Kalman linear �lter, �rst obtained for the one-dimensional case
in [2, 3], is considered using the QS calculus approach in [10].
The present paper is devoted essentially to the study of the nonlinear problem,

extending the innovation martingale methods of the classical �ltering theory [11, 12]
to the noncommutative set up of our problem. An application of the quantum
�ltering theory to the solution of the problem of the continuous observation of
quantum spin states is given in Section 5.
Acknowledgements. I wish to thank Prof. L. Accardi, A. Barchielli, G.

Kallianpur, G. Lupieri and M. Piccioni for stimulating discussions and useful sug-
gestions during the preparing of the paper. The �rst part of this paper was written
in the Physics Department of the University of Milan and the second part in Centro
Matematico V. Volterra of the University of Roma II, for the hospitality of which
I am very grateful.
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1. QS calculus of input Bose processes in Fock space

Let us denote by F = �(E) the state space of the one�dimensional Bose�noise,
that is the Fock space over the Hilbert space E = L2(R+) of square�integrable
complex functions t 7! '(t) on the real half�line R+. One should consider F as
the Hilbert space �(E) = L2(
(R+)) of the square�integrable functions � 7! '(�)
of � = (t1; : : : ; tn) with ti 2 R+, t1 < � � � < tn, n = 0; 1; 2; : : : and scalar product
< 'j� >=

R
'(�)��(�)d� ,Z

'(�)��(�)d� =
1X
n=0

Z
t1�����tn

Z
' (t1; : : : ; tn)� (t1; : : : ; tn) dt1 : : :dtn;

where the integral is taken over the set 
(R+) of all �nite chains � on R+ with
respect to the natural Lebesgue measure d� = dt1 : : :dtn for every n = j� j =
0; 1; : : : . Following [5] we shall identify the chains � = (t1; : : : ; tn) with the �nite
subsets ft1; : : : ; tng � R+, so that the empty chain (n = 0) is identi�ed with the
empty subset � = ; having d� = 1 and � = t (n = 1) is identi�ed with the one�
point subset ftg having d� = dt. We shall also denote the normalized vacuum
function as the Kronecker �-function: �;(�) = 1, if � = ;; �;(�) = 0, if � 6= ;,
and consider the Fock spaces Fs = �(Es), Fst = �(Est ) over orthogonal subspaces
Es = f'(t) = 0 : t � sg, Est = f'(r) = 0 : r =2 [t; s]g as the function Hilbert spaces
L2(
s), L2(
st ) on the subsets 
s = f� �]s;1[g, 
st = f� �]t; s]g of the chains
� > s; s � � > t correspondingly.
Note that for any t > s a chain � 2 
 can be represented as the triple � =

(� t; � st ; � s) of the subchains � s = fti 2 � : ti > sg, � st = fti 2 � : s � ti > tg, � t =
fti 2 � : ti � tg so that the direct product representation 
 = 
t � 
st � 
s
holds and, hence, the tensor representation F = F t 
 Fst 
 Fs with F t = L2 (
t),

t = f� 2 
 : � � tg.
The basic processes for QS calculus in Fock space F are the annihilation A�,

creation A+ and quantum number N processes, represented for all t > 0 by the
unbounded operators

(A�(t)')(�) =

Z t

0

'(� t s)ds;

(A+(t)')(�) =
X
s2�

�t(s)'(�ns);

with the common dense domain Dt =
�
' 2 F :

R
j� tjj'(�)j2dt <1

	
; and

(1.1) (N(t)')(�) = j� tj'(�);

where �t(s) = 1, if s � t; �t(s) = 0, if s > t; j� tj =
P

s2� �
t(s), the chain

� t s is de�ned almost everywhere as (t1; : : : ti; s; ti+1; : : : ; tn), if ti < s < ti+1, and
�ns = (t1; : : : ; ti�1; ti+1; : : : tn), if s = t, �ns = � , if s 6= ti for all i. Note that the
processes A�; A+ and N are non-commuting, but commuting with increments:�

A�(t); A
+(t0)

�
= t ^ t0I; where t ^ t0 = min(t; t0);(1.2)

[A�(t); N(t
0)] = A�(t ^ t0); [N(t); A+(t)] = A+(t ^ t0);

the processes A� and A+ are mutually adjoint: A��(t) = A�(t)
� = A+(t), and N

is selfadjoint: N� = N .



4 V. P. BELAVKIN

Let us introduce the notations [5]

(1.3) A+�(t) = tI; A��(t) = A�(t); A
+
� = A+(t); A��(t) = N(t);

where I is the identity operator in F , thus de�ning a 3 � 3 matrix�valued QS
process A = (A�� ), indexed by �; � 2 f�; o;+g with A�� = 0, if � = + or � = �. We
shall consider the process A de�ned as a linear operator-valued function A(c; t) =
trfc A(t)g in terms of a 3� 3 �matrix c = (c�� ),
(1.4) A(c; t) = Ic�+t+A�(c

�
� ; t) +A

+(c�+; t) +N(c
�
�; t);

where A�(c�� ) = c�� A�; A
+(c�+) = c�+A

+; N(c��) = c��N , writing the matrix trace
as trfcAg = c��A

�
� by the tensor notation of the sum

P
c��A

�
�. The matrices c with

c�� = 0 for � = + or � = � form a complex Lie ?-algebra with respect to the matrix
commutator and the involution
(1.5)

c =

0@ 0 c�� c�+
0 c�� c�+
0 0 0

1A 7! c? =

0@ 0 c��+ c��+
0 c��� c���
0 0 0

1A = gcyg; g =

0@ 0 0 1
0 1 0
1 0 0

1A ;

where c��� = c��� = c��� and gy = g = g�1 is the inde�nite metric matrix, de�ning
a pseudo-scalar product in C3:

(xjz) = x+z� + x�z� + x�z+ = x?z ;

x? = (x+; x�; x�) = x
yg is the row, conjugate to the column x = (x�) 2 C3.

Now we can consider a multi-dimensional Bose noise, when E is a Hilbert space
L2(R+ ! Cm) of vector-functions '(t) = ('j)(t) � '�(t); j = 1; : : : ;m with

< 'j' >=
Z mX

j=1

'j'jdt:

It is enough to regard c�� as a m-row with components c
�
j 2 C; c�+ as a m-column

with components cj+ 2C, and c�� as a m � m-matrix with elements cik 2 C. The
following theorems are valid also for the general situation F = �(L2(R+ ! K)),
if the indices �; � take values in the set �; J;+, where the one-point index value
�; � = 0 is split into m = jJ j points j 2 J of an index set J for a basis in a Hilbert
space K with the in�nite cardinality jJ j = dimK.

Proposition 1. The basic QS process A(c), de�ned by (1.1), (1.2), gives for each t
an operator representation of the complex Lie ?-algebra of matrices (1.5): A(c; t)� =
A(c?; t),

(1.6) [A(c?; t); A(c; t0)] = A([c?; c]; t ^ t0) :
The multiplication table [1] for Ito di¤erentials dA�;dA+;dN , and Idt can be writ-
ten in terms of A(c;dt) = c��dA

�
�(t) as

(1.7) A(c?;dt)A(c;dt0) = A(c?c;dt \ dt0);
where dt

T
dt0 = ; for t 6= t0; A(�; ;) = 0, and dt

T
dt0 = dt for t = t0.

Proof. Taking into account, that A�� = A+ and N� = N , one obtains

(1.8) A(c; t)� = Ic��+ t+A�(c
��
+ ; t) +A

+(c��� ; t) +N(c��� ; t)

The comparing of (1.6) with (1.2) gives the ?-property A(c)� = A(c?) of the map
c 7! A(c).
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The Lie representation property follows directly from the canonical commutation
relations

[A�(b
�
� ; t); A

+(d�+; t)] = tb�� d
�
+; [N(b��); N(d

�
�)] = N([b��; d

�
�]) ;

[N(b��); A
+(d�+)] = A+(b��d

�
+); [A�(b

�
� ); N(d

�
�)] = A�(b

�
� d

�
�) ;

which give [A(b); A(d)] = A([b;d]), where we take into account that

(b d)�� = b�� d
�
+; (b d)

�
� = b�� d

�
�; (b d)

�
+ = b��d

�
+; (b d)

�
� = b��d

�
�

for matrices b;d of the form (1.5).
Applying it to b = c?;d = c and taking into account the commutativity of

A(c?; t) with increment A(c; t0) � A(c; t), one obtains (1.6). In the same way one
obtains (1.7) from the Hudson �Parthasarathy multiplication table

dA�(b
�
� )dA

+(d�+) = Idt(b�� d
�
+); dA�(b

�
� ) dN(d

�
�) = dA�(b

�
� d

�
�)

dN(b��)dA
+(d�+) = dA

+(b��d
�
+); dN(b��)dN(d

�
�) = dN(b

�
�d
�
�);(1.9)

for dA�� (t) = A�� (t + dt) � A�� (t);b = c?;d = c. Due to complex linearity of the
map c 7! A(c) the formulas (1.6), (1.7) can be always extended to arbitrary b;d
by polarization formula

A(b d) =

3X
n=0

A ((b? + ind)?(b? + ind)) =4in ; i =
p
�1;

A(b)A(d) =

3X
n=0

A(b? + ind)?A(b? + ind)=4in:

Hence, (1.6) is equivalent to (1.8) and (1.7) to (1.9).
Let us now de�ne a QS integral with respect to the basic process A for a ma-

trix quantum process C(t) = (C�� ) (t), �; � 2 f�; J;+g in F . Assuming that
the operator�valued functions t 7! C�� (t) are weakly measurable and adapted:
C(t) = Ct
 It, where Ct are the operators in F t for all � 2 f�; Jg and � 2 fJ;+g,
one can de�ne in the case of �nite J the QS�integralZ t

0

A(C;ds) :=

Z t

0

X
�;�

C�� dA
�
� �

Z t

0

C�� dA
�
�

as the sum of the Lebesgue operator�valued integral
R
C�+ (s)ds and the Itô integralsR

C�j dA
j
�,
R
Cj+dA

+
j ,
R
CikdN

k
i in the sense [13, 14].

In the general case E = L2(R+ ! K) we shall regard the QS�integral
R
C�� dA

�
�

as a continuous operator F+ ! F� on the projective limit F+ =
T
�>1 F(�) into

F� =
T
�<1 F(�) of Hilbert spaces G(�) � F � G(�), � > 1 > �, with respect to

the scalar products

k'k2(�) =
Z j� j

�

�j� j
h'(�)j'(�)i+
h'(�)j'(�)i�

d� ;
'(�) 2 E(�) ; � > 1
'(�) 2 E 0(�) ; � < 1 :

Here h'j'i+(�) � k'k2 � h'j'i�(�) are the square-norms in the Hilbert tensor
products E(�) = 
t2TE(t), K
j� j, E 0(�) = 
t2TE 0(t) of Hilbert spaces E(t) � K �
E 0(t), forming a Gelfand triple for each t 2 R+ with respect to the scalar product
k'k2 = h'j'i in a Hilbert space K (or simply E(t) = K = E 0(t), if K = Cm).
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We shall say that a weakly measurable function t 7! C(t) is locally QS�integrable
if its components C�� ; � 2 f�; og; � 2 fo;+g are locally Lp�integrable as operator�
valued functions

C�+ (t) : G+ ! G�; kC�+ (�)k
�;1
�;t <1 (p = 1)

C�+(t) : G+ ! G� 
 E 0(t); kCo+(�)k
�;2
�;t <1 (p = 2)

C�� (t) : G+ 
 E(t)! G�; kCo�(�)k
�;2
�;t <1 (p = 2)

C�� (t) : G+ 
 E(t)! G� 
 E 0(t); kC�� (�)k
�;1
�;t <1 (p =1)

Here the norms are de�ned for any t > 0, � 2]0; 1[ and a su¢ ciently large � > 1 by

kC�+k
�;1
�;t =

Z t

0

kC�+ (s)k
�
�ds; kC��k

�;1
�;t = esss�t sup kC�� (s)k

�
� ;

kC�+k
�
� = sup

'
fkC�+'k(�)=k'k(�)g; kC��k

�
� = sup

'�
fkC��'�k(�)=k'�k(�)g ;

where

' 2 G(�); k'k2(�) = < 'j' > (�);
'� 2 G(�)
 E(s); k'�k(�) = < '�j'� > (�)

and kC�+k
�;2
�;t = kC�t+ k

�
� ; kC�� k

�;2
�;t = kC

�
�tk

�
� are the norms

kCk�;2�;t = (
Z t

0

(kC(s)k��)
2ds)1=2

of the operators

C�t+ : G(�)! G(�)
 E 0t;
�
C�t+ '

�
(s) = C�+(s)'; s � t

C��t : G(�)
 Et ! G(�); C��t'
� =

Z t

0

C�� (s)'
�(s)ds

in the Hilbert spaces Et = �
R t
0
E(s)ds, E 0t = �

R t
0
E 0(s)ds.

The following theorem shows the continuity of the QS�integral of an integrable
C, de�ned on G+ even for nonadapted C�� (t) by the formula�Z t

0

A(C;ds)'

�
(�) =

Z t

0

�
C�+ (s)'+ C

�
� (s)'

�
s

�
(�)ds

+

s�tX
s2�

�
C�+(s)'+ C

�
� (s)'

�
s

�
(�=s) ;(1.10)

where '�t 2 G+
E(t) is de�ned almost everywhere as the tensor�function '�t (�) =
'(� t t).

Theorem 1. Suppose that C(t) is a locally QS�integrable function i.e. for any
� < 1, t > 0 there exists � > 1, such that

kC�+k
�;1
�;t <1; kC

�
+k

�;2
�;t <1; kC

�
� k

�;2
�;t <1; kC

�
�k
�;1
�;t <1:

Then the QS�integral (1.10) is de�ned as a continuous operator {t0(C) : G+ ! G�
with the estimate

(1.11)

Z t

0

A(C(s);ds)

��
�+
� kC�+k

�;1
�;t +

1p
"

�
kC�� k

�;2
�;t + kC

�
+k

�;2
�;t

�
+
1

"
kC��k

�;1
�;t
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for the norms k{t0(C)k
��
�+ = sup'fk{

t
0(C)'k(��)=k'k(�+)g, where �� � ��", �+ �

� + " and 0 < " < �. Moreover, the adjoint integral

<

Z t

0

A(C;ds)�'j� >=< 'j
Z t

0

A(C;ds)� >; '; � 2 G+

is also densely de�ned on G+ � G� as the QS�integral
R t
0
A(C?;ds), and the func-

tion C?(t) = gC(t)�g,

C?(t)�+ = C�+ (t)
�; C?(t)�+ = C�� (t)

�; C?(t)�� = C�+(t)
�; C?(t)�� = C�� (t)

�

is locally QS�integrable with kC?(t)��k
1=�
1=� = kC�� (t)�k

�
� <1 for almost all t.

Proof. . In order to show the continuity of the integral (1.10) in the projective
topology of

T
�>1 G(�), one should prove that

k
Z t

0

A(C(s);ds)'k(��) � ck'k(�+); k'k(�) = (< 'j' > (�))1=2

for any ' 2 G(�+), �� < � and a �+ > �; c > 0. Due to the de�nitionZ t

0

A(C;ds)'

 � k
Z t

0

C�� dA
�
�'k+ k

Z t

0

C�+dA
+
� 'k

+k
Z t

0

C��dN
�
�'k+ k

Z t

0

C�+ds'k;

whereZ t

0

C�� dA
�
�' =

Z t

0

C�� (s)'
�
sds;

�Z t

0

C�+dA
+
� '

�
(�) =

s�tX
s2�
(C�+(s)')(�ns);

and �Z t

0

C��dN
�
�'

�
(�) =

s�tX
s2�

(C�� (s)'
�
s) (�ns):

The �rst two integrals in (1.10) can be easily estimated asZ t

0

C�+'ds

(��) �
Z t

0

kC�+ (s)'k(�)ds �
Z t

0

kC�+ (s)k
�
�dsk'k(�) =

kC�+k
�;1
�;tk'k(�);Z t

0

C�� dA
�
�'

(��) = kC��t'�k(�) � kC��tk
�
�k'

�k(�) =

kC�� k
�;2
�;t

�
d

d�
k'k2(�)

�1=2
;

where we took into account that

k'�k2(�) =
Z Z

� j� jk'(� t t)k2d�dt =
Z
j� j� j� j�1k'(�)k2d� = d

d�
k'k2(�):
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In order to estimate the integrals of C�+ and C
�
� let us �ndZ t

0

C�+dA
+
� '

2(��) = Z




s�tX
s2�
(C�+(s)')(�=s)


2

�
j� j
� d� =

�2�

Z t

0

Z t

0

Z



< [C�+(s1)'
�
s2 ](�)j[C

�
+(s2)'

�
s1 ](�) > �

j� j
� d�ds1ds2 +

��

Z t

0

Z



k[C�+(s)'](�)k2�
j� j
� d�ds � ��

�
1 + ��

d

d��

�
kC�+'k2t (��)

by Schwarz inequality. In the same way we getZ t

0

C��dN
�
�'

2(��) = Z




s�tX
s2�
(C�� (s)'

�(s))(�=s)


2

�
j� j
� d� =

= �2�

Z t

0

Z t

0

Z



< [C�� (s1)'
� �
s1 s2 ](�)j[C

�
� (s2)'

� �
s1 s2 ](�) > �

j� j
� d�ds1ds2 +

��

Z t

0

Z



k[C�� (s)'�s](�)k2�
j� j
� d�ds � ��

�
1 + ��

d

d��

�
kC��'�k2t (��) ;

where '��s1;s2(�) = '(� t s1 t s2).
Taking into account that for any " > 0, � = � + "

d

d�
k'k2(�) � 1

"

�
k'k2(� + ")� k'k2(�)

�
� 1

"
k'k2(�) ;

one can �nd that
�
1 + � d

d�

�
k'k2t (�) � �

"k'k
2
t (�),�

1 + �
d

d�

�
kC�+'k2t (�) � �

"

�
kC�+k

�;2
�;t

�2
k'k2(�) ;�

1 + �
d

d�

�
kC��'�k2t (�) � �

"

�
kC��k

�;1
�;t

�2 d
d�
k'k2(�) ;

if " � �. Hence, due to k'(�+) � k'k(� + ") � k'k(�) for �+ � � + ", we obtain
for �� � � = � � ", � � 1Z t

0

A(C;ds)'

 (��) � kC�+k�;1�;t + 1p
"

�
kC�� k

�;2
�;t + kC

�
+k

�;2
�;t

�
+
1

"
kC��k

�;1
�;t ;

if k'k(�+) � 1; 0 < " � �, what is equivalent to (1.11).
Due to the duality G(�)� = G(��1) of F(�) and G(1=�) the QS�matrix process

C?(t) is also locally QS�integrable, and there exists the adjoint integral
R t
0
A(C;ds)�,

de�ned as in (1.10) by C?:

< 'j
Z t

0

A(C;ds)� >=

Z t

0

< 'jC�+ (s)�+ C�� (s)��(s) > ds

+

Z t

�
< '�sjC�+(s)�+ C�� (s)��s > ds =

Z t

0

< C�+ (s)
�'+ C�+(s)

�'�sj� > ds+

+

Z t

0

< C�� (s)
�'+ C�� (s)

�'�sj�� > ds =<
Z t

0

A(C?;ds)'j� > :

Obviously, k
R +
0
A(C?;ds)k1=�+1=��

= k
R +
0
A(C;ds)k���+
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Corollary 1. If C(t) are the simple measurable adapted functions, then the de�ni-
tion (1.10) coincides with the QS�integral, given by integral Ito�s sums with respect
to the processes (1.1). Moreover, the QS�integral (1.10) is a limit of such integral
sums in the inductive operator topology, de�ned by the norms (1.11), if locally QS�
integrable matrix�process C can be uniformly approximated by a sequence of simple
operator�valued processes with respect to the de�ned Lp �norms on ]0; t].

2. QS calculus of output nondemolition processes

Let us consider an initial Hilbert space H0 = h with identity operator b1, H =

h
G, and denote by Ht = h
Gt and by bIt = b1
 It the corresponding multipliers
of the Hilbert space H = Ht 
 Gt and identity operator bI = bIt 
 b1t. Let us
identify the basic QS process A = (A�� ) with the process bA = b1 
 A, in H:bA�+(t) = tbI; bAj� = b1 
 Aj�;

bA+j = b1 
 A+j ;
bAik = b1 
 N i

k. A QS matrix processbC = � bC�� � with an bC�� (t) acting in H is called adapted, if bC(t) = bCt
 bIt, for any t,
where bCt is a matrix of operators in Ht. We de�ne the QS integral of an adapted
QS matrix process bC as in (1.10) by the sum of integrals

(2.1)
Z t

0

bA�bC;ds� = Z t

0

� bC�+ds+ bC�� d bA�� + bC��d bA+� + bC��d bN�
�

�
;

which exists as an adapted process with the QS di¤erential bA(bC;dt) = bC�� (t)d bA��(t)
for weakly measurable, locally integrable functions t 7! bC�� (t), called below QS
integrable processes.
Now let us consider an adapted process bX(t), de�ned by the QS di¤erential

equation

d bX(t) = � bF�� (t)� bX(t)���� d bA��(t) ; bX(0) = bx
 I;
having the solution bX(t) = bX 
 I +

R t
0
bC�� d bA��, i¤ bC = bF � bX 
 � satis�es the

conditions for the existence of the integral (2.1), where bX 
 � =
� bX����. We

shall de�ne the elements bF�� of matrix�operators bF(t) also for � = � = � and for
� = + = � by bF�� = bX = bF++ , and assume that bF�� = 0, if � > � under the order
� < o < +.

Proposition 2. If the QS process bX satis�es the QS di¤erential equation (??),
then the process ( bX� bX)(t) = bX(t)� bX(t) satis�es the equation
(2.2) d( bX� bX) = �bF?bF� bX� bX 
 �

��
�
dA��; ( bX� bX)(0) = bx�bx
 I:

This QS Ito formula establishes an �-algebra isomorphism from the QS di¤eren-
tiable processes bX into the algebra of matrices of operator processes bF�� de�ned
above. In particular, bX is formally normal (selfadjoint, unitary) i¤ [bF; bF?] =
0;
�bF? = bF; bF? = bF�1� with repsect to the ?-operation F?(t) = gF(t)�g, and X is

partially isometric (isometric, orthoprojection), i¤ bFbF?bF = bF (bF?bF = bI
�; bF?bF =bF).
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Proof. Taking into account that

d bX = bC�+dt+ bC�� d bA�� + bC�+d bA+� + bC��d bN�
� ;

d bX� = bC��+ dt+ bC��+ d bA�� + bC��� d bA+� + bC��� d bN�
� ;

and using the QS Itô formula [1], de�ning the product ( bX� bX)(t) = (bx�bx) 
 I +R t
0
d( bX� bX) by the QS di¤erential

d( bX� bX) = d bX� bX + bX�d bX + d bX�d bX =

=
�
C?�� bX + bX� bC�� + C?��C�� � d bA�� =�

(bC+ bX 
 �)?(bC+ bX 
 �)� bX� bX 
 �
��
�
d bA��;

we obtain the equation (2.2) with bF = bX 
 � + bC. Due to the linearity of (2.2)
with respect to the pairs (bF; bX) and (bF?; bX�), it can be extended to

(2.3) d( bX� bX 0) =
�bF?bF0 � bX� bX 0 
 �

��
�
d bA��

by the polarization formula

bX� bX 0 =

3X
n=0

� bX + in bX 0
�� � bX + in bX 0

�
=4in ; i =

p
�1:

Hence, the formula (2.2) is equivalent to QS Hudson �Parthasarathy Itô formula
[1] and ? �property

d bX�(t) =
�bF?(t)� bX�(t)
 �

��
�
d bA��; bX�(0) = bx� 
 I;

which follows from it for bF0 = I 
 �, corresponding to bX 0 = bI. So the map bX 7! bF
is a homomorphism with respect to the associative operator algebra structure of bX
and bF with the appropriate involutions. Furthermore it is an injection, because ifbF = 0, then bX = 0, as bF�� = bX = bF++ .
Conversely, if bX = 0, then

R t
0
bF�� d bA�� = 0 for all t, but it implies bF�� = 0 due to

the independence of stochastic integrators [15].
Now let us consider an adapted selfadjoint QS process Y , satisfying a QS equation

(2.4) dY (t) = (Z?GZ� Y 
 �)�� (t)d bA��(t) ; Y (0) = by 
 I ;
where G? = G is a ? �selfadjoint matrix adapted QS process with G�� = Y =

G++; G
�
� = 0 for � > �, and Z = (Z�� ) is a ? �isometric or ? �unitary matrix adapted

process: Z?Z = bI 
 � �Z? = Z�1� such, that GZZ? = G = ZZ?G (otherwise G
should be replaced by ZZ?GZZ?).
We shall demand that Z�� = bI = Z++ ; Z

�
� = 0, if � > �, and Z�� ; � 6= + or

� 6= � satisfy the conditions for the existance of QS isometric (unitary) evolution
U(t) : H ! H, de�ned by the QS equation (??) with bX = U;F�� = UZ�� ; bx = b1:
(2.5) dU(t) = U(t) (Z�� (t)� I��� ) d bA�� ; U(0) = bI:
Su¢ cient conditions for this are the conditions of local integrability of the weakly
measurable processes Z�� in the sense of the L

p-norms [16]:

kZ�+k
(1)
t <1 ; kZ0+k

(2)
t <1 ; kZ�0 k

(2)
t <1 ; kZ00k

(1)
t <1 :
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Let us call the process Y an output process, if Y is nondemolition with respect
to the QS process Z, generating the evolution (2.5). By this we mean the commu-
tativity condition

(2.6) [Y (t); X(s)] = 0; 8t � s

with respect to the all QS processes X(t) = Z�� (t); �; � 2 f�; J;+g (the conditions
are nontrivial for � 6= + and � 6= �).

Theorem 2. The process Y is de�ned by (2.4) as an adapted selfadjoint QS process
i¤

(2.7) UY = bY U; bY (t) = by 
 I + Z t

0

bD�
�d bA��;

where bD is an adapted QS integrable matrix process satisfying the conditions bD�
�U =

UD�
� ; D

�
� = G�� � Y ��� . The process Y is an output QS process, i¤

(2.8) U(s)Y (t) = bY (t)U(s) ; 8t � s;

which is equivalent to the condition [bY (t); bZ�� (s)]U(s) = 0 for s � t; bZ�� U = UZ�� .
The output process Y satis�es the nondemolition condition (2.6) with respect to an
adapted QS process X, de�ned by

(2.9) UX = bXU; bX(t) = bx
 I + Z t

0

bC�� d bA��;
i¤ [bY (t); bX(s)]U(s) = 0 for all t � s. The last is equivalent to the commutativity
conditions [bY (t); bF�� (s)]U(s) = 0;8t � s,

(2.10) [by; bx] = 0; [bD; bF]U = 0;
where bF = bC+ bX 
 �, (the conditions are nontrivial for � 6= + and � 6= �).

Proof.We obtain (2.4) with G�� = U� bG��U from (2.7) for U , satisfying (2.5) simply
by applying to Y = U� bY U the QS Itô formula (2.4):

d(U� bY U) = �Z?(U� 
 �) bG(U 
 �)Z� U� bY U 
 ���
�
d bA��:

Conversely, we obtain

d(UY U�) = ((U 
 �)ZZ?GZZ?(U� 
 �)� UY U� 
 �)�� d bA��;
so the QS�process bY = UY U� obviously satisfying the condition bY U = UY , is
de�ned as QS integral in (2.7) with G��U

� due to the assumption ZZ?GZZ? = G
for a weakly measurable, locally Lp-integrable G.
If the processes Y and X = Z�� satisfy the commutativity conditions (2.6), then

the isometry

(2.11) U(t; s) = bI + Z s

t

U(t; r)
�
Z�� (r)� bI���� d bA��(r)

commutes with Y (t), as it can be easily proved by induction with respect to n =
1; 2; : : : for the corresponding QS Itô integral sums

(2.12) Un(t; s) = bI + n�1X
i=0

Ui(t; ti)
�
Z�� (ti)� bI����� bA�� (ti+1)� bA��(ti)� ;
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where ti = t + i(s � t)=n; U0(t; t) = bI. Hence, taking into account that U(s) =
U(t)U(t; s), we obtain (2.4):

U(s)Y (t) = U(t)Y (t)U(t; s) = bY (t)U(s):
Conversely, multiplying (2.8) from the left side hand by U(t)�, we obtain the com-
mutativity condition for Y (t) and U(t; s), which is equivalent (2.6) for X = Z�� due
to the approximation (2.12) of (2.11) and adaptedness of Y . The condition (2.6) in
the terms of bZ�� U = UZ�� can be written as:

U(s) [Y (t); Z�� (s)] =
hbY (t); bZ�� (s)iU(s) = 0;8t � s:

In the same way the non-demolition condition for an output process Y with respect
to a QS process X can be written as [bY (t); bX(s)]U(s) = 0 in terms of bXU = UX.
Representing X in the case (2.9) in the form of (2.4) as the solution of the QS �

equation

(2.13) dX = (Z?FZ�X 
 �)�� d bA��; X(0) = bx
 I;
and taking into account that due to (2.3)

(2.14) d(Y X) = (Z?GFZ� Y X 
 �)��d bA��;
one can easily obtain, that [Y;X] = 0, i¤ [by; bx] = 0 and [G;F] = 0 due to ZZ?F =
F = FZZ?. In order to satisfy the condition [Y (t); X(s)] = 0 for all t � s, it should
be completed by [Y (t); F�� (s)] = 0 at least for � 6= + or � 6= � and all t � s due to
the QS integral representation

X(s) = X(t) +

Z s

t

(Z?FZ�X 
 �)��d bA�� for s > t

and commutativity of Y (t) with Z(s) at s � t. So [D;F] = [G;F]� [Y 
 �;F] = 0,
what gives the necessary and su¢ cient nondemolition conditions, which can be
written in the terms of bY ; bD; bF as (2.10) by multiplication on the right by the
corresponding U .

Corollary 2. The process X is an evolute transformation X = U�(bx 
 I)U of
an initial operator bx 2 B(h) with respect to a QS unitary process U , described by
the QS equation (2.5) i¤ it satis�es the QS equation (2.13) with F = X 
 �. The
process Y is an output process with respect to the QS Markovian evolution de�ned
on the von Neumann algebra A = B(h) by the transformation Z�� = U� (bz�� 
 I)U
of the initial QS generators bz�� , acting in h, i¤ hbY (t); bz�� 
 Ii = 0 for all t and

�; �. The output process bY is nondemolition with respect to X = U�(bx 
 I)U for
arbitrary bx 2 B(h), i¤ bY = b1
B, where B is an adapted process in Fock space G.

Indeed, if bX(t) = bx 
 I is a time independent adapted process, then it satis�es
the QS equation d bX = bC�� d bA�� corresponding to bC�� = 0 = bF�� �bz
I��� . Hence, the
process Z = U�bZU satis�es the equation (2.13) with F�� = U�(bx
 I)U��� = X��� .

The output condition
hbY (t); bZ�� (s)iU(s) = 0, for bZ(s) = bz 
 I and unitary

U , means
hbY (t); bz�� 
 Ii = 0 for all t; �; �; moreover the nondemolition condition

[bY (t); bX(s)]U(s) = 0 for bX(s) = bz 
 I with arbitrary bx 2 B(h) is possible only if
Y = b1
B.
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Note that an output QS process Y = U� bY U is de�ned as the sum of by 
 I and
a QS �integral Z t

0

A(D;ds) = U(t)�
Z t

0

bA(bD;ds)U(t)
with the QS di¤erential A(D;dt) = (Z?DZ)�� (t)d bA��(t). In the case of commuting
matrix elements D�

� = U� bD�
�U and Z

�
� = U� bZ��U , as it happens for bZ��(t) = bz�� 
 I,bD�

� = b1
 bD�
�, this integral can be de�ned as the QS Itô integralZ t

0

A(D;ds) =

Z t

0

�
D�
+ds+D

�
� dA

�
� +D

�
+dA

+
� +D

�
�dN

�
�
�
=

Z t

0

D�
�dA

�
�

with respect to output annihilation A��, creation A+� and quantum number N�
�

processes

A��(t) =

Z t

0

�
Z�kd

bAk� + Z�+ds� = A+� (t)
� ; N�

� (t) =Z t

0

�
(Z�

�

� Z�� )
i
kd bNk

i + (Z
��
� Z�+)

id bA+i + (Z��+ Z�� )kd bAk� + (Z��+ Z�+ds)�
as the unitary transformation A�� = U� bA��U of the input canonical processes bA�� .

3. QS nonlinear nondemolition filtering

Let us consider a selfadjoint family Y = (Yi) of commuting output processes
Yi; i = 1; : : : ; n, de�ned by

(3.1) Yi(t) = byi 
 I + Z t

0

(Z?DiZ)
�
�d bA��;

which are nondemolition with respect a QS process X:

(3.2) [Yi(t); Z
�
� (s)] = 0; [Yi(t); X(s)] = 0 8t � s

As follows from (2.10) for bx = byk, bF = bDk + bYk 
 �, the family Y satis�es the
selfnondemolition condition

(3.3) [Yi(t); Yk(s)] = 0; 8s; t; i; k;

i¤
hbYi(t); bD�

� (s)k

i
U(s) = 0 for all t � s, and

(3.4) [byi; byk] = 0; h bDi; bDk

i
U = 0; 8i; k:

Let us denote by At = fY ti : i = 1; : : : ; ng
0 the reduced algebra of bounded opera-

tors in H, corresponding to the measurements of the process Y t = fY (s) : s � tg up
to a time t, de�ned as the commutant of all Y ti = U� bY ti U , and by O = fy1; : : : yng0
the initial algebra, de�ning A0 = O 
 B(F). The nonincreasing family (At) is the
family of maximal von Neumann subalgebras As � At � A0; s � t � 0 of the ini-
tial reduced algebra A0, with respect to which Y is a nondemolition commutative
vector process in the sense of the de�nition Yi(t) 2 A0t 8t (or Yi(t) is a¢ liated
to A0t) of a nondemolition QS process given in [4]. The Abelian algebra Bt = A0t
generated by Y t, with B0 = O0 
 I, generated by Y 0 = y 
 I, forms the center
Bt = At

T
A0t of At, hence At is a decomposable algebra, having the conditional

expectations with respect to Bt = At for any normal initial state on A0 � At.
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As follows from the next theorem, the nondemolition principle is not only su¢ -
cient, but also necessary for the existence of compatible conditional expectation on
At with respect to Bt for an arbitrary initial state vector �.
We shall explicitly construct the conditional expectation not only for bounded

X 2 At, but also for X a¢ liated to At. An operator B is said to be de�ned almost
everywhere with respect to the pair (Bt; �), if it is densely de�ned in the support
subspace Kt = P tH, where P t = inffP = P �P 2 Bt : P� = �g, k�k = 1.

Theorem 3. Let Bt � At be a von Neumann subalgebra on a Hilbert space H.
Then a conditional expectation �t as a positive projection onto Bt, satisfying the
compatibility condition < �j�t(X)� >=< �jX� >, for all X 2 A exists on At for
an arbitrary � 2 H, i¤ Bt commutes with At : Bt � A0t. In this case the algebra At
can be extended to the commutant of Bt, such that for any operator X, commuting
on the domain At� with Bt = A0t, the expectation �t(X) is given on At� by
(3.5) �t(X)A� = AEtX�; 8A 2 At;

where Et 2 At is the orthoprojector on Bt�. The formula (3.5) uniquely de�nes
�t(X) as an operator �t(X)P t a¢ liated to Bt on At� even for unbounded X.

Proof. Let us suppose that [X;B] 6= 0 for an X 2 At and B 2 Bt, and that
�t : At ! Bt is de�ned as a positive projection, compatible with � 2 H, for which
< �j[X;B]� >6= 0. Then, due to the modularity property

�t(XB) = �t(X)B ; �t(BX) = B�t(X) ;

where X 2 At, B 2 Bt, we would have < �j[�t(x); B]� >=< �j[X;B]� >6= 0, what
would be possible only if Bt would be non-Abelian. But for non-Abelian Bt the
conditional expectation does not exist for all vectors � 2 H, as can be easily shown
for a factor Bt 6= CbI. Indeed, in this case such a vector � has to be of the form
�0 
 �1, and �(A 
 B) =< �0jA�0 > I0 
 B, where �0 2 H0 6= C, if At 6= Bt,
�1 2 H1 = Bt�, corresponding to the decomposition H = H0 
 H1. So, it is
necessary that Bt � A0t.
Let us de�ne �t for such an Abelian algebra Bt by (3.5) with A0t = Bt and a �xed

� 2 H. The orthoprojector Et commutes with A0t due to the invariance of Et = A0t�
with respect to the action of the algebra A0t. Hence the operator EtXEt commutes
with A0tEt:

EtXEtBEt = EtXBEt = EtBXEt = BEtXEt = EtBEtXEt ;

if the operator X commutes with the all B 2 A0t. But this means that EtXEt is
a¢ liated with the reduced von Neumann algebra EtAtEt on Et, coinciding with its
commutantA0tEt on Et because the induced Abelian algebraA0tEt has the cyclic vec-
tor � in Et. The commutativity of EtAtEt = A0tEt helps to establish the correctness
of the de�nition (3.5) of the linear operator �t(X) on At� A� = 0) �t(X)A� = 0.
Indeed, k�t(x)A�k =

kAEtX�k = k(EtA�AEt)1=2EtXEt�k = kEtXEt(EtA�AEt)1=2�k
because Et� = � and (EtA�AEt)1=2 � = 0, if A� = 0.
The operator �t(X) : A� ! AEtX� having the range AtEtX� � Kt = At�,

commutes with arbitrary A 2 At due to the de�nition (3.5), so P t�t(X) is a¢ l-
iated to P tA0tP t, coinciding with A0tP t because P t 2 A0t

T
At = A0t, if P t is the

orthoprojector on Kt.
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The map X 7! �t(X) satis�es the unital property �t(bI)A� = AEt� = A� due to
� 2 Et, and the modularity property

�t(XB)A� = AEtBX� = ABEtX� = BAEtX� = B�t(X)A�

for all A 2 At and B 2 A0t, and, hence, maps the algebra At on the subalgebra
A0t � At, represented on Kt.
Now let us prove the uniqueness of the representation (3.5) of conditional expec-

tation �t as a map onto factor subalgebra A0t=A0tP t1 = A0tP t, where P t = bI�P t1 2 A0t
is the support of � which is the orthoprojector on At� = Kt. Due to the commu-
tativity of �(X) with At we have �t(X)A� = A�t(X)� for A 2 At. So we have to
prove, that �t(X)� = EtX�. But �t(X)� 2 A0t�, because �t(X) 2 A0t for X 2 At;
hence we should prove, that < B�j�t(X)� >=< B�jEtX� > for all B 2 A0t, which
is a consequence of modularity and compatibility conditions:

< B�j�t(X)� >=< �j�t(B�X)� >=< �jB�X� >=< B�jX� >=< B�jEtX� > :

Remark. Note that one should identify the factor-algebra BtP t with the space
L1(Vt) of essentially bounded measurable complex functions on the probability
space Vt of all observed values vt = fv(s) : s � tg, v(t) = (vi)(t) of the commutative
vector process Y t, stopped at t. The probability measure �(dvt) =< �jI(dvt)� >
is induced on the Borel �-algebra of Vt by the spectral resolution Y t =

R
vtI(dvt).

If P t =
R 

Vt Pvt�(dv

t) is the corresponding decomposition of P t 2 A0t, then

(3.6) P t�t(X) =

Z 


Vt
< X >vt Pvt�(dv

t) ;

where < X >vt=< �vt jX�vt >, and the vectors �vt = Pvt�=kPvt�k de�ne the
resolution Et =

R 

Vt j�vt >< �vt j�(dvt). Hence one should consider �t(X) for an

X 2 At as a function �t(X) : Vt ! CPvt giving for almost all trajectories vt 2 Vt,
observed up to a time t, the posterior mean values < X >vt of a QS nondemolished
process X(t). The initial conditional expectation �0 with respect to B0 = O0 
 I

and � =  
 ' is given for X = bx
 I as �( bX)
 I by
(3.7) bp�(bx) = Z �

V0
<  vjbx v > bpv�(dv) ; �(dv) = kb1(dv) k2 :

Here the vectors  v = bpv =kb v k, v 2 V0 and the decomposition be = R 
V j v ><
 vj�(dv) for E0 = be 
 I, fpvg de�ne the decomposition bp = R 
 bpv�(dv) for P 0 =bp
 I, corresponding to the orthogonal resolution by = R vb1(dv) on the spectrum V0
of the commutative family by = (byi) of the initial operators Y (0) = by 
 I.

4. QS calculus of a posteriori expectations

Now let us suppose that � =  
 �;, the output commuting processes (3.1) are
nondemolition with respect to

(4.1) X(t) = bx
 I + Z t

0

(Z?FZ�X 
 �)��d bA��
with bx 2 O, and F(t) 2 Ft where Ft is the ?-algebra of matrix-operators F = (F�� ),
commuting with Y (s), s � t and D(t) : Ft = fF�� 2 At : [Di;F] = 0, i = 1; : : : ; ng.
In the following we shall also demand that the process Y = (Yi) is continuous from
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the right in the sense A0t =
T
s>tA0s, what is equivalent to Di(t)

�
� 2 A0t for all i and

t.
Let us denote by C the linear span of the initial operators fyig with the operators

y0 2 C0 from the commutative ideal C0 = fb 2 O0 :< b jb >= 0g. We also denote
by Dt the A0t-span of the operator-matrices fDig(t) with the ideal

Dt0 = fD 2 F 0t : D�
� = 0 = D+

+; (DZ+jDZ+) = 0g

of the commutative ?-algebra

F 0t = fD�
� 2 A0tj[D;F] = 0;F 2 Fg;

corresponding to the kernel of the pseudoscalar product

(Z+jZ+) =< �j(Z?Z)�+� >=< �jZ�+gZ+� > ;

where Z�+ =
�
Z��+ ; Z��+ ; bI� is the conjugate row to the column-operator Z+. Now

we can formulate the main theorem.

Theorem 4. Suppose that the output observed process (3.1) is nondemolition with
respect to a QS process (4.1), and the spans C � O0 and Dt � F 0t are � �and ?
�algebras correspondingly. Then the posterior mean value �t(X(t)) for an initial
state vector � =  
 �;;  2 h, is de�ned by an adapted commutative vector�process
�t =

�
�it
�
; �it 2 A0t; i = 1; : : : ; n, almost everywhere as an A0t linear nonaticipating

transformation of the output process Y by the stochastic Itô equation

(4.2) d�t(X(t)) = �t(Z
?FZ)�+(t)dt+ �

i
t(X(t))d

eYi(t)
Here �t(F)

�
+ = �t(F

�
+ ); �0(bx
 I) = �(bx)
 I, �idYi �Pn

i=1 �
idYi, and

(4.3) deYi(t) = dYi(t)� �t(Z?DiZ)
�
+(t)dt;

eYi(0) = eyi 
 I
are the observed martingales with respect to the �ltration (�t), and state vector �,
called the innovating process for (A0t). The process �t is de�ned uniquely up to the
kernel of the correlation matrix�process

(4.4) %ik(t) = �t (Z
?D?

iDkZ)
�
+ (t) = �t[(D

�
�Z

�
� +D

�
+)

�
i (D

�
�Z

�
+ +D

�
+)k](t)

by the linear algebraic equation

(4.5) %ik(t)�
k
t = �t (Z

?D?
iFZ)

�
+ (t)� �t(X(t))�t (Z

?D?
iZ)

�
+ (t);

having in the case F = X 
 �, corresponding to bX(t) = bx
 I, the form
(4.6) %ik(t)�

k
t = �t

�
Z�+D

��
�i
~XZ�+

�
(t) + �t

� eXD��
+iZ

�
+ + Z

��
+ D

��
�i
eX� (t);

where eX(t) = X(t)��t(X(t)). The initial a posteriori mean value �(bx) is the linear
combination �(bx) =<  jbx > +�i(bx)eyi, of eyi = byi� <  jbyi > b1, where � = (�i)
is de�ned by the equation

(4.7) %ik�
k =<  jby�i bx >; %ik =<  jey�i eyk >;

with ex = ex� <  jbx > b1, uniquely up to the kernel of the initial correlation matrix
% = (%ik).

In order to prove this fundamental �ltering theorem we need the following lem-
mas.
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Lemma 1. If the process X satis�es the equation (4.1), then there exists such a
martingale Mt with respect to (�t; �), a¢ liated with A0t on At�, such that almost
everywhere

(4.8) �t(X(t)) = �(bx)
 I + Z t

0

�s(Z
?FZ)�+(s)ds+Mt:

Proof. Let us de�ne Mt on � by

Mt� = (Et � E0)X(0)� +
Z t

0

(Et � Es) (Z?FZ)��dA��� :

Obviously, that Mt� satis�es the (�t; �) �martingale condition EsMt� = Ms� for
all s � t, and

EtX(t)� = (bebx
 I) � + Z t

0

Es(Z
?FZ)�+(s)�ds+Mt�

due to Es(Z?FZ)��dA
�
�� = Es(Z

?FZ)�+�dt for � =  
 �;. The operator Mt,
a¢ liated with A0t can be correctly de�ned almost everywhere by

MtA� = AEtMt� = AMt�; 8A 2 At;
as in the case of (3.5) for X =Mt; �t(Mt) =Mt.
So, for any A 2 At we have

�t(X(t))A� = A

�bebx 
 �; + Z t

0

Es(Z
?FZ)�+(s)�ds+Mt�

�
=

= (�(bx)
 I)A� + Z t

0

�s(Z
?FZ)�+(s)A�ds+MtA�;

and, hence, (4.8) holds on the dense linear manifold At� of the support Kt of the
state � on A0t.

Lemma 2. A process Mt =
R t
0
(Z?DZ)��d bA�� with D(t) 2 Dt is a martingale with

respect to (�t; �), i¤ �t(Z?DZ)
�
+(t) = 0 for all t, that is almost everywhere

(4.9) D�
+(t) +D

�
� (t)�t(Z

�
+) + �t(Z

�
+)

�D�
+(t) + �t(Z

��
+ D

�
�Z

�
+)(t) = 0

and is the zero martingale (almost everywhere), i¤ D(t) 2 Dt0, which is equivalent
to �t(Z?D?DZ)�+(t) = 0 for all t almost everywhere, that is

(4.10) �t[(D
�
+ +D

�
�Z

�
+)

�(D�
+ +D

�
�Z

�
+)](t) = 0

and, hence, D�
+(t) = �t(Z

��
+ D

�
�Z

�
+)(t).

Proof. Due to commutativity of M(t) with At, we have to prove only that
EtMr� =Mt� for all r � t, i¤Et(Z?DZ)

�
+(t) = 0 for all t. Indeed, Et(Mr�Mt)� =R r

t
Et(Z

?DZ)�+(s)�ds = 0 for all r > t i¤ Et(Z?DZ)
�
+(s)� = 0 for all t � s, which

is equivalent to Et(Z?DZ)
�
+(t)� = 0 for all t due to EtEs = Et for t � s, written

in the form (4.10) for

(Z?DZ)�+ = D�
+ +D

�
� Z

�
+ + Z

��
+ D

�
+ + Z

��
+ D

�
�Z

�
+ :

If Mt is a martingale, then

�t[(Mr �Mt)
�(Mr �Mt)] = �t(M

�
rMr)�M�

tMt =
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t

�t(Z
?D?DZ)�+(s)ds � 0 :

Hence, if Mt is a zero martingale, jMr �Mtj2 = 0, and �t(Z?D?DZ)�+(s) = 0 for
all t � s, what is equivalent to �t(Z?D?DZ)�+(t) = 0 for all t, or to (4.10) in view
of

(Z?D?DZ)�+ = (D
�
+ +D

�
�Z

�
+)

�(D�
+ +D

�
�Z

�
+) :

But this means, that (D�
+ +D

�
�Z

�
+)� = 0, i.e. D(t) 2 Dt0. Conversely if D(t) 2 Dt0,

i.e. if h�j(Z?D?DZ)�+�i = 0, then Et(Z?D?DZ)�+(t)� = 0 because

hB�j(Z?D?DZ)�+�i = h�j(Z?D?(B 
 �)DZ)�+�i = 0

for any B 2 A0t.

Lemma 3. Let the linear complex span of fbyig and the span of fDig(t) with the
coe¢ cients in A0t, be commutative � �and ? �algebras C and Dt up to the ideals
C� � C and Dt0 � Dt correspondingly. Then the locally bounded process

(4.11) B(t) = (by0 + �i0~yi)
 I + Z t

0

(Z?(D0 + �
i
s
~Di)Z)

�
� (s)dA

�
�(s) ;

where y0 2 C, ~yi = byi� <  jbyi > b1, D0 2 Dt0, ~D�
� = D�

� , if (�; �) 6= (�;+),
and ~D�

+(t) = D�
+(t)� �t(Z?DZ)�+(t), de�ned by weakly measurable locally bounded

functions t 7! �it 2 A0t, �i0 2 C, compose a weakly dense �-algebra Ct in A0t.

Proof. Using the QS Itô formula (2.2), one obtains for dB = (Z?DZ)��dA
�
� with

D(t) = D0(t) + �
i
tD̂i(t) 2 Dt

d(B�B) = (Z?(D?(B 
 �) + (B 
 �)�D+D?D)Z)��d bA��
due to the commutativity of B(t) with Z�� (t). But D

?(t)D(t) 2 Dt and, hence
(D?(B 
 �) + (B 
 �)�D +D?D)(t) 2 Dt is an A0t linear combination of fDi(t)g
and a G 2 Dt

0, as well as b
�b 2 C for b = y0 + yi�

i 2 C is a linear combination ofbyi and a bb 2 C0. Hence, B�B is a process of the same form as B(t), what means
that the operators B(t) compose a �-subalgebra Ct of A0t. The algebra b is a weakly
dense in A0t because it has the same commutant At, as the family fY (s) : s � tg,
and hence generates the same von Neumann algebra A0t.

Proof of the Theorem 4. We shall look for the martingale M , de�ning the
decomposition (4.8) in the Lemma 1. Let us suppose, that it is a stochastic integral
nonanticipating span

Mt =

Z t

0

(Z?D̂iZ)
�
� (s)�

i
sdA

�
�(s) ; �it 2 A1t

of the observable martingales

~Yi(t) = Yi(t)�
Z t

0

�s(Z
?DiZ)

�
+(s)ds =

Z
Z?D̂iZd bA ;

where ~Yi(t) should not be taken into account, if Di(t) 2 Dt0, as it is a zero almost
everywhere martingale according to the Lemma 2. Due to the weak density of Ct in
A0t, proved in Lemma 3, it is su¢ cient to �nd the coe¢ cient �it from the condition

< �jB(t)�X(t)� >=< �jB(t)��t(X(t))� >
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for allB(t) in the form (4.11). Using the QS Itô formula (2.3) for dB = (Z?DZ)��dA
�
�,

where D = D0 + D̂i�
i, one can obtain

d < �jB�X� >=< �j(Z?(B 
 � +D)?FZ)�+� > dt =
= < �jB��t(Z?FZ)�+ + (Z?D?FZ)�+j� > dt :

On the other hand, taking into account that d�t(X(t)) = �t(Z
?FZ)�+(t)dt + dMt,

dM = (Z?D̂iZ)
�
��

id bA��, one can obtain
d < �jB��t(X)� >=< �jB��t(Z?FZ)�+� > dt+
+ < �j(Z?D?Z)�+�t(X) + (Z

?D? eDiZ)
�
+�

i
tj� > dt :

Hence, < �jZ?D? eDiZj�it� >�+=< �j
n
(Z?D?FZ)

�
+ � (Z?D?Z)

�
+ �t(X)

o
� >, what

is equivalent for D = D0 + eDi�
i to (4.5) and

(4.12) < �j(Z?D?
0DiZ)

�
+�

i
t� >=< �jf(Z?D?

0FZ)
�
+ � (Z?D?

0Z)
�
+�t(X)g� >

due to D? eDi = D
?Di and arbitrariness of �

i
t 2 A0t. But the left hand side of the

last equation (4.12) due to Schwarz inequality is zero:

< �j(Z?D?
0D0Z)

�
+� >=< (D

�
�Z

�
+ +D

�
+)0�j(D�

�Z
�
+ +D

�
+)i� >= 0

as < �j(Z?D?
0D0Z)

�
+� >= k(D�

�Z
�
+ + D�

+)0�k2 = 0 for D0 2 Dt0. On the other
hand, taking into account, that

< �j(Z?D?
0FZ)

�
+� >=< �j(Z?D0(X 
 �)Z)�+� >;

as < �j(Z?D?
0CZ)

�
+� >=< (D

�
�Z

�
++D

�
+)0�j(C��Z�++C�+)� >= 0 for C = F�X
�,

and due to ? �normality

D�
�D

��
� = D��

� D
�
�; D

�
�D

��
� = D��

� D
�
+; D

�
� D

��
� = D��

+ D
�
+

of D0 2 Dt0 as for a matrix�operator of the commutative matrix ?�algebra F 0t, one
can obtain

< �j(Z?D?
0FZ)

�
+� >=< �j(D�

+ +D
�
� Z

�
+)

�
0X� > +

+ < (D�
�Z

�
+ +D

�
+)0�jXZ�+� >=< �j(D��

+ X + Z��+ XD
��
� Z

�
+)0� >=

= < �j(D��
+ +D��

+ D
�+
� D�

+)0X� >=< �j(D�
+ +D

��
+ D

�+
� D�

+)
�
0�t(X)� > :

Here D�+
� is quasi-inverse conjugate matrix�operator for normal D�

� = D��
� D

�+
� D�

�,
and we used

(D�
�Z

�
+ +D

�
+)0� = 0; (D��

� Z
�
+ +D

��
� )0� = 0

as for ? �normal D0 2 Dt0. Hence, the right side of equation (4.12) is also zero:

< �j(Z?D?
0Z)

�
+� >=< �j(Z?D?

0Z)
�
+�t(X)� >;

because in the same way one can obtain

< �j(Z?D?
0Z)

�
+�t(X)� > = < �j(D�

+ +D
�
� Z

�
+)

�
0�t(X)� > +

+ < (D�
�Z

�
+ +D

�
+)0�jZ�+�t(X)� > = �j(D�

+ +D
�
+D

�+
� D�

+)
�
0�t(X)� > :

This proves also the uniqueness of the solution of the equation (4.5) up to the kernel
of the correlation matrix %(t) = (%ik) (t) because if %ik�

k
0 = 0 for an A0t �adapted
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vector process �0 = (�
i
0), then D0 = �i0Di 2 D0, and, hence,

< �i�j
�
�(Z?D?

iFZ)
�
+ � �(Z?D?

iZ)
�
+�(X)

	
� > =

+ < �j
�
(Z?D?

0FZ)
�
+(Z

?D?
0Z)

�
+�(X)

	
� > = 0:

In the case F�� = X��� taking into account that

�(Z?D(X 
 �)Z)�+ = D�
+�(X) +D

�
� �(XZ

�
+) + �(Z

��
+ X)D

�
+ + �(Z

��
+ D

�
�XZ

�
+)

and �(Z?DZ)�+�(Z) =

D�
+�(X) +D

�
� �(X)�(Z

�
+) + �(Z

�
+)

��(X)D�
+ + �(Z

��
+ D

�
�Z

�
+)�(X);

one can easily obtain the equation (4.6) from (4.5).
One should look for the initial condition �0(bx 
 I) = �(bx) 
 I for the equation

(4.2) in the linear form �(bx) =<  jbx > +~yi�
i, where �i should be found from

< bb jbz >=< bb j�(bz) > for all bb = by0 + �~yi�i, where by0 2 C and �i 2 C. This
gives the initial equation (4.7).

Corollary 3. If fyig are commuting orthogonal projectors in h, and also D?
i =

Di = D
2
i are commuting ?-matrix projectors, then the conditions of the Theorem 4

are full�lled, and they are full�lled also in the case D�
�i = 0. In particular, for the

case D�
� = I 
 ���, D

�
� = 0 = D�

+, D
�
+ = 0, corresponding to the counting output

process Y = N , the equation (4.6) gives

�t = �t(Z
��
+ XZ

�
+)(t)=�t(Z

��
+ Z

�
+)(t)� �t(X)(t) ;

if �t(Z��+ Z
�
+)(t) 6= 0. In the other case D�

� = 1 = D�
+, D

�
� = 0, D�

+ = 0, corre-
sponding to the output coordinate observation Y = Q, one obtains

(4.13) �t = �t(XZ
�
+ + Z

��
+ X)� �t(X)�t(Z�+ + Z��+ ) :

Indeed, the linear, span of commuting orthoprojectors fyig, and also A0t-span
of ?-projectors fDig is a �-and ?-algebra C and Dt correspondingly. In the case
D �
i� = 0 the product D

?
i �Dk is in Dt0 as matrix with (D?

iDk)
�
� = 0, (D

?
iDk)

�
+ = 0,

(D?
iDk)

�
� = 0. Such commutative matrices also form a commutative ?-algebra

Dt up to the ideal Dt0, because G?G = 0, and, hence, (GZ+jGZ+) = 0 for a
matrix-operator G with G�� = 0 for (�; �) 6= (�;+).

5. An application of the QS filtering

The applications of the �ltering equation (4.2) to the derivation of a posteriori
Schrödinger equation for the coordinate observation are given in [17, 18], and for
the counting observation are given in [19, 20].
In contrast to the usual Schrödinger equation, describing a closed quantum sys-

tem without observation, these new stochastic wave equations give the dynamics of
an open quantum system undergoing the nondemolition measurements which are
continuous in time. Thus the continual wave packed reduction problem is solved
by the quantum �ltering method for the typical QS models of observation such as
a quantum particle is a bubble chamber [18] (di¤usive observation) and an atom
radiating the photons [20] (counting observation). Here we consider another ex-
ample of the quantum nonlinear �ltering �the QS spin localization, describing the
continuous collapse of the vector polarization ~p = (p1; p2; p3) for the spin 1

2 of an
electron under a continuous nondemolition measurement in a magnetic �eld. The
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polarization ~p(t) at the time instant t > 0 is given by the conditional expectations
(3.5)

(5.1) pj(t) = �t(Xj(t)) ; Xj(t) = U�(t)(x̂j 
 I)U(t) ;

where x̂j = �̂j are the Pauli matrices

�̂1 =

�
0 1
1 0

�
; �̂2 =

�
0 �i
i 0

�
; �̂3 =

�
1 0
0 �1

�
and U(t) is a QS unitary evolution in the Hilbert space H0 
 F . Here H0 is

the Hilbert space C2 
 L2(R3) of the spinors  (~r) =
�
 �
 +

�
(~r), where  �(~r),

~r 2 R3 are the wave functions of the nonrelativistic electron with the de�nite
z-projections � 1

2 of its spin ~̂s = 1
2 (�̂1; �̂2; �̂3) and probabilistic normalization

k k2
R
 (~r)+ (~r)dr = 1, where  + = j�j2 + j +j2, and F = �(E) is the Fock

space over the Hilbert space E = L2(R+)
 Cn.
The initial polarization ~p(0) = (p01; p

0
2; p

0
3) = ~p0,

p0j =

Z
 (~r)y�̂j (~r)d~r ; j = 1; 2; 3 ;

has the values in the unite ball B = f~p 2 R3 : j~pj � 1g, where j~pj2 = (~p; ~p) � p2,
i.e. can be mixed

P3
j=1(p

0
j )
2 < 1 even in the pure (vector) state  2 H0, k k2 =R

 (~r)y (~r)d~r = 1.
Let us suppose that the evolution U(t) de�nes the system of Langevin equations

(2.13) of the form

(5.2) d ~X + (i[ ~X;H] +
1

2

nX
i=1

[[ ~X;Lj ]; Lj ])dt = i
nX
j=1

[ ~X;Li]dVi :

Here ~X(t) = (X1; X2; X3)(t), H(t) = 1
2

P3
j=1 u

j(t)Xj(t) is the spin-Hamiltonian,
corresponding to the magnetic tense ~u(t) = (u1; u2; u3)(t) 2 R3,

Li(t) =
1

2

nX
j=1

rji (t)Xj(t) �
1

2
Ri(t)

are spin-operators, de�ned by the real vectors ~ri(t) = (r1i ; r
2
i ; r

3
i )(t) 2 R3, i =

1; : : : ; n, and Vi = 1̂ 
 2=A+i i = 1; : : : ; n are the independent standard Wiener
processes, represented by the input operators 1

i (A
+
i (t) � Ai�(t)), i =

p
�1 in the

Fock space F with respect to the initial vacuum state �; 2 F . The stochastic system
of the operator equations (5.2) corresponds to the unitary Markovian evolution (2.5)
in h
F , h = C2 with the generators

Z�� (t) = U(t)�(Ẑ�� (t)
 I)U(t)
� = �; i; : : : ; n
� = 1; : : : ; n;+

de�ned by the spin-operators

ẑik = �ik1̂ ; ẑi+ =
1

2
r̂i = ẑ�i ; ẑ�+ = �

1

2

�
1

4
r̂2 + iû

�
; i =

p
�1 ;
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where r̂i(t) =
P3

i=1 r
j
i (t)�̂j , r̂

2(t) =
Pn

j=1 r
2
i (t)1̂, û(t) =

3P
j=1

uj(t)�̂j . Such the

evolution realizes the output coordinate processes

Yi(t) = U(t)�Wi(t)U(t) = Qi(t); i = 1; : : : ; n;

satisfying the QS equations (2.4) in the form

(5.3) dYi = Ridt+ dWi ; dWi = 1̂
 2<A+i
of the indirect non-demolition observation of the noncommuting spin-operators

Ri(t) = U(t)�(r̂i(t)
 I)U(t) ; i = 1; : : : ; n :

The standard Wiener processes Wi, i = 1; : : : ; n, represented by the commuting
operators A+i (t)+A

i
�(t) in F , describe the independent errors _Yi�Ri as the white

noises _Wi. They do not commute with the white noises _Vi of the perturbations in
the quantum system (5.2):

(5.4) [ _Vi(s) ; _Wk(t)] = 2i�(s� t)�ik Î ;
due to

[Vi(s) ; _Wk(t)] = 2i[Â
i
�(s); Â

+
k (t)] = 2imin(s; t)�ik Î :

Proposition 3. Under the given assumptions the a posteriori spin polarizations
(5.1) satisfy the following system of nonlinear stochastic equations

(5.5) d~p+ (~p ^ ~u+ 1
2

nX
i=1

(r2i ~p� (~p; ~ri)~ri))dt =
nX
i=1

(~ri � (~p; ~ri)~p)d ~Yi ;

where d~Yi(t) = dYi(t)� (~p(t), ~ri(t))dt.

Proof. Let us consider the nonlinear �ltering equation (4.2) for the spin-operators
Xj(t), j = 1; 2; 3, which are equivalent to the Pauli matrices �̂j , j = 1; 2; 3. We can
use (4.2) for the evaluation of the expectations (5.1) because the conditions of the
Theorem 4 are ful�lled (see the Corollary of sec. 4). The innovating martingales
d~Yi = dYi � �t(ri)dt in this case are given by the di¤erences d~Yi = dYi � (~p; ~ri)dt
because

�t(Ri(t)) =
3X
j=1

rji (t)�t(Xj(t)) =
3X
j=1

rji (t)pj(t) :

Due to �ik(t)dt = �t(d ~Yi(t)d ~Yk(t)) = �ikdt, the coe¢ cients �it(Xj(t)) are given by

�it(~x) =
1

2
�t( ~X(t)Ri(t) +Ri(t) ~X(t))� �t( ~X(t))�t(Ri(t)) =

= ~ri(t)� (~p(t); ~ri(t))~p(t) ;

because �̂j r̂j + r̂j �̂j = 2r
j
i 1̂ for r̂i =

3P
j=1

rji �̂j , and

XjRi +RiXj = U(t)�(�̂j r̂i + r̂i�̂j)U(t) = 2r
j
i Î :

The vector-product ~p(t) ^ ~u(t) in (5.5) represents the expectations

i�t([ ~X(t) ; H(t)]) = i�t

0@1
2

3X
j=1

[ ~X(t) ; Xj(t)]uj(t)

1A ;
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because [~̂�; û] = �3i=1[~̂�; �̂i]u
i = 2

i ~̂� ^ ~u, and

[ ~X(t) ; H(t)] =
1

2
U(t)�([~̂�; û(t)]
 I)U(t):

In the same way one can obtain

r2i (t)~p(t)� (~p(t); ~ri(t))~ri(t) = (~p(t) ^ ~ri(t)) ^ ~ri(t)
as for the vector representation of the double commutator 12 [[

~X(t) ; Li(t)] ; Li(t)],
de�ning together with i[ ~X(t) ; H(t)] the products (Z?(t) ~X(t)Z(t))�+ in (4.2).
Now we can prove, that the continuous indirect nondemolition measurement (5.3)

of the quantum spin reduces any initial state of the electron at the limit t!1, to
the completely polarized one. This gives a kind of the stochastic ergodicity property
of the nonlinear system of quantum �ltering equation (5.5).

Theorem 5. Let ~p(0) = ~p0 2 B be an arbitrary initial polarization for the non-
linear quantum �ltering equation (5.5). Then this equation has a unique stochastic
solution ~p(t) 2 B, and p2(t) = (~p(t) ; ~p(t)) ! 1 at t ! 1 almost surely, if

�(t) =
R t
0

nP
i=1

jri(s)j2ds!1.

Proof. The vector stochastic equation (5.5) up to a renormalization ~f(t) =
�(t)~p(t) is equivalent to the linear stochastic equation

(5.6) d~f + (~f ^ ~u+ 1
2

uX
i=1

(r2i
~f � (~f; ~ri)~ri))dt = �

nX
i=1

~ridYi :

Indeed, let �(t) be the stochastic Itô�s integral

(5.7) �(t) = 1 +

Z t

0

uX
i=1

(~f(s); ~ri(s))dYi(s)

de�ned by the unique solution ~f(t) of this ordinary linear stochastic di¤erential

equation with the initial nonstochastic vector ~f(0) = ~p0. Then d� =
uP
i=1

(~f; ~ri)dYi,

and by Itô�s formula
d(�~p) = d�~p+ d�d~p+ �d~p

we obtain the equation for ~f = �~p i¤ ~p(t) satis�es the equation (5.5):

d~f + (~f ^ ~u+ 1
2

uX
i=1

r2i
~f � (~f; ~ri)~ri))dt = d�~p+ d�d~p+

+ �
uX
i=1

(~ri � (~p; ~ri)~p)d ~Yi =
uX
i=1

(~f; ~ri)~pdYi +
nX
i=1

(~ri � (~p; ~ri)~p)(~f; ~ri)dt

+

nX
i=1

(�~ri � (~f; ~ri)~p)(dYi � (~p; ~ri)dt) = �

nX
i=1

~ridYi :

This the unique solution of the nonlinear �ltering equation (5.5) with ~p(0) = ~p0 can
be written almost surely (�(t) 6= 0) as ~p(t) = ~f(t)=�(t), where ~f(t) is the solution
of the linear equation (5.6) with ~f(0) = ~p0, and �(t) is the integral (5.7).
In order to prove that almost surely j~p(t)j � 1, if j~p0j � 1, it is su¢ cient to show,

that
f2(t) = (~f(t); ~f(t)) � �(t)2 if ~f(0) = ~p0 :
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Using the Itô�s formula we obtain

df2 = 2(~f; d~f) + (d~f ; d~f) = 2�
uX
i=1

(~f; ~ri)dYi �

�
uX
i=1

(r2i f
2 � (~f; ~ri)2 � �2r2i )dt = d�2 + (�2 � f2)

uX
i=1

r2i dt ;

where d�2 = 2�d�+ (d�)2 = 2�
uP
i=1

(~f ; ~ri)(dYi + (~f; ~ri)). Hence

d(f2 � �2) = _�(�2 � f2)dt;

where _� =
uP
i=1

r2i � 0, and

�2(t)� (~f(t); ~f(t)) = e��(t)(1� (~p0; ~p0)); 8t :
Thus f2(t) � �2(t), if j�0j � 1, and f2(t) ! �2(t) exponentially at t ! 1, if
�(t) ! 1 (f2(t) = �2(t) ; 8t, if j~p0j = 1). This proves that ~p(t) = ~f(t)=�(t) ! 1
almost surely (�(t) 6= 0) due to the positivity of �(t).
Remark. The model (5.2) of continual nondemolition measurements of noncom-
muting spin-operators Ri(t), i = 1; : : : ; n in the quantum stochastic system (5.2) is
unique in the Fock space F = �(E) over the minimal Hilbert space E = L2(R+)
Cn.
It can not be realized in the framework of classical probability theory due to the
noncommutativity (5.4) of the quantum stochastic processes Vi(t) andWi(t) though
each of them can be described as the classical one separately due to the selfnonde-
molition (commutativity) property [Vi(t) ; Vk(s)] = 0 = [Wi(t) ; Wk(s)].
The result obtained here in a rigorous mathematical way corresponds to a rather

intuitive physical picture of the continual spontaneous collapse of the quantum spin
under the non-demolition observation. This proves the appropriateness of the given
quantum stochastic setup for the theory of continuous measurements and quantum
�ltering.
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