A Radon-Nikodym Theorem for Completely Positive Maps

V P Belavkin

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD E-mail: vpb@maths.nott.ac.uk

and

P Staszewski

Institute of Physics, Nicholas Copernicus University, Toruń, Poland

Originally published in: Report on Mathematical Physics, 24 (1986) 49–55.

Abstract

The aim of this paper is to generalize a noncommutative Radon-Nikodym theorem to the case of completely positive (CP) map. By only assuming absolute continuity with respect to another CP map the existence of a Hermitian-positive density as the unique "Radon-Nikodym derivative" is proved in the commutant of the Steinspring representation of the reference CP map.

1 Preliminaries and definitions

Let \mathcal{A} be a C*-normed algebra, and let $B(\mathfrak{h})$ denote the algebra of all bounded operators on a Hilbert space \mathfrak{h} . In this paper we will obtain a positive selfadjoint density operator ϱ for a completely positive map κ from \mathcal{A} into $B(\mathfrak{h})$ strongly absolutely continuous with respect to another such map ϕ given, say, by a faithful weight or trace φ as $\phi = \mathbf{1}\varphi$. It will be uniquely defined as a noncommutative generalization of Radon-Nikodym derivative κ_{ϕ} in the Hilbert space \mathcal{H} of Steinspring representation of ϕ .

To this end, we first recall the definition of compete positivity. If \mathcal{A} and \mathcal{B} are C*-algebras, M(n) $(n \geq 1)$ the algebra of $n \times n$ complex matrices and κ is a linear map from \mathcal{A} to \mathcal{B} , we shall say that κ is *n*-positive if the map

$$\kappa_n : \mathcal{A} \otimes M(n) \to \mathcal{B} \otimes M(n),$$

$$\kappa_n(a \otimes m) = \kappa(a) \otimes m, \quad a \in \mathcal{A}, m \in M(n),$$

is positive. The map κ is called completely positive if it is *n*-positive for all integers *n*.

The completely positive maps play an important role in the description of quantum channels and time evolutions of open quantum systems [2].

Let us consider two quantum systems described in terms of C*-algebras \mathcal{A} and \mathcal{B} . It can be easily shown that if the Heisenberg dynamics of the compound system is described by a *-endomorphism γ of $\mathcal{A} \otimes \mathcal{B}$, then the reduced dynamics as conditional expectation ϵ of γ corresponding to an independent state on \mathcal{B} is described by a completely positive identity preserving maps $\mu : \mathcal{A} \to \mathcal{A}$ (such $\mu = \epsilon \circ \gamma$ is usually called a dynamical map on \mathcal{A}). The complete positivity of a reduced dynamics was first pointed out by Kraus [4] in the context of state changes produced by quantum measurements.

If a C*-algebra \mathcal{A} describes an open physical system subject to completely positive dynamics, then any dynamical map of this system, considered in a representation ι , is a completely positive map of norm one $\kappa : \mathcal{A} \to B(\mathfrak{h})$, where $\kappa = \iota \circ \mu$.

Let us recall that the condition of complete positivity of κ can be written [5] in the form

$$\sum_{i,k=1}^{n} \left\langle \eta_{i} | \kappa(a_{i}^{*}a_{k})\eta_{k} \right\rangle \geq 0, \quad \forall \eta_{j} \in \mathfrak{h}, \, \forall a_{j} \in \mathcal{A}, \, j = 1, \dots, n, \, \forall n \in \mathbb{N}.$$

The condition of normalization of κ can be expressed in the form $\kappa(1) = 1$ if $1 \in \mathcal{A}$ and 1 stand for identities in \mathcal{A} and $B(\mathfrak{h})$, respectively.

According to the famous results of Stinespring [5] any (normalized) completely positive map $\kappa : \mathcal{A} \to B(\mathfrak{h})$ can be represented in the form

$$\kappa(a) = F_{\kappa}^* \pi_{\kappa}(a) F_{\kappa},$$

where $\pi_{\kappa} : \mathcal{A} \to B(\mathcal{H}_{\kappa})$ is a representation of \mathcal{A} on a Hilbert space \mathcal{H}_{κ} and F_{κ} is a bounded (isometric) linear operator from \mathfrak{h} into \mathcal{H}_{κ} . Such a representation of a completely positive map will be called spatial. The normalization condition for a dynamical map implies the isometricity $F_{\kappa}^*F_{\kappa} = \mathbf{1}$.

Let ϕ and κ denote completely positive maps from \mathcal{A} into $B(\mathfrak{h})$ and let $\{(a_{jm})_m, j = 1, \ldots, n\}$ be a family of sequences in \mathcal{A} . Such a family will be called a (ϕ, κ) family of sequences if for any $n \in \mathbb{N}$

$$\lim_{m \to \infty} \sum_{i,k=1}^{n} \left\langle \eta_{i} | \phi(a_{im}^{*} a_{km}) \eta_{k} \right\rangle$$

=
$$\lim_{m,r \to \infty} \sum_{i,k=1}^{n} \left\langle \eta_{i} | \kappa \left((a_{im} - a_{ir})^{*} (a_{km} - a_{kr}) \right) \eta_{k} \right\rangle = 0 \qquad (1.1)$$

$$\forall \eta_{j} \in \mathfrak{h}, \quad j = 1, \dots, n.$$

Now we generalize various forms and strengthened forms of the concept of absolute continuity [3] in the case of completely positive maps.

Definition 1 A completely positive map κ is called

(1) completely absolutely continuous with respect to a completely positive map ϕ if for any $n \in \mathbb{N}$

$$\inf_{m} \sum_{i,k=1}^{n} \left\langle \eta_{i} | \phi(a_{im}^{*} a_{km}) \eta_{k} \right\rangle = 0$$

for any increasing family $\{A_m\}$ of matrices $A_m = [a_{im}^* a_{km}]$ implies

$$\inf_{m} \sum_{i,k=1}^{n} \left\langle \eta_{i} | \kappa(a_{im}^{*} a_{km}) \eta_{k} \right\rangle = 0, \quad \forall \eta_{j} \in \mathfrak{h}, \, j = 1, \dots, n,$$

(2) strongly completely absolutely continuous with respect to ϕ if for any (ϕ, κ) family of sequences $\{(a_{jm})_m, j = 1, \dots, n\}$ we have for any $n \in \mathbb{N}$

$$\lim_{m \to \infty} \sum_{i,k=1}^{n} \left\langle \eta_i | \kappa(a_{im}^* a_{km}) \eta_k \right\rangle = 0, \quad \forall \eta_j \in \mathfrak{h}, \quad j = 1, \dots, n,$$

(3) completely dominated by ϕ if there exists a $\lambda > 0$ such that for any $n \in \mathbb{N}$

$$\begin{split} \sum_{i,k=1}^n \left< \eta_i | \kappa(a_i^* a_k) \eta_k \right> &\leq \lambda \sum_{i,k=1}^n \left< \eta_i | \phi(a_i^* a_k) \eta_k \right>, \\ \forall \eta_j \in \mathfrak{h}, \quad \forall a_j \in \mathcal{A}, \quad j = 1, \dots, n. \end{split}$$

It is rather obvious that $(3) \Rightarrow (2) \Rightarrow (1)$.

In the particular case $\phi(a) = \varphi(a)\mathbf{1}$, where $\varphi : \mathcal{A} \to \mathbb{C}$ denotes a positive functional on \mathcal{A} (e.g. a reference state, or trace), we shall say that κ is completely absolutely continuous or strongly completely absolutely continuous or completely dominated by the functional φ . If completely positive maps are of the form $\phi(a) = \varphi(a)\mathbf{1}, \kappa(a) = \varkappa(a)\mathbf{1}$, where φ, \varkappa are positive functionals on \mathcal{A} , then one can easily verify that our forms of absolute continuity (1)-(3) imply that \varkappa is (1') φ -absolutely continuous, (2') strongly φ -absolutely continuous, (3') φ -dominated, respectively in the sense of Gudder [3].

2 A Radon-Nikodym theorem for completely positive maps

Theorem 2 Let ϕ and κ be a bounded completely positive maps form \mathcal{A} into $B(\mathfrak{h})$ and let \mathcal{H} be a Hilbert space of a representation $\pi : \mathcal{A} \to B(\mathcal{H})$ in which ϕ is spatial, that is

$$\phi(a) = F^* \pi(a) F, \quad \forall a \in \mathcal{A}, \tag{2.1}$$

where F is assumed to be bounded operator $\mathfrak{h} \to \mathcal{H}$. Then

- (a) κ is completely absolutely continuous with respect to ϕ if and only if it has a spatial representation $\kappa(a) = K^*\pi(a)K$ with $\pi(a)K = \vartheta\pi(a)F$, where ϑ is a densely defined operator in the minimal \mathcal{H} , commuting with $\pi(\mathcal{A}) = \{\pi(a), a \in \mathcal{A}\}$ on the lineal $\mathcal{D} = \{\sum_j \pi(a_j)F\eta_j\}$.
- (b) κ is strongly completely absolutely continuous with respect to ϕ if and only if κ is spatial in (π, \mathcal{H}) and there exists a positive self-adjoint operator ϱ , uniquely defined on \mathcal{D} , affiliated with the commutant $\pi(\mathcal{A})'$ and such that

$$\kappa(a) = F^* \varrho \pi(a) F = (\varrho^{1/2} F)^* \pi(a) (\varrho^{1/2} F), \quad \forall a \in \mathcal{A},$$
(2.2)

(c) κ is completely dominated by ϕ if and only if (2.2) holds and ρ is bounded.

Proof. Let us first sketch the prove the part (a) given in [1].

The condition of absolute continuity means that κ is normal in the minimal spatial representation of ϕ with the support orthoprojector P_{κ} majorised by the support P_{ϕ} of ϕ . Therefore it is spatial, with the operator $K : \mathfrak{h} \to \mathcal{H}$ uniquely defining the operator $\vartheta = \pi'(K)$ on \mathcal{D} by

$$\pi'(K)\pi(a)F\eta = \pi(a)K\eta, \quad \forall A \in \mathcal{A}, \eta \in \mathfrak{h}.$$

such that it commutes with $\pi(\mathcal{A})$. The reverse is obvious.

Let us now prove the part (b) of our theorem.

 (\Rightarrow) Let π_{κ} be a representation of a C*-algebra \mathcal{A} in the Hilbert space \mathcal{H}_{κ} generated by the algebraic tensor product $\mathcal{A} \otimes \mathfrak{h}$ with respect to a positive Hermitian bilinear form

$$\left\langle \sum_{i} a_{i} \otimes \eta_{i} \right| \sum_{k} a_{k} \otimes \eta_{k} \right\rangle_{\kappa} = \sum_{i,k=1}^{n} \left\langle \eta_{i} | \kappa(a_{i}^{*}a_{k}) \eta_{k} \right\rangle$$
(2.3)

defined by the equality

$$\pi_{\kappa}(a) \Big| \sum_{j} a_{j} \otimes \eta_{j} \Big\rangle_{\kappa} = \Big| \sum_{j} a a_{j} \otimes \eta_{j} \Big\rangle_{\kappa}$$
(2.4)

(for details see [5]).

Let us denote by F_{κ} the bounded operator $\mathcal{H}_{\kappa} \to \mathfrak{h}$,

$$F_{\kappa}: \eta \mapsto |1 \otimes \eta\rangle_{\kappa}, \tag{2.5}$$

(a canonical isometry $\mathfrak{h} \to \mathcal{H}_{\kappa}$ if κ is normalized). Then we have [5]

$$\kappa(a) = F_{\kappa}^* \pi_{\kappa}(a) F_{\kappa}. \tag{2.6}$$

Define an operator I_{κ} in \mathcal{H} into \mathcal{H}_{κ} by the formula

$$I_{\kappa}: \sum_{j} \pi(a_{j}) F \eta_{j} \mapsto \left| \sum_{j} a_{j} \otimes \eta_{j} \right\rangle_{\kappa} = \sum_{j} \pi_{\kappa}(a_{j}) F_{\kappa} \eta_{j}.$$
(2.7)

This is a consistent definition of a linear operator on the lineal $\mathcal{D} \subseteq \mathcal{H}$ because condition (2) implies (1) from which, taking into account (2.1), (2.5) and (2.6), we obtain the condition

$$\Big(\Big\langle \sum_{k} \pi(a_{k}) F \eta_{k} \Big| \sum_{j} \pi(a_{j}) F \eta_{j} \Big\rangle = 0 \Big) \Rightarrow \Big(\Big\langle \sum_{k} a_{k} \otimes \eta_{k} \Big| \sum_{j} a_{j} \otimes \eta_{j} \Big\rangle_{\kappa} = 0 \Big).$$

Obviously, we have $F_{\kappa} = I_{\kappa}F$.

To prove that I_{κ} is closable let us first note that any sequence of elements of $\left\{ \left| \sum_{j} \pi(a_{j})F\eta_{j} \right\rangle \right\}$ can be expressed in the form $\left(\left| \sum_{j} \pi(a_{jm}F\eta_{j}) \right\rangle_{m} \right)_{m}$ be any sequence such that $\left(\left| \sum_{j} \pi(a_{jm})F\eta_{j} \right\rangle \right)_{m} \to 0$ and $\left(\left| \sum_{j} a_{jm} \otimes \eta_{j} \right\rangle_{\kappa} \right)_{m}$ is con-vergent. Then for any set $\eta_{j}, j = 1, \ldots, n$

$$\lim_{m \to \infty} \sum_{i,k} \langle \eta_i | \phi(a_{im}^* a_{km}) \eta_k \rangle$$

=
$$\lim_{m \to \infty} \sum_{i,k} \langle \eta_i | F^* \pi(a_{im})^* \pi(a_{km}) F \eta_k \rangle$$

=
$$\lim_{m \to \infty} \sum_{i,k} \langle \pi(a_{im}) F \eta_i | \pi(a_{km}) F \eta_k \rangle$$

=
$$\lim_{m \to \infty} \left\| \left| \sum_i \pi(a_{im}) F \eta_i \right\rangle \right\|^2 = 0.$$

Moreover,

$$\lim_{m,r\to\infty}\sum_{i,k} \langle \eta_i | \kappa ((a_{im} - a_{ir})^* (a_{km} - a_{kr})) \eta_k \rangle$$

=
$$\lim_{m,r\to\infty} \left\langle \sum_i (a_{im} - a_{ir}) \otimes \eta_i | \sum_k (a_{km} - a_{kr}) \otimes \eta_k \right\rangle_{\kappa}$$

=
$$\lim_{m,r\to\infty} \left\| \left| \sum_i (a_{im} - a_{ir}) \otimes \eta_i \right\rangle_{\kappa} \right\|^2 = 0,$$

hence $\left(\left|\sum_{i} a_{im} \otimes \eta_{i}\right\rangle_{\kappa}\right)_{m}$ is Cauchy by assumption. Hence $\left\{(a_{jm})_{m}, j = 1, \ldots, n\right\}$ form a (ϕ, κ) family of sequences. Then from the strong complete absolute continuity of κ with respect to ϕ we have for any $n \in \mathbb{N}$

$$0 = \lim_{m \to \infty} \sum_{i,k} \langle \eta_i | \kappa(a_{im}^* a_{km}) \eta_k \rangle$$

=
$$\lim_{m \to \infty} \left\langle \sum_i a_{im} \otimes \eta_i | \sum_k a_{km} \otimes \eta_k \right\rangle_{\kappa}$$

=
$$\lim_{m \to \infty} \left\| \left| \sum_i a_{im} \otimes \eta_i \right\rangle_{\kappa} \right\|^2.$$

This proves that I_{κ} is closable.

Denote by \bar{I}_{κ} its closure. Then there exists an adjoint operator I_{κ}^* defined on the lineal $\left\{ \left| \sum_j a_j \otimes \eta_j \right\rangle_{\kappa} \right\}$, dense in \mathcal{H}_{κ} , by the equality

$$\left\langle \sum_{j} a_{j} \otimes \eta_{j} \right| \sum_{k} a_{k} \otimes \eta_{k} \right\rangle_{\kappa} = \left\langle \sum_{j} \pi(a_{j}) F \eta_{j} \right| I_{\kappa}^{*} \sum_{k} a_{k} \otimes \eta_{k} \right\rangle.$$
(2.8)

The positive self-adjoint operator $\rho = I_{\kappa}^* \bar{I}_{\kappa}$ on the lineal $\{|\pi(a_j)F\eta_j\rangle\}$ is affili-ated with $\pi(\mathcal{A})'$ because on the domains of I_{κ} and I_{κ}^* we have

$$\pi_{\kappa}(a)I_{\kappa} = I_{\kappa}\pi(a), \quad I_{\kappa}^*\pi_{\kappa}(a) = \pi(a)I_{\kappa}^*, \tag{2.9}$$

Let us verify the first of the equalities (2.9). Taking into account (2.7) and (2.4)we have

$$\pi_{\kappa}(a)I_{\kappa}\Big|\sum_{j}\pi(a_{j})F\eta_{j}\Big\rangle = \pi_{\kappa}(a)\Big|\sum_{j}a_{j}\otimes\eta_{j}\Big\rangle_{\kappa}$$
$$=\Big|\sum_{j}aa_{j}\otimes\eta_{j}\Big\rangle_{\kappa}$$
$$=I_{\kappa}\Big|\sum_{j}\pi(aa_{j})F\eta_{j}\Big\rangle$$
$$=I_{\kappa}\pi(a)\Big|\sum_{j}\pi(a_{j})F\eta_{j}\Big\rangle.$$

Taking into account that $F_{\kappa} = I_{\kappa}F$, we obtain

$$\kappa(a) = F_{\kappa}^* \pi_{\kappa}(a) F_{\kappa} = F^* \varrho \pi(a) F$$
$$= (\varrho^{1/2} F)^* \pi(a) (\varrho^{1/2} F) = K^* \pi(a) K$$

where $K = \rho^{1/2} F$. (\Leftarrow) Let $\{(a_{jm})_m, j = 1, ..., n\}$ be a family of (ϕ, κ) sequences. Then $\left(\left| \sum_i \pi(a_{im}) F \eta_i \right\rangle \right)_m \to 0$ and moreover

$$0 = \lim_{m,r\to\infty} \sum_{i,k} \langle \eta_i | \kappa ((a_{im} - a_{ir})^* (a_{km} - a_{kr})) \eta_k \rangle$$

= $\lim_{m,r\to\infty} \sum_{i,k} \langle \eta_i | (\varrho^{1/2}F)^* \pi (a_{im} - a_{ir})^* \pi (a_{km} - a_{kr}) (\varrho^{1/2}F) \eta_k \rangle$
= $\lim_{m,r\to\infty} \langle \varrho^{1/2} \sum_i \pi (a_{im} - a_{ir})F \eta_i | \varrho^{1/2} \sum_k \pi (a_{km} - a_{kr})F \eta_k \rangle$
= $\lim_{m,r\to\infty} \left\| \varrho^{1/2} | \sum_i \pi (a_{im})F \eta_i \rangle - \varrho^{1/2} | \sum_i \pi (a_{ir})F \eta_i \rangle \right\|^2.$

Hence $\rho^{1/2} \left(\left| \sum_{i} \pi(a_{im}) F \eta_i \right\rangle \right)_m$ is Cauchy, and since $\rho^{1/2}$ is closed,

$$\varrho^{1/2} \left(\left| \sum_{i} \pi(a_{im}) F \eta_i \right\rangle \right)_m \to 0.$$

Then we have

$$\lim_{m \to \infty} \sum_{i,k} \langle \eta_i | \kappa(a_{im}^* a_{km}) \eta_k \rangle = \lim_{m \to \infty} \sum_{i,k} \langle \eta_i | (\varrho^{1/2} F)^* \pi(a_{im})^* \pi(a_{km}) (\varrho^{1/2} F) \eta_k \rangle$$
$$= \lim_{m \to \infty} \left\| \varrho^{1/2} | \sum_i \pi(a_{im}) F \eta_i \rangle \right\|^2 = 0.$$

This means that κ is strongly completely absolutely continuous with respect to ϕ . This completes the proof of part (a).

Let us prove part (c) of our theorem.

(⇒) Suppose κ to be completely dominated by ϕ . As the condition (3) implies (2), therefore (a) holds. It remains to prove that ρ is bounded. The boundedness of ρ follows from the following calculations:

$$\begin{split} \left\| \varrho^{1/2} \left| \sum_{i} \pi(a_{i}) F \eta_{i} \right\rangle \right\|^{2} &= \left\langle \varrho^{1/2} \sum_{i} \pi(a_{i}) F \eta_{i} \left| \varrho^{1/2} \sum_{k} \pi(a_{k}) F \eta_{k} \right\rangle \\ &= \sum_{i,k} \left\langle \eta_{i} | \kappa(a_{i}^{*}a_{k}) \eta_{k} \right\rangle \leq \lambda \sum_{i,k} \left\langle \eta_{i} | \phi(a_{i}^{*}a_{k}) \eta_{k} \right\rangle \\ &= \lambda \left\langle \sum_{i} \pi(a_{i}) F \eta_{i} \right| \sum_{k} \pi(a_{k}) F \eta_{k} \right\rangle \\ &= \lambda \left\| \left| \sum_{i} \pi(a_{i}) F \eta_{i} \right\rangle \right\|^{2}. \end{split}$$

(\Leftarrow) Suppose that $\rho^{1/2}$ is bounded, then

$$\begin{split} \sum_{i,k} \left\langle \eta_i \big| \kappa(a_i^* a_k) \eta_k \right\rangle &= \sum_{i,k} \left\langle \eta_i \big| (\varrho^{1/2} F)^* \pi(a_i^* a_k) (\varrho^{1/2} F) \eta_k \right\rangle \\ &= \left\langle \varrho^{1/2} \sum_i \pi(a_i) F \eta_i \big| \varrho^{1/2} \sum_k \pi(a_k) F \eta_k \right\rangle \\ &= \left\| \varrho^{1/2} \big| \sum_i \pi(a_i) F \eta_i \right\rangle \right\|^2 \le \| \varrho^{1/2} \|^2 \left\| \left| \sum_i \pi(a_i) F \eta_i \right\rangle \right\|^2 \\ &= \| \varrho^{1/2} \|^2 \sum_{i,k} \left\langle \eta_i \big| \phi(a_i^* a_k) \eta_k \right\rangle. \end{split}$$

Hence κ is completely dominated by ϕ .

The uniqueness of ϱ can be assured by choosing the smallest Hilbert space \mathcal{H}_{ϕ} in which $\phi(a)$ has the Steinspring form $\phi(a) = F^*\pi_{\phi}(a)F$. Note that, if $\phi = \mathbf{1}\varphi$, $\mathcal{H}_{\phi} = \mathfrak{h} \otimes \mathcal{H}_{\varphi}$, $\pi_{\phi}(a) = \mathbf{1} \otimes \pi_{\varphi}(a)$ and $F = \mathbf{1} \otimes f$, where $\mathcal{H}_{\varphi} \ni f$ is the space of the cyclic representation $\varphi(a) = f^*\pi_{\varphi}(a)f$ of a positive functional φ on \mathcal{A} .

The formulation of complete absolute continuity for CP maps belongs to VPB, and the Main Theorem in the formulation of Parts (a) and (b) was originally given in [1].

References

- [1] V.P. Belavkin, *In*: Works of the 8th All-Union Conference on Coding Theory and Transmission of Information, Kuibyshev, June 1981 (in Russian).
- [2] V. Gorini, A. Kossakowski and E.C.G. Sundarshan, *preprint*, University of Texas at Austin, ORO-3992-200, CPT 244 (1975).
- [3] S. Gudder, Pacific J. Math., 80, (1979), 141.
- [4] K. Kraus, Ann. Phys. 64 (1971), 311.
- [5] W.F. Stinespring, Proc. Amer. Math. Soc. 6 (1955), 211.