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Abstract. We consider two variants of a quantum-statistical generalization
of the Cramér-Rao inequality that establishes an invariant lower bound on the
mean square error of a generalized quantum measurement. The proposed com-
plex variant of this inequality leads to a precise formulation of a generalized
uncertainty principle for arbitrary states, in contrast to Helstrom�s variant [1]
in which these relations are obtained only for pure states. A notion of canon-
ical states is introduced and the lower mean square error bound is found for
estimating of the parameters of canonical states, in particular, the canonical
parameters of a Lie group. It is shown that these bounds are globally attain-
able only for canonical states for which there exist e¢ cient measurements or
quasimeasurements.

1. Introduction

The development in recent years of the theory of generalized quantum mea-
surements (see the review [2] and the literature cited there) has made it possible
to introduce the concept of a quasimeasurement of incompatible observables de-
scribed by noncommuting operators and, using this, to solve a number of problems
of the quantum theory of information and communication [3, 4, 5, 6, 7, 8], give for
pure states a precise formulation of a generalised Heisenberg uncertainty principle
for quantities such as, for example, the time and energy, or phase and number of
quanta [9], and to de�ne precisely what is a measurement of the time and phase
in quantum mechanics [8], [9]. In accordance with this theory, every quantum
measurement in this generalised sense is described by a positive resolution of the
identity operator 1̂ on the Hilbert space H of state-vectors j i of the observed
quantum system:

(1.1) 1̂ =

Z
�(d{) :

Here �(�) is an additive mapping (measure) on the Borel algebra B (X) of a mea-
surable space X 3 { into the set of Hermitian-positive (i.e. nonnegative-de�nite
Hermitian) operators in H. Such normalized positive measure � will be called
quantum probability measure (QPM), or simply quasimeasurement. If % is a quan-
tum state density operator, the probability Pr (B) of an event { 2 B in such a
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2 V P BELAVKIN

measurement is evaluated in accordance with the formula

Pr (B) = Tr%�(B) ; B 2 B (X)
where Tr denotes the usual trace in H. If the quantum measure � in (1.1) is
orthogonal, �(A)� (C) = 0 for every A \ C = ;, then it is a projerctor-valued
measure. The generalised measurement in this case with X = Rn reduces to an
ordinary measurement of the commuting self-adjoint operators

(1.2) x̂j =

Z
{j�(d{) ; {j 2 R;

For the nonorthogonal QPM, there is no one-to-one correspondence between (1.1)
and (1.2). The corresponding generalized measurements, which are called hence-
forth approximate measurements of the operators (1.2), are not described as the
measurements of these Hermitian operators even if they commute, though fre-
quently they can be described uniquely by a single non-Hermitian (non-normal)
operator (see Section 4) or, more generally, by a family of noncommuting Hermit-
ian operators.
There is an intimate connection between the concept of a quasimeasurement as

approximate measurement and the concept of an indirect quantum measurement
(an indirect measurement is an ordinary measurement in an extended quantum
system that includes the original system as a part [3]). This connection is a sim-
ple consequence of the Naimark�s well-known theorem on the existence for every
nonorthogonal QPM of an orthogonal one in an extended Hilbert space that com-
presses to the original QPM on the subspace H.
One of the results of this paper is to show how the concept of a generalized

measurement enables us to formulate precisely a generalised Heisenberg uncertainty
principle for quantities such as the time and energy, phase and number of quanta,
angle of rotation and angular momentum as a consequence of a quantum Cramer-
Rao type inequality for the arbitrary states. The �rst members in each of these pairs
�the time, phase, and angle �cannot, as is well known, be described by Hermitian
operators in H, though their measurement can be described as a statistical estimate
of the corresponding parameters of quantum states. As Helstrom has shown in [9]
by means of the symmetric quantum Cramér-Rao inequality which he introduced
in [11], the variances of the results of any measurements to obtain such an estimate
for pure states cannot be lower than a certain level that is inversely proportional to
the variances of the generators of the unitary representations of the corresponding
translation groups (i.e., the operators of the energy, number of quanta, or angular
momentum). For example, if a pure state of a harmonic oscillator is known up to
the oscillator phase, its state-vector is unitarily equivalent to a �xed vector j 0i 2 H
and can be described by the family

j �i = ei�n̂=~j 0i;
where n̂, the operator of the number of quanta, is generator of the representation
ei�n̂=~ of the group of phase translations. If a QPM � determines the probabilities

Pr (d�j�) = h �j�(d�) j �i ;
on [��; �] such that mean value of � coincides with �,

M� [�] :=

Z
�Pr (d�j�) = �;
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it de�nes an unbiased estimate of the unknown value of the phase � as the mea-
surement result �. The corresponding quasimeasurement, described by the induced
QPM �(d�) on (��; �], is an approximate measurement of the "phase operator"
q̂ =

R
��(d�) :The mean quadratic error of the measurement approximation for

such q̂ is given by the quantum expectation h �j�̂2 j �i of the positive operator

�̂2� =

Z
(�� q̂)�� (d�) (�� q̂) ;

and the total variance describing the estimation accuracy of �,

(1.3) R� :=

Z
(�� �)2 Pr (d{j�) � M�

h
(�� �)2

i
;

is the sum of this and mean square distance of the operator q̂ and �1̂:

R� = h �j
�
�̂2 + (q̂ � �)2

�
j �i :

The quantum Cramer-Rao inequality proves in this case that the second variance

cannot be below the level ~2=4
D
(n̂� n�)2

E
�
, and thus R� � ~2=4G�, where

G� = h �j (n̂� n�)
2 j �i =

D
(n̂� n0)2

E
0
;

is Fisher information as the variance of n̂ with n� = h �jn̂ j �i = n0. This is
Helstrom�s precise formulation of the generalized Heisenberg�s uncertainty principle
for the conjugate quantities � and n̂, the �rst of which is described by a generalised
measurement satisfying the unbiased condition (1.3).
In Section 2, we give the invariant formulation (2.4) of the Helstrom�s Cramér-

Rao inequality, and we also consider another generalization (2.7) of this inequality,
which in contrast to Helstrom�s can be naturally adapted to a complex situation
and enables one to obtain straightforward a multidimensional generalization of the
uncertainty relations (3.5) for not only pure but also mixed states. We also obtain
the noncommutative generalization (3.12) of these relations for the generators and
canonical parameters of unitary representations of an arbitrary Lie group. These
generalizations are intimately related to the canonical families of states described
in Section 3, whose particular role is disclosed in Section 4, in which it is shown
that if the lower bounds for the mean square errors of a measurement are to be
attainable, it is necessary and su¢ cient that the corresponding density operators
have the canonical form (3.1).

2. Invariant Bounds of the Cramér-Rao Type in quantum Statistics

1. Let f%#; # 2Mg be a family of density operators %# in H that describe
the statistical state of a quantum system as a smooth function of unknown real
parameters # =

�
#1; : : : ; #m

�
in a given manifold M � Rm. Every simultaneous

measurement of these parameters can be described in H by QPM � which de�nes
a row-vector random variable � 2 Rm with probability distribution Pr (d�j#) =
Tr%#�(d�) known up to #. The mean quadratic errors of the measurement are
determined by the components

Rik# = M#

h�
�i � #i

� �
�k � #k

�i
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of the covariance matrix R# =
�
Rik#

�
by means of expressions trC|R � cikR

ik given
by a Hermitian-positive matrix C = [cik] of the quadratic cost form

c (�; #) =
�
�i � #i

�
cik

�
�k � #k

�
which plays the role of a metric tensor. Here and in what follows the Einstein
summation convention is assumed:

cikR
ik
# �

X
i

X
k

cikR
ik
# :

In what follows we shall consider only those measurements that satisfy the unbiased
conditions M#

�
�i
�
= #i, under which the matrix R# is the covariance matrix of

the estimates #i, and the mean square error for �xed R# takes a minimal value.
Helstrom established [1] for the covariance matrix R# of such measurements

a lower bound by using the concept of operators ĝi of symmetrized logarithmic
derivatives of the function %# with respect to #

i. He de�ned these ĝi by means of
the equations

(2.1) ĝi%# + %#ĝi = 2@i%#; @i :=
@

@#i
:

As in the classical case [11], this bound is determined by the matrix G# = [Gik (#)]
of the covariances of the logarithmic derivatives ĝi = ĝi (#) of Eqs. (2.1), de�ned
in the symmetrized form as

(2.2) Gik (#) =
1

2
hĝi (#) ĝk (#) + ĝk (#) ĝi (#)i#

(Note that due to Tr@i%# = 0

hĝi (#)i# := Tr%#ĝi (#) = 0
for all #). The corresponding inequality has the form

(2.3) R# � G�1# ; # 2M;

and is understood in the sense of nonnegative de�niteness of the matrix
�
Rik# �Gik#

�
,

where Gik# are the components of the inverse matrix G�1# : GijGjk = �ik. The in-
equality (2.3) establishing an uncertainty relation between the variances of estima-
tion and the variances of the corresponding logarithmic derivatives, is a quantum
analog of the Cramér-Rao inequality [11]. The matrix G# which we call symmetric
quantum Fisher information, or more fair, Helstrom information, is one of possible
generalizations of classical Fisher information. It plays the role of a metric tensor
that locally de�nes the geodesic distance

sG (#; #+ d#) =
�
Gik (#) d#

id#k
�1=2

in the parameter space M � Rm; this is analogous to Fisher information distance
in classical statistics.
2. Further, we shall consider a slightly more general situation in which the

state parameters are not the measured parameters #i but local coordinates � =�
�1; : : : ; �n

�
of a smooth manifold S parametrizing the unknown % = % (�). The

measured parameters are assumed to be known smooth functions #i (�) of the
unknown parameters �k. The corresponding generalization of Helstrom�s inequality
(2.3) is a lower bound for the matrix R (�) = [Rik (�)] of the covariances

Rik (�) = M [(�i � #i) (�k � #k) j�]
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of the estimates �i in the form

(2.4) R (�) � D (�)G (�)�1 D (�)| :

that is invariant under the choice of the state coordinates � =
�
�k
�
. Here D (�)

is the matrix [Dik (�)] of the partial derivatives Dik (�) = @#i=@�
k, D| = [@i#k],

and G (�) = [Gik (�)] is the symmetric quantum Fisher information corresponding
to the coordinates �, that is a matrix of the covariances

Gkl (�) = Tr [ĝk (�) � ĝl (�) % (�)] ; ĝk � ĝl =
1

2
(ĝkĝl + ĝlĝk) ;

of the Helstrom�s logarithmic derivatives

% (�) ĝk + ĝk% (�) = 2
@

@�k
% (�)

with respect to the coordinates �k.
The inequality (2.4) reduces to the classical Cramér-Rao inequality only when

the family f% (�)g is commutative. For noncommutative families, one can have
other quantum generalizations [4], [5] of the Cramér-Rao inequality based on other
de�nitions of the logarithmic derivatives; these lead to other lower bounds for R
that may di¤er from Helstrom�s invariant bound DG�1D|. Moreover, in the non-
commutative case it makes sense to consider also the complex-valued parameters
as any quantum state has the natural complex coordinatization % = ���=Tr���
in terms of the complex Hilbert-Schmidt operators � with is the adjoint operators
��as their complex conjugated. In the case of complex parameters #i 2 C repre-
sented by analytic functions #i (�; ��) the particular importance is acquired by the
following invariant generalization of the Cramér-Rao inequality based on the right
and left logarithmic derivatives which were proposed independently by the author
[3] and Yuen and Lax [5].

3. Suppose the parameters �k are given in pairs
�

k; �k

�
2 R2 which are

complexi�ed as 1
2


k + i�k � �k. Such parameters � 2 R2n, considered as complex
n-columns, will often be denoted as � =

�
�k
�
2 Cn, with 
 = � + �� 2 Rn and

� = Im� 2 Rn. The partial derivatives @k = @=@�k, �@k = @=@��
k
are de�ned by

means of the partial derivatives @=@
i, @=@�i in the usual manner:

@

@�k
=

�
@

@
k
+ i

2

@

@�k

�
;

@

@��
k
=

�
@

@
k
� i

2

@

@�k

�
such that @k�

l = �lk =
�@k�

l and @k��
l
= 0 = �@k�

l.
The estimated parameters #i; i = 1; : : : ;m as functions of complex �; �� can still

be real functions of 
 and �. They are not assumed to be analytic with respect
to �, but di¤erentiable independently with respect to � and �� (e.g. given by bi-
analytic functions #i (�; �0) at �0 = ��). We de�ne the non-Hermitian right and left
logarithmic derivatives of the density operator % (�; ��) by the relations

(2.5) %ĥk =
@%

@��k
; ĥ�k% =

@%

@�k
; k = 1; : : : ; n:

The operators ĥk = ĥk (�; ��) of the right derivatives with respect to ��k are Her-
mitian conjugate at each � to the operators ĥ�k = ĥk (�; ��)

� of the left derivatives
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with respect to �k, and they both have zero expectations

Trĥk (�; ��) % (�; ��) = 0 = Trĥ
�
k (�; ��) % (�; ��) :

The corresponding quantum Fisher information is given by the matrix H = [Hkl]
of covariances

(2.6) Hkl (�; ��) = Tr
h
ĥk (�; ��) ĥl (�; ��)

�
% (�; ��)

i
:

Obviously this matrix is Hermitian-positive, and under the assumption of its non-
degeneracy it de�nes a positive-de�nite metric

ds2H = Hkld��
kd�l

in some complex domain O � Cn of the unknowns � 2 O.
4. Suppose a simultaneous measurement of the parameters #i is described by

a QPM � on X that determines the estimates �i of #i as complex-valued random
variables of { 2 X with respect to the distribution

Pr [d� j �; ��] = Tr� (d�) % (�; ��)
parametrized by �.
The mean quadratic errors of the measurement are determined by the matrix

R (�; ��) = [Rij (�; ��)] of covariances

Rij (�; ��) = M
�
(�i � #i)

�
��j � �#j

�
j�; ��

�
which can be written as the sum Rij =



�̂2ij
�
+ Qij of two kind errors. The �rst

one is given by the Hermitian-positive matrix of the elements

�̂2ij
�
(�; ��) = Tr

�
�̂2ij% (�; ��)

�
as the quantum expectation of the covariance operators

�̂2ij =

Z
(�i � q̂i)� (d�) (�i � q̂j)

for the quantum estimates

q̂i =

Z
�i�(d�)

The second forms the mean quadratic error matrix Q = [Qij ]

Qij (�; ��) =


(q̂i � #�)

�
q̂�j � �#j

��
(�; ��)

for the the operators q̂i "estimating" the parameters #i.
Assuming the convergence of the integral de�ning q̂i, the unbiasness condition

M [#ij�; ��] :=
Z
�i Pr (d� j �; ��) = #i (�; ��) ;

for the estimates �i can be written in the form of quantum unbiasness

hq̂ii (�; ��) = Trq̂i% (�; ��) = #� (�; ��) :

Under this assumption the matrix Q (�; ��) = [Qij (�; ��)] is the covariance matrix
of the operators q̂i, and as it is shown in the Appendix, it has lower bound Q �
DH�1Dy, and therefore

(2.7) R (�; ��) � D (�; ��)H (�; ��)�1 D (�; ��)y ;
where D = D (�; ��), as in (2.4), is the matrix [dik] of the derivatives @#i=@�k, and
Dy =

�
@k#i

�
is the Hermitian adjoint matrix.
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As we shall see, even in the real case #i = �#
i
, the bound (2.7) may lead to a

lower bound that di¤ers from Helstrom�s bound (2.4). We shall say that (2.7) is the
right lower bound. Besides this bound, we can consider other bounds, for example,
the �left�bound, which is based on the left logarithmic derivatives with respect to
��. All these bounds are proved in the same way as (2.7) see the Appendix. Note
that the right bound in (2.7) is invariant under the change of variables

�
�k
�
7! (#i)

by replacing the derivatives with respect to �k by derivatives with respect to the
new variables #i = #i (�; ��) only under the analyticity condition @#i=@��k = 0 of
the transforming functions #i (�; ��) = #i (�) and the condition of nondegeneracy
of the matrix of the derivatives @#i=@�k. Therefore, the inequality (2.7) and its
noninvariant form R � H�1 are not equivalent unless not only the nondegeneracy
of the matrix D but also the analyticity condition @#i=@��k = 0 (i.e., the condition
that the functions #i (�; ��) are independent of ��) hold.

3. Canonical States and Uncertainty Relations

In classical mathematical statistics, a particular role is played by canonical, or
exponential, families of probability distributions, for which the Cramér-Rao bound
is attainable for a special choice of the parameters #. In Section 4, we shall show
that in quantum statistics an analogous role is played by the density operators of
the form

(3.1) %
�
�; ��

�
= �

�
�; ��

��1
e�

kx̂�k%0e
��kx̂k ;

where x̂k; k = 1; : : : ; n are linearly independent operators in H, which may be non-
Hermitian: x̂�k 6= x̂k, and even need not commute with the conjugates x̂ix̂�k 6= x̂�kx̂i.
We shall assume that the generating function

(3.2) �
�
�; ��

�
= Tr%0e

��kx̂ke�kx̂
�
k ;

of the moments of these operators in the state % = %0 is de�ned in an open neigh-
borhood of the origin � = 0 of the complex space Cn with �nite �rst and second
moments

@

@��i
�j�=0 = 0 =

@

@�k
�j�=0; hx̂ix̂�ki0 =

@

@��i

@k
@�k

ln�j�=0

(the operators x̂k in (3.1) can always be chosen to have zero expectations hx̂ii0 =
@i ln�j�=0 = 0 in the state %0). We shall call that the family of density opera-
tors (3.1) canonical, with the parameters �k canonically conjugate to the quantum
variables x̂k. In contrast to the classical case, even for selfadjoint x̂k one can mean-
ingfully consider complex values of the conjugate parameters �k.
Particular interest attaches to the case, which does not have a classical analog, of

the canonical states (3.1) when �k are imaginary, �k = i�k, and x̂k are selfadjoint,
x̂k = ŝk = x̂�k. The parameters �k = ~�k (~ is Planck�s constant) then take the
dimension and meaning of the classical variables which are dynamically conjugate
to their shift generators ŝk. For example, [9], if ŝ is the Hamiltonian, then � is the
time, if ŝ is the momentum then � is the position, and if ŝ is the number of quanta, or
angular momentum, then � is the phase, or polar coordinate. For �k = i~�1�k � �k�
the canonical states %� = �

�
��;

���
�
(3.1) become unitary equivalent

(3.3) %� = e
i�k ŝk=~%0e

�i�k ŝk=~

to the state %0 = % (0; 0) corresponding to the zero value � = 0.
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Now we shall see that the inequality (2.7) with �k = ~ Im�k applied to the
canonical family (3.3) with commuting ŝk = ŝ�k immediately provides the precise
formulation of a generalised Heisenberg uncertainty principle for an unbiased es-
timation of �. In this the right and left logarithmic derivatives with respect to
�� and � for the family (3.1) are equal to the symmetric logarithmic derivatives
ĝk (
) = ŝk � �k (
) with respect to 
 = � + ��:

ĥk = ŝk �
@

@��i
�
�
� + ��

�
= ĝk = ŝk �

@

@�k
�
�
� + ��

�
= ĥ�k:

This implies that the Fisher informations H
�
�; ��

�
and G (x) coincide with the

covariance matrix S
�
� + ��

�
of the commutative family ŝk given at the state (3.1)

by

(3.4) Sik = �
�
� + ��

��1 D
(ŝi � �i) e(�+

��)
j
ŝj (ŝk � �k)

E
0
:

While the complex quantum Cramer Rao bound (2.7) for the unbiased estimation of
real parameters #i (
) with 
k = �k+ ��

k
coincides in this case with the Helstrom�s

invariant bound (2.4), it also gives immediately the uncertainty relation

(3.5) R� �
1

4
~2S�10 ; S0 = S (0)

for the unbiased estimation of �i = ~�i based on the imaginary parts �i = Im�i for
the canonical coordinates � with the �xed 
 = 0.
Indeed, setting �i = ~ Im�i such that @�i=@�k = ~�ik=2i, we obtain from (2.7)

the generalised Heisenberg uncertainty relation in the form

R
�
�; ��

�
� 1

4
~2S�1

�
� + ��

�
:

Here R is the mean quadratic error matrix

R = M
��
�i � ~ Im�i

� �
�j � ~ Im�j

�
j�; ��

�
of unbiased estimates 
i and S is the matrix of the covariances (3.4) de�ning the
uncertainty relation (3.5) at 
 = � + �� = 0.
The uncertainty relation (3.5) acquires the following matrix meaning: The covari-

ance matrix R� = R
�
��;

���
�
of the unbiased estimates for the canonical parameters

�i of the translation group represented in H by the unitary transformations (3.3)
with the selfadjoint generators ŝk is in the canonical uncertainty relation with the
covariance matrix of these generators,

Sik (�) := Tr%� ŝiŝk = Tr%0ŝiŝk � Sik (0) ;

in the initial (and any other transformed) state %0 = % (0).
This uncertainly relation holds for all commuting Hermitian operators ŝi, not

only for those like momenta which have dynamically conjugate observables ŝi. Hel-
strom derived this generalized uncertainty relation (3.5) in one dimensional version
from his bound for the particular case of pure states %0 = j'0i h'0j [9]. However
for this purpose the symmetric inequality (2.3) is inappropriate, and this is why his
derivation involved so complicated matrix elements calculations.
The uncertainty relations naturally correspond to not symmetric but antisym-

metric logarithmic derivatives, de�ned as the Hermitian solutions p̂k = p̂k (�) of
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the von Neumann equations

[%�; p̂k] := %�p̂k � p̂k%� =
~
i

@

@�k
%�

For the canonical family (3.3) we have the solutions p̂k (�) = ŝk which are uniquely
de�ned by the condition Tr%�p̂k (�) = 0. Assuming that the solutions p̂k (�) exist
for an arbitrary parametric family %�, one can derive the generalized uncertainty
relation for the covariance matrix R� of the unbiased estimates

M� [�i] = hq̂ii� = �i; q̂i =

Z
�i�(d�) ;

in terms of the new quantum Fisher information matrix S� = [Sik (�)] given by the
symmetric covariances

Sik (�) = Trp̂i (�) � p̂k (�) %�:
It simply follows form of matrix inequality

R� � Q� �
~2

4
S�1� ;

where Q� = [Qik (�)] is the matrix of covariances

Qik (�) = h(q̂i � �i) (q̂k � �k)i�
with R� � Q� =

R
[(�i � q̂i)� (d�) (�k � q̂k)] � 0.

Indeed, due to the unbiasness hq̂i� = � we have mean canonical commutation
relations

h[q̂i; p̂k (�)]i� = Trq̂i [p̂k (�) ; %�] = i~
@

@�k
hq̂ii� = i~�ik:

From this and h[q̂; p̂]i� = 2 Im h~qp̂i�, where ~q = q̂ � �, ~p = p̂ � �, we derive Q �
~2S�1=4 by Schwarz inequality and jh~q~pi�j � jIm h~q~pi�j:


~q2
�
�



~p2
�
�
� jh~q~pi�j

2 � 1

4
jh[q̂; ~p]i�j

2
=

�
~
2

�2
:

Note that Heisenberg�s uncertainty principle is usually proved only for a single
state % = %0 in the form of the Robertson inequality R0 � ~2S�10 =4 for the vari-
ances R0 and S0 of the dynamically conjugate variables described by the canonical
operators q̂i and p̂k in H which satisfy the exact canonical commutation relations

[q̂i; q̂k] = 0; [q̂i; p̂k] = i~�ikI; [p̂i; p̂k] = 0.

A more precise matrix multidimensional generalization of the Robertson inequality
in terms of the covariances of estimates of an arbitrary family of noncommuting
operators is proposed in [7]. Note that Robertson inequality implies the uncertainty
relation

R� � ~2S�10 =4; S0 = [Trŝiŝk%0] = S�

for the unbiased measurements of the unknown expectations �i = hq̂ii� in the canon-
ical states (3.3) with

R
�i�(d�) = q̂i, where q̂i satisfy the canonical commutation

relations with the canonically conjugated ŝk = p̂k. In this case the unbiasness

M� [�] = hq̂i� = Tr%0q̂ (�) = hq̂i0 + � = �;

simply means that hq̂ii0 = 0 for the state %0 as

q̂ (�) = e�i�k ŝ
k

q̂ei�k ŝ
k

= q̂ + �
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Every such unbiased measurement has the variance R� � Q�, and among such
measurements there is an optimal one corresponding to R� = Q�. It is realized
by the direct measurement of all q̂i described by the orthogonal spectral measure
�(d�) = E (d�) of the commutative family q̂i =

R
�iE (d�). Note that in this case

p̂ (�) = p̂, and both S� = S0 and Q� = Q0 do not depend on � in any state % = %�.
Our analysis extends the Heisenberg uncertainty principle to any unbiased mea-

surement satisfying hq̂i� = �. Note that without unbiasness the uncertanicy relation
doesn�t hold for such dynamically conjugate variables as polar coordinate described
by the bounded selfadjoint operator ��1̂ � q̂ � �1̂ and the discrete angular mo-
mentum ŝ. In this case one can �nd a state %0 (e.g. the eigen state of angular
momentum for which the uncertancy relation is obviously not true as S0 = 0 and
Q0 � �2). There is no good operator q̂ in H satisfying the unbiasness condition
hq̂i� = �.
We now consider the general case of the non-commuting generators x̂k in the

canonical family (3.1). Di¤erentiating (3.1) with respect to ��
k
and comparing the

result with (2.5), we obtain

(3.6) ĥk = e
���kx̂k�

@

@��
k
��1e

��kx̂k = x̂k
�
��
�
� �k;

where x̂k
�
��
�
= e�

��kx̂k @

@��k
e
��kx̂k , and �k = �k

�
�; ��

�
is the expectation value of

x̂k
�
��
�
at the state % = %

�
�; ��

�
:

�k = Trx̂k
�
��
�
%
�
�; ��

�
=

@

@��
k
ln�

�
�; ��

�
:

The right Fisher information matrix (2.6) is therefore the matrix of the covariances

(3.7) hik = Tr
�
x̂i
�
��
�
� �i

� �
x̂k
�
��
�
� �k

��
%
�
�; ��

�
=

@2 ln�

@��
i
@�k

�
�; ��

�
of the operators x̂k

�
��
�
depending analytically on �� (but with not necessarily ana-

lytic expectations xk at %
�
�; ��

�
). The inequality (2.7) in the neighborhood of the

point � = 0 can therefore be expressed in the form of the uncertainty relation

(3.8) R
�
�; ��

�
& D

�
�; ��

�
S
�
�; ��

��1
D
�
�; ��

�y
;

which establishes an inverse proportionality between the matrix S =
�
Sik

�
�; ��

��
of

the covariances

(3.9) Sik = Tr%
�
�; ��

�
(x̂i � �i) (x̂k � �k)

�

for the operators x̂k = x̂k (0) with the expectations �k = Trx̂k%
�
�; ��

�
and the

covariance matrix R
�
�; ��

�
of the estimates �i for the functions #i

�
�; ��

�
of the

canonical parameters �k.
Let us consider the case when the operators x̂k are the generators of a Lie algebra.

Suppose the operators x̂k satisfy a Lie algebra commutation relations

(3.10) x̂ix̂k � x̂kx̂i = Cjikx̂j ;

where Cjik are the structure constants. In this case, the operators x̂i
�
��
�
in 3.6) are

linear combinations of the generators x̂i = x̂i (0) [12]:

(3.11) x̂i
�
��
�
= K�1

�
��
�j
i
x̂j ;
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where K
�
��
�
= ��

k
Ck
�
e
��kCk � I

��1
is an n � n matrix which exists in, at least,

a certain neighborhood O � Cn of the origin � = 0, and Ck =
h
Cjik

i
are the

generators of the adjoint matrix representation

CiCk � CkCi = CjikCj

of the commutation relations (3.10). Expressing the covariance matrix H of the
operators (3.11) in terms of the covariances (3.9) of the generators x̂i, we obtain in
place of 3.8) the exact inequality

(3.12) R
�
�; ��

�
�
�
DKyS�1KDy

� �
�; ��

�
:

In the case (3.3), the family %� is unitarily homogeneous with respect to the Lie
group having Hermitian generators x̂k = ŝk = x̂�k and canonical parameters �i. As
in the case of (3.5), we obtain a generalized uncertainty relation

(3.13) R� �
~2

4
K|�S

�1
0 K�;

where K� = i�kC
k
�
ei�kC

k � 1
��1

and Ck = ~�1Ck. In the domain � � Rn of
convergence of the series�

I� ei�kC
k
��1

=
1X
m=1

eim�kC
k

; � 2 �;

the inequality (3.13) determines the lower bound of the mean quadratic error of
measurement of the canonical parameters for the unitary representation ei�k ŝ

k

of
the Lie group generated by the selfadjoint ŝk = ~�1ŝk.

4. Efficient Measurements and Quasimeasurements

1. In classical statistics, estimates whose covariance matrix attains the minimal
value, transforming the Cramér-Rao inequality locally or globally into an equality,
are said to be e¢ cient (locally or globally, respectively). In quantum statistics,
because of the nonunique generalization of the Cramér-Rao inequality, the concept
of e¢ ciency, introduced by analogy with the classical concept, loses its universality,
and the de�nitions of locally e¢ cient estimates [1], [4], [5] based on the di¤erent
variants of this generalization are not equivalent. Therefore, we shall distinguish
e¢ cient measurements (or estimates), for which the invariant Helstrom�s bound
(2.4) is attained, from e¢ cient measurements corresponding to the right bound(2.7),
calling the former Helstrom e¢ cient and the latter right e¢ cient. As we shall
show here, the concept of right e¢ ciency is more universal: Measurements that are
globally Helstrom e¢ cient are also right e¢ cient, but not vice versa. We show �rst
that Helstrom e¢ cient estimates exist globally for the canonical families of density
operators (3.1) if the operators x̂k are commuting self-adjoint operators ŝk, and the
estimated parameters # (
) are taken to be their expectations

(4.1) #i (
) = Trŝi% (
) = �k (
)

as the derivatives �k = @ ln�=@
k for the moment generating function � (
) =

Tr%0e

k ŝk of the canonical states

(4.2) % (
) = ��1 (
) e

k ŝk=2%0e


k ŝk=2
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corresponding to zero imaginary parts Im�k = 0 in (3.1) with �
�
�; ��

�
= �

�
� + ��

�
.

Di¤erentiating the operator-function (4.2) we �nd the symmetrized logarithmic
derivatives ĝk = ŝk��k with respect to 
k. Thus, the symmetric Fisher information
(2.2) in this case is the matrix of covariances

(4.3) Sik = Tr% (
) (ŝi � �i) (ŝk � �k) =
@2 ln�

@
i@
k
:

for the operators ŝk. However these covariances as the second derivatives of ln�
are the derivatives @�i=@


k = @�k=@

i of (4.1). That de�nes the matrix D =�

@#i=@

k
�
in (2.4) as

D (
) =
�
@�i (
) =@


k
�
= S (
) :

The inequality (2.4) therefore takes the form Q (
) � S (
), i.e. [Qik � Sik] � 0,
where Q (
) = R (
) is the covariance matrix of the operators q̂ = ŝ realizing the
unbiased estimates by the joint measurement of ŝi. One can take the spectral QPM
� of the family ŝi =

R
{i�(d{) and de�ne these estimates as spectral values {k for

ŝk. The covariance matrix R (
) of such estimates obviously achieves its minimal
value

R = M# [(�i � #i) (�k � #k)] = M# [({i � �i) ({k � �k)] = S:
Thus, for the canonical families (4.2) with commuting self-adjoint ŝk there exists a
Helstrom-e¢ cient estimation � = { of the functions (4.1) de�ned by the canonical
parameters �k, and this is realized by an a simultaneous measurement of the com-
muting observables ŝk. The domain of this e¢ ciency obviously coincides with the
domain O � Rn in which � (
) < 1 is twice di¤erentiable. It can be shown that
the opposite assertion holds in the following sense.
Suppose that the estimates �i (i.e., the results of a measurement) have, in a

certain domain, di¤erentiable mean values #i (�) and the covariances Rik (�), and
suppose the matrices R = [Rik (�)] and D =

�
@#i=@�

k
�
satisfy the following regu-

larity conditions

(4.4)
@

@�i
�
R�1D

�j
k
=

@

@�k
�
R�1D

�j
i

(which are trivial in one-dimensional case). Then one can introduce the canonical
parameters 
k by setting 
k (�0) = 0 for an �0 at which # (�0) = 0.
It is readily veri�ed that for a family of density operators % (
) of the canonical

form (4.2) the regularity conditions are satis�ed for the e¢ cient measurement of
#k = �k (
) as in this case

R (
) = S (
) ; D (
) = S (
)

and therefore
�
R�1D

�
= I. The proof of the opposite assertion, that if the regular-

ity conditions are satis�ed, global Helstrom e¢ ciency holds only for the canonical
families 4.2), is given in the Appendix for the more general complex situation. Thus,

Theorem 1. Under the above regularity condition the inequality (2.4) becomes an
equality in the domain O � Rn i¤ the density operators % (�) have the canonical
form (4.2), where ŝk; k = 1; : : : ; n, are Hermitian commuting operators in H,
and the canonical coordinates 
 are functions of the parameters � de�ned by the
equations

@

@
k
ln� (
) = #k (�) ; k = 1; : : : ; n:
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The optimal estimation in this case reduces to the measurement of the Hermitian
operators ŝk described by their joint spectral resolution of identity, and the minimal
mean square error is determined by the matrix of their covariances (4.3).

2. Suppose that in a domain O � Cn of some complex coordinates � =
�
�k
�

the unbiased estimates �k have mathematical expectations #k (�) and covariances
Rik (�; ��) satisfying the regularity conditions (4.4)

(4.5)
@

@�i
�
R�1D

�j
k
=

@

@�k
�
R�1D

�j
i
;

@

@��k
R�1D = 0:

(which simply means in one-dimensional case the analyticity @R�1D=@�� = 0).
Then, as in the real case, one can introduce the canonically conjugate parameters
�k = �k (�) as analytic functions satisfying the the equations

@�i=@�k =
�
R�1D

�i
k
; �k (�0) = 0:

and the functions �k (�) are analytic by virtue of the condition (4.5).

Theorem 2. Under the above formulated regularity conditions, the inequality (2.6)
becomes an equality if and only if the family f% (�; ��) ; � 2 Og has the canonical
form (3.1), where %0 = % (0; 0), the operators x̂k; k = 1; : : : ; n, have simultaneously
in H the right eigen QPM

(4.6) 1̂ =

Z
�(d{) ; x̂k�(d{) = {k�(d{) ; { = ({1; : : :{n) 2 Cn,

and the canonical parameters �k; k = 1; : : : ; n are de�ned by the equations

(4.7)
@ ln�

�
�; ��

�
@��

k
= #k (�; ��) ; � 2 O:

The optimal estimation in this case reduces to a quasimeasurement of the non-
Hermitian operators x̂k described by the resolution of the identity (4.6), and the
minimal mean square error is determined by the matrix of the covariances

(4.8) Hik = Tr% (x̂i � #i) (x̂k � #k)� :

The su¢ ciency is proved as in Section 2. Using the invariance of the right
bound (2.7) under the analytic transformations � 7! �, we choose as the displaced
�k determining this bound the canonical parameters �k of the family of density
operators (3.1). The elements @#i=@�

k of the matrix D with allowance for #� =
@ ln�=@��

i
then coincide with the elements (3.7) of the matrix H. Since the operators

x̂k commute in accordance with (4.6),

x̂ix̂k =

Z
{i{k�(d{) = x̂kx̂i;

we have #k = �k; H = S, where �k are the mathematical expectations of x̂k and
S is the covariance matrix (3.9) of these operators. Therefore, the inequality (2.7)
takes the form R � S. It remains to show that the measurement described by
the resolution of the identity (4.6) leads to an estimation for which R = S even in
the case when the operators x̂k do not commute with their Hermitian conjugates:
x̂�i x̂k 6= x̂�kx̂i (which is the case for a nonorthogonal resolution (4.6)). For this, it is
su¢ cient to take into account the representation

(4.9) x̂i =

Z
{i�(d{) ; x̂ix̂

�
k =

Z
{i �{k�(d{) ;
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obtained by integrating the equations in (4.6) x 2 Cn and also the conjugate equa-
tion �(d{) x̂�k = �{k�(d{). Because of (4.9), the covariances

(4.10) Rik =

Z
({i � #i)

�
�{k � �#k

�
Tr%�(d{)

of the estimates �k = {k obtained on the basis of the quasimeasurement of the
operators q̂k = x̂k coincide with the covariance Hik of these operators, which proves
that this generalized measurement is e¢ cient for the density operators (3.1). The
proof of the opposite assertions of Theorem 2 follows from the very derivation of
the inequality (2.7) and is given in the Appendix.
3. Thus, the condition of (right) e¢ ciency requires the existence of commuting

operators that have a joint right spectral resolution and play the role of su¢ cient
statistics, which we call right-e¢ cient. At the same time, it is su¢ cient to restrict
the study of these operators to the minimal subspace generated by the domains
%
�
�; ��

�
H with density operators %

�
�; ��

�
for � 2 O. further, if one considers only

real values of the parameters #k
�
�; ��

�
, the optimal estimation can be described by

non-Hermitian and noncommuting (with the conjugate) operators of right-e¢ cient
statistics and is not therefore Helstrom e¢ cient. However, estimates that are Hel-
strom e¢ cient correspond, in accordance with Theorem 1, to the special case of
right e¢ ciency for which the operators x̂k are Hermitian. If the operators x̂k in
(3.1) are not Hermitian but commute with the Hermitian conjugates, the right ef-
�cient estimates also coincide with the complexi�ed Helstrom e¢ cient estimates
However, the commutativity x̂kx̂�i = x̂�i x̂k need not hold.
Example. Suppose x̂k = 'k (â), where 'k are entire functions Cr ! C; â =

(âi; : : : ; âr) are boson annihilation operators satisfying the commutation relations

[âi; âj ] = 0; [âj ; â
�
i ] = �ij 1̂:

It is well known that the operators â have right eigenvectors j�i 2 H; � 2 Cr, that
de�ne a nonorthogonal resolution of the identity:

1̂ =

Z
j�i h�j

rY
i=1

1

�
dRe�id Im�i; âi j�i = �i j�i :

Obviously, the operators x̂ = ' (â) also have a right eigen resolution of the identity
(4.5), where

�(d{) =
Z
� (d{ ; ' (�)) j�i h�j

rY
i=1

1

�
dRe �id Im�i

(� (d{; �) is the Dirac delta measure of unite mass at the point �). Therefore, the
optimal estimation of the parameters #k = @ ln�=@��

k
of the density operators (3.1)

for x̂ = ' (â) is right e¢ cient and reduces to a coherent measurement and extension
of the estimate # = ' (�) with respect to the result �. For the special case when
the function ' (�) is linear and the state %0 is Gaussian, this fact was established
in [5].
Note that besides right and left lower bounds one can also consider other, com-

bined bounds by means of the factorization [10] # = #+ + #�, de�ning right deriv-
atives with respect to #+ and left derivatives with respect to #�. An interesting
question is this: Is the class of e¢ cient statistics exhausted by statistics for which
at least one such bound can be attained?
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4. In conclusion, let us consider the question of the (right) e¢ ciency of the
estimation of the parameters �k themselves of the canonical families (3.1). The
inequality (2.7) corresponding to this case #k = �k has the form R � H�1 where H
is the matrix of the derivatives (3.7). Without loss of generality, we shall assume
that Trx̂k%0 = 0.

Theorem 3. The inequality R � H�1 becomes an equality if and only if the
operators x̂k in (3.1) have a right joint spectral measure (4.5), the generating
function of the moments (3.2) of these operators in the state %0 is Gaussian:

�
�
�; ��

�
= exp

n
��
i
Hik�

k
o
, where Hik does not depend on � and ��, and the un-

biased estimates �k = �k ({) are taken to be linear functions �k = Hki{i of the
results {k of simultaneous quasimeasurement of the observables x̂k.

The proof of the su¢ ciency of these conditions for the existence of the right
e¢ cient estimation is obvious: From the fact that the matrix H coincides with
the covariance matrix S of the operators x̂k it follows that the covariance matrix
R = H�1HH�1 is equal to H�1.
The necessity follows from the necessary conditions of right e¢ ciency of Theorem

2, according to which the family %
�
�; ��

�
must also have the form

(4.11a) %
�
�; ��

�
= ��1e�kx̂

k�
%0e

��kx̂
k

;

where �
�
�; ��

�
= Tr%0e

�kx̂
k

e
��kx̂

k�
, @
@��k

ln� = �k, and the operators x̂k have the
joint right resolution of the identity

1̂ =

Z
�(d{) ; x̂k�({) = {k�(d{) ; { =

�
{k
�
2 Cn:

Comparing (4.2) and (3.1), we obtain ��kx̂
k = ��

k
x̂k, whence

�k = Hki�
i; �

�
�; ��

�
= ��

i
Hik�

k; x̂k = Hkix̂i:

Theorem 3 has been proved.

5. Appendix

1. Let us proof the inequality (2.7). First consider the one-dimensional case.
Let q̂ be an operator in H for which

(5.1) Trq̂% (�; ��) = # (�; ��) :

Di¤erentiating (5.1) with respect to � and using the de�nition (2.5) and the nor-
malization condition Tr% (�; ��) = 1, due to which Tr%ĥ� = 0, we obtain

d#

d�
= Tr% (q̂ � #) ĥ�:

Since the covariance Tr% (q̂ � #) ĥ� satis�es the Schwarz inequality

(5.2)
���T hr% (q̂ � #) ĥ�i���2 � Tr �% (q̂ � #) (q̂ � #)��Tr h%ĥĥ�i ;

which is the condition of non-negativity of the determinant of the 2 � 2 matrix of
covariances Tr%ĥiĥ�k, i = 0; 1, where ĥ0 = (q̂ � #) ; ĥ1 = ĥ, we can write

(5.3) Tr% (q̂ � #)
�
q̂� � �#

�
�
����d#d�

����2
,
Tr%ĥĥ�;
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This inequality obviously establishes a lower bound for the variance of the estima-
tion of the parameter # = # (�; ��) in the class of ordinary measurements described
by normal operators q̂. However since the normality condition q̂q̂� = q̂�q̂ was not
used in the derivation of (5.3), this bound gives a lower bound for the variance
of any unbiased estimation of #. Indeed, if �(d�) ; � 2 C is a QPM describing
the unbiased estimation as a generalized measurement in H, then the operator
q̂ =

R
��(d�) satisfy the condition (5.1). From the Hermitian positivity

(5.4) (�� q̂)� (d�) (�� q̂)� � 0 (� � 0)
it follows that

R
j�j2�(d�) � q̂q̂�, and

(5.5)
Z
j�� q̂j2�(d�) � (�� q̂) (�� q̂)� :

Taking the mathematical expectation of both sides of (5.4) and bearing in mind

that the variance R = M#

h
j�� #j2

i
of the estimation # is

R = Tr%

Z
j�� #j2�(d�) ;

we obtain in conjunction with (5.3)

(5.6) R � Tr% (q̂ � #) (q̂ � #)� � jdj2 =g;
where we have denoted d = d#=d�; g = Tr%ĥĥ�. Thus, for the one-dimensional
case the inequality (2.7) has been proved.
2. Equality can be attained in (5.5) if, �rst, the expectations of the two sides of

(5.5) coincide and, second, the Schwarz inequality becomes an equality. The �rst
condition actually establishes equality in (5.4). More precisely:

Lemma 1. Suppose the ranges % (�; ��)H of density operators f% (�; ��) : � 2 Og
generate the whole of H. Then the equality Tr%R = 0 for any non-negative de�nite
operator R in H and all � 2 O implies that R = 0.

It is su¢ cient to show that in H there is no vector j�i of the form j�i = %1=2 j i
for which h�jR j�i 6= 0. But this follows from the inequality

Tr%1=2R%1=2 � h j %1=2R%1=2 j i :
which holds for any non-negative R when h j  i = 1.
Applying this result to the operator R equal to the di¤erence of the right- and

left-hand sides of (5.5), we �nd, under the conditions of the lemma, that equality
holds in (5.5) only if

(�� q̂)� (d�) (�� q̂)� = 0, or q̂�(d�) = ��(d�) :

This proves that for the existence of right e¢ cient unbiased estimation in some
domain O 3 � it is necessary to have an operator q̂ with a right-eigen QPM in the
subspace generated by the subspaces % (�; ��)H, with Trq̂% (�; ��) = �. In the case
of real spectrum � 2 R such an operator q̂ is obviously selfadjoint.
The second condition of equality in (5.6) is equivalent to the condition of linear

dependence % (q̂ � �) = t%ĥ, where t = d=g is a constant. Setting

tŝ = q̂ � # (0)
we obtain the equations

@%=@�� = % (ŝ� �) ; @%=@� = (ŝ� �)� %
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where t� = # (�)�# (0). Its solution of these equations with the boundary condition
% (0; 0) = %0 has the canonical form (3.1). The the operator q̂ = tŝ + # (0) should
have right-eigen QPM, so the operator ŝ should. This proves for the one-dimensional
case, the necessity of the canonicity of the density operators % (�; ��) for the existence
of the right e¢ cient estimation formulated in Theorem 2. In the Hermitian case
x̂� = x̂, this also proves the necessity of Theorem 1.
3. A multidimensional generalization is obtained from the one-dimensional case

by taking
q̂ � � = (q̂i � �i) ��i; ĥ = ĥk��

k
;

where �i; i = 1; : : : ;m, �k; k = 1; : : : ; n, are arbitrary complex numbers. Remem-
bering that then

Tr% (q̂ � �) ĥ� = ��i @#i
@�k

�k;

we obtain from (5.2) for �k =
�
H�1Dy

�k
i
�i the second of the inequalities

Rik��
i�k � Tr% (q̂i � �i) (q̂k � �k)� ��i�k �

�
DH�1Dy

�
ik
��i�k;

which holds for arbitrary q̂i for which Tr%q̂i = #i. Setting

q̂i =

Z
�i�(d�) , where

Z
�(d�) = 1̂; � 2 Cm;

is the resolution of the identity describing the estimator �i = {i, and applying the
inequality (5.5) for q̂ = q̂i��

i; � = �i��
i, we obtain for the matrix R of the covariances

of #i satisfying the �rst of the inequalities (5.6), whence (2.7) follows because �i is
arbitrary.
The inequality (2.6) becomes an equality for � 2 O only if

q̂i�(d�) = �i�(d�) ; and % (q̂i � �i) = tik@%=@��k; where t
i
k =

�
DH�1

�i
k
;

whence with allowance for T =
�
T ik
�
to be constants nondegenerated matrix we

obtain (3.1).
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