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Abstract
The necessary and su¢ cient conditions of optimality of the decod-

ing of quantum signals minimizing the Bayesian risk are generalized for
the Shannon mutual information criteria. It is shown that for a linear
channel with Gaussian boson noise these conditions are satis�ed by co-
herent quasi-measurement of the canonical annihilation amplitudes in the
received superposition.

1 Necessary and su¢ cient conditions of opti-
mality

In [5, 3] dealing with optimization of the reception of quantum signals such as
electromagnetic waves in the optical band, the search for the necessary con-
ditions of optimality in the class of randomized strategies based on indirect
measurements was our main concern. According to this universal approach, we
shall specify the randomized strategies by the operator probability measures
�(d�) corresponding to quasi-measurements of certain noncommuting observ-
ables bj =

R
�j�(d�) such that

�(d�) � 0;
Z
�(d�) = 1̂:

The equations derived in [5, 3] have the same form for both risk and information
criteria of optimality:

(R(�)� �)�(d�) = 0; � =

Z
R(�)�(d�); (1.1)

�Originally published in: Radio Eng. Electron. Phys., 19 (7), p. 39, 1974. [trans. from
Radiotekhnika i Electronika, 1974, 19, 7, 1391�1395]
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where R(�) =
R
c(#; �)�(#)P (d#) is the "a posteriori" risk or nega-information

operator in the Hilbert space of quantum states H. Here �(#) is the family of
density operators describing the state of the quantum channel depending on the
transmitted information # with a prior distribution P (d#) and c(�; #) is a given
penalty function in Bayes case and the random information

i(#; �) = ln
P (d�j#)R

P (d�j#)P (d#) ; P (d�j#) = Tr�(d�)�(#) (1.2)

with the opposite sign, c (#; �) = �i (#; �), for the optimization criterion of
maximum Shannon information

I�;# =

ZZ
ln

P (d�j#)
P (d�j#)P (d#)P (d�j#)P (d#):

It is obvious that operators �o(d�) satisfying equation (1.1) are degenerate
(provided R(�) � � 6= 0) and for each � have a range of values belonging
to the zero eigensubspace of the di¤erence R(�) � �. If operators B(�) �
R(�) � � have a unique eigenvector '� for each �, corresponding to the zero
eigenvalue, then the operator measure �o(d�) is proportional to the projection
operators �o(d�) = 'o�'

o�
� d�. In the general case when degeneration of the

zero eigenvalue of operators B(�) is possible: B(�)'�� = 0, � 2 N(�), each
resolution of identity

R
�(d�) = 1̂ satisfying Equation. (1.1) may be included

in some more detailed resolution
R
'
'

�

d
 = 1̂ for 
 = (�; �). For di¤erent 


the vectors '
 describing the �elementary�measurements need not necessarily
be orthogonal: '�
'
� 6= 0.
In Bayes case the su¢ cient conditions for optimality are very simple: the

operators �o(d�) satisfying Equation. (1.1) minimize the average risk

R =


c(#; �)

�
= Tr

Z
R(�)�(d�) (1.3)

if and only if the condition of nonnegative de�niteness

B(�) � R(�)�
Z
R(�0)�o(d�0) � 0 (1.4)

is satis�ed for all �. Actually, for any other operators measure �(d�) 6= �o(d�)
the di¤erence

R� Ro = Tr
�Z

R(�)�(d�)�
Z
R(�)�o(d�)

�
= Tr

Z
B(�)�(d�)

is nonnegative since it is the trace of a sum of products of nonnegative operators
B(�);�(d�).
Conditions (1.1) and (1.4) are applicable also for the optimization of the

processing of quantum signals according to the maximum likelihood criterion.
For this it is su¢ cient to consider that this criterion can be formally taken as
Bayes criterion with uniform (unnormalized) a priori distribution P (d#) = d#
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and a simple penalty function c(�; #) = ��(# � �). This means that the a
posteriori risk operator R(�) should in this case be replaced by the density
operator �(#) at the estimate point # = �. We shall call the quantum strategies
�o(d�) satisfying conditions (1.1) and (1.4) for R(�) = ��(�) optimum with
respect to the maximum likelihood criterion. We shall give the solution of the
problem of the discrimination of nonorthogonal signals for the following simplest
case.
In [1] the concept of coherent processing a boson� signal b = (b�), i.e., of

indirect linear measurement realized by measuring the superposition b + a�0,
where a0 is vacuum boson noise, was introduced. The question of the physical
realization of this measurement was discussed at the Third All-Union Conference
on the Physical Principles of Information Transmission by Laser Radiation. In
particular it was shown [2] that coherent measurement of a narrowband optical
signal can be realized by using an ideal heterodyne reception (ideal count of
photons at di¤erent points of superposition of the received and the reference
waves). The backward vacuum wave radiated by an ideally matched receiver
into the communication line plays the role of noise a0.
In [1] the quality of such processing was also de�ned from the maximum

likelihood criterion for the case where b is the superposition of a coherent signal
# = (#�) and a Gaussian boson noise a. The use of equations (1.1) and (1.4)
and a suitable representation of the density operator makes it obvious that the
processing described by the coherent projectors

�(d�) = j�i h�jd�(�); d�(�) =
Y
�

1
�dRe��d Im�� (1.5)

is optimal. Such a suitable representation of the density operator �(#) of the
displaced Gaussian state b = # + a is the representation in the form of the
expression

�(#) = jLj�1 : exp
�
b� #)yL�1(b� #)

	
: (1.6)

normally ordered with respect to the operators b�; b. Here L


h�����i

 is the

correlation matrix of the noise a, the colon-brackets : � : denote normal order
such that the operators a� act to the left after the operators a, and jLj � detL.
Putting R(�) = ��(�);� = �jL�1j1̂, and considering the well-known [4]

properties
R
j�i h�jd�(�) = 1,

: p(b�; b) : j�i = p(b�; �) j�i

of the coherent vectors, we at once �nd that equation (1.1) has a unique solution
coinciding with (1.5). The nonnegative de�niteness of the operator

B(�) = jL�1j
�
1� : exp

�
� (b� #)yL�1(b� #)

	
:
�

�We recall that we are giving the name boson signal to the quantum signal described by the
operators f�� ; ���g satisfying the commutation relations ����0���0�� = 0; �����0��

�
�0�� =

���0 . In particular, the optical signal is described by the photon annihilation and creation
operators a and a� respectively.
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is beyond doubt.
If the signals (#t) are known apart from the phase, the coherent processing

is no longer optimum; however, it remains quasioptimal if the dimensionality of
# is large.

2 Local optimality according to information cri-
terion

In the case of the information criterion it is di¢ cult to get a global criterion of
optimality of the solutions �o(d�) of equation (1.1) minimizing the �Shannon�
risk R = �I�;# in view of its nonlinear dependence on �(d�) [the �penalty
function�[3] also depends on �(d�)]. Therefore we give a di¤erential criterion
of optimality.
We shall restrict the discussion to operator probabilities of degenerate form

�(d�) = '�'
�
�d�, where ('�) is the complete family of vectors

R
'�'

�
�d� = 1̂.

It can be shown that this is su¢ cient for the veri�cation of local optimality
�2R > 0 of the degenerate solutions �o(d�) = 'o�'

o�
� d� of Equation. (1.1).

Making use of the dependence of the variations �'� = '� � 'o�Z
('o��'

�
� + �'�'

o�
� + �'��'

�
�) d� = 0;

it is not di¢ cult to �nd the increment �R = R�Ro of Shannon risk (1.3) (with
the penalty function (1.2) depending on '�) at the stationary point '

o
� with an

accuracy up to second-order terms in �'� :

�R '
ZZ �

c (#; �) �p(�j#)P (d#)

= 1
2

h�
� ln p(�j#)

�2 � �� ln p(�)�2i p(�j#)p(d#)�
=

Z �
�'��B(�)�'� =

1
2

h Z
(�'�� �(#) +  

�
�(#)�'�)

2p(�j#)P (d#)

� (�'�� � +  ���'�)2p(�)
i�
d�; (2.1)

where B(�) is the di¤erence (1.4),

 �(#) =
�(#)'o�
p(�j#) ; p(�j#) = 'o�� �(#)'

o
� ;

and the vector  � = �'o�
�
p(�) (p(�) =

R
p(�j#)P (d#)) is the vector  �(#)

averaged with the Bayessian posterior density

p(#j�) = p(�j#)p(#)
�Z

p(�j#)P (d#):
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A simple analysis of the positiveness �2R > 0 of the variation (2.1) of Shan-
non risk shows that in contrast to the Bayes case the nonnegativeness of the
operators B(�) � 0 is necessary, but not su¢ cient for the local optimality of
the solutions 'o� of the equation B(�)'� = 0: the additional term in (2.1) (in
square brackets) has the meaning of a posteriori variance of the real random
quantity 2Re �'�� �(#) and is generally positive.
Let, for example, the density operator have the form (1.6) and the prior

distribution P (d#) be Gaussian in the multidimensional space of the information
parameters # = (#�):

P (d#) = jSj�1 expf�#yS�1#g d�(#); d�(#) =
Y
�

1
�dRe#�d Im#� :

We shall check the local optimality of the coherent solutions (1.5) of equa-
tion (1.1) in the boson Gaussian case according to the information criterion. As
shown in [3], the coherent vectors (1.5) satisfy Equation. (1.1) and the operator
B(�) has a quadratic Gaussian form:

B(�) = (b� �)yH�(b� �); � = jL+ Sj�1; eb
y(L+S)�1b :;

where the matrix H = L�1 � (S + L)�1 is not larger than unity in accordance
with the inequalities S � 0; L � 1; 0 � H � 1. Considering the analytic
dependence of the function

 �(#) =
�(#)j�i
h�j�(#)j�i = e�(b��)

yL�1(��#)j�i

on # (i.e., the independence on #�) and carrying out conditional averaging over
# in (2.1), Z �

�'�� �(#) +  
�
�(#)�'�

�2
p(#j�)d�(#)

with the density

p(#j�) = jM j exp
�
� (#�A�)yM(#�A�)

	
;

where A = S(S + L�1; M = S�1 + L�1, we �nd that in the Gaussian case the
variation �2R has the form

�2R =

Z
�'��

�
B(�)�D(�)

�
�'� d�(�);

d�(�) =
Y
�

1
�dRe��d Im�� ;

where

D(�) =: p(b)
h
e�(b��)

y(1�H)(b��) � e�(b��)
�(b��)

i
:� 0;

p(b) = jS + Lj�1 exp
�
� by(S + L)�1b

	
:
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Thus, in order to prove the optimality of coherent quasi-measurement for the
information criterion one should verify the operator inequality B(�)�D(�) � 0
or

p(�)e�b
y(S+L)�1� :

h
byHe�b

y(S+L)�1bb

�
�
e�b

y(H�1)b � e�b
yb
� i

: e��
y(S+L)�1b � 0 (2.2)

(here the change of variables b � � ! b has been carried out). The operator
occurring on the left-hand side of (2.2) has the structure A�� : [�] : A� and is
positive only if the operator in the square brackets is positive. Considering that
the operator inequality

: e�b
y(S+L)�1b :�: e�b

y(1�H)b :

is satis�ed by virtue of the matrix inequality (S + L)�1 = L�1H � 1 �H, we
�nd that inequality (2.2) is satis�ed if

: byHeb
y(H�1)bb :�: eb

y(H�1)b � e�b
yb : : (2.3)

This inequality (2.3) becomes obvious in the diagonal representation in the
occupation numbers n� :Y

�

hn��
X
�

n� �
Y
�

hn�� for
X
�

n� 6= 0;

where h� are the eigenvalues of the matrix H = L�1�(S+L)�1. For
P

� n� = 0
both the left- and right-hand sides of inequality (2.3) vanish.

References

[1] V.P. Belavkin, Radiotekhnika i Elektronika, 1972, 17, No. 12, 2533 [Radio
Eng. Electron. Phys., 17 No. 12 (1972)].

[2] V.P. Belavkin, Coherent measurement of optical signals, Proc. of the Third
All-Union Conference on the Physical Principles of Recording and Processing
Inofrmation by Laser Radiation, Kiev, 1973, I, p. 7.

[3] V.P. Belavkin and R.L. Stratonovich, Radiotekhnika i Elektronika, 1973, 19,
9, 1839 [Radio Eng. Electron. Phys., 19 9 (1973)].

[4] J. Klauder and E. Sudershan, Fundamentals of Quantum Optics (in Russian
transl.), Mir Press, 1970.

[5] R.L. Stratonovich, The quantum generalization of optimal statistical esti-
mation and hypothesis testing, J. of Stochastics, 1973, 1, 87�126.

6


