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Abstract. The fundamental mathematical de�nitions of the controlled Markov
dynamics of quantum-mechanical systems are formulated with regard for the
statistical reduction of quantum states in the course of quantum measurement
in either discrete or continuous time. The concept of su¢ cient coordinates for
the description of a posteriori quantum states in a given class is introduced
and it is proved that they form a Markov process. The general problem of
optimal control of a quantum-mechanical system is discussed and the corre-
sponding Bellman equation in the space of su¢ cient coordinates is derived.
The results are illustrated in the example of control of the semigroup dynam-
ics of a quantum system that is observed at discrete times and evolves between
measurement times according to the Schr½odinger equation.

1. Introduction

The encouraging outlook for the application of coherent quantum optics (lasers)
for communications and control has been recently stimulated by the steadily grow-
ing demands for greater accuracy of observation and monitoring, particularly under
the �extreme�conditions of very faint signals at extremely great (astronomical) dis-
tances. On the other hand, instances of the successful exploitation of mathematical
methods from information and control theory for the investigation of many physical
phenomena in the microscopic world have also stimulated interest in the theoretical
study, using general cybernetic principles, of the possibilities of dynamical systems
described at the quantum-mechanical level [19][15][16][1][4]. It has been shown
in [9] that it is natural to regard many physical problems as control problems for
distributed systems described by standard quantum-mechanical equations. In par-
ticular, the possibility of the transition of a physical system from one microscopic
state to another can be investigated [8] by the methods of the theory of control-
lability on Lie groups generated by the Schr½odinger equation with a controlled
Hamiltonian.
General problems in the theory of quantum dynamical systems with observation,

control and feedback channels can be handled on the basis of the recent develop-
ment [2] of an operational theory of open-loop quantum systems, for which the
mathematical formalism was set down in [10] [13]. The investigation, undertaken
in [3], of the dynamical observation and feedback control optimization problems for
such systems has provided a means for solving these problems in the case of linear
Markov systems of the boson type, in particular for a controllable and observable
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quantum oscillator [4]. This work was based on the multistage quantum-statistical
decision theory originally described in [5][6] in application to problems in the op-
timal dynamical measurement and control of classical (i.e., non-quantum) Markov
processes with quantum observation channels.
In the present article we describe a simpli�ed problem of optimal feedback control

of quantum dynamical systems which does not involve quantum-statistical decision
theory. Here the observable subsystem at the output of the observable channel is
regarded as classical and amendable to description at the macroscopic level, whereas
the controlled entity remains a quantum dynamical system. In other words, we
assume here, in contrast with [3][5][6], that the �instrument�at the output of the
quantum-mechanical system is given, rather than to be optimized, and it is required
only to �nd the optimal macroscopic feedback for a given performance criteria. The
results obtained in this setting are special in relation to [4][2][3] as they correspond
to the semiclassical case of commutativity of the algebra of output observables.
They nonetheless deserve special consideration both from the methodological and
from the practical point of view when the observation channels are given and cannot
be optimized for the optimal feedback control purpose.

2. Controllable quantum dynamical systems with observation

Here we introduce the mathematical concept of controllable quantum system
with observation channel on the basis of the operational theory on open-loop phys-
ical systems and quantum processes [2][10][13]. Such systems are open by the
de�nition, and the necessarry concepts borrowed from the algebraic theory of open
quantum systems are described in the Appendix.
Let H be the Hilbert space of representation of a certain quantum-mechanical

system regarded as an observable and controllable system and let A be the von
Neumann algebra of admissable physical quantities Q 2 A which is generated (see
Appendix 1) by the dynamical variables of this system, acting as operators in H.
The pair fH;Ag plays the role of a measurable space fX;Ag representing [14] the
corresponding classical dynamical system in the phase space X of it�s point states,
endowed with the Borel �-algebra A of admissible events A 2 A. The simple
systems normally treated in traditional texts on quantum mechanics, for example
[17], correspond to the algebras A = B (H) of all bounded operators in H, but the
models that emerge from quantum �eld theory and statistical mechanics [12] are
described by the more general algebras A.
Normal states of the quantum-mechanical system at every time t 2 R are de-

termined by the linear functionals %t : Q 7! h�t; Qi of the quantum-mechanical
expectations hQit = h�t; Qi of all the physical quantities Q 2 A for this system
and are described by the densities �t as the positive elements associated with the
opposite (transposed) von Neumann algebra A| (see Appendix 2). In the case of
semi�nite algebras [11], as in the simple case A = B (H), the states %t are usually
represented with the trace one operators %̂t = �|t in A (or a¢ liated with A) as

(2.1) %t (Q) = tr f%̂tQg � h�t; Qi ;

and the Banch space L spanned by all such %t is identi�ed with the space of trace
class operators of A.
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The Markov controlled time evolution t 7! %t of quantum-mechanical systems is
described by the transformation of states

(2.2) %t 2 L 7! %t �M�
t (u

�
t ) � %t+� (u

�
t ) 2 L 8t 2 R, � > 0.

which is determined by a family fM�
t gt2R; �>0 of controlled transfer operators (see

Appendix 3) M�
t (u

�
t ) : A 7! A: These operators satisfy a consistency condition

analogous to the Chapman-Kolmogorov equation:

(2.3) M�
t (u

�
t )M

� 0

t+�

�
u�

0

t+�

�
= M�+� 0

t

�
u�+�

0

t

�
8t 2 R, � ; � 0 > 0

Here u�t = fu (t+ � 0)g� 0<� is a segment of an admissible control function u (t) 2
U (t) of length � > 0 and u�+�

0

t denotes the combination
�
u�t ; u

� 0

t+�

�
of segments u�t

and u�
0

t+� [the sets U
�
t �

Q
� 0<�

U (t+ � 0) of admissible segments u�t are assumed to be

consistent in the sense of condition (2.4)]. For stationary (time-invariant) systems,
where U (t) = U , (2.3) speci�es the semigroup conditions for transfer operators
M� (u� ) = M�

t (u
�
t ) independent of t.

In the special case of transfer operators M�
t (u

�
t ) speci�ed by controllable prop-

agators H 7! H
M�
t (u

�
t )Q = T �t (u

�
t )
y
QT (u�t ) ;

satisfying the condition corresponding to (2.2)

T �
0

t+�

�
u�

0

t+�

�
T �t (u

�
t ) = T �+�

0

t

�
u�+�

0

t

�
;

the dynamics %t 7! %t+� (u
�
t ) for the vector states

D
� t ; Q

E
= h tjQ ti is de-

scribed by the spatial transformation

 t 2 H 7! T �t (u
�
t ) t �  t+� (u

�
t ) 2 H 8t 2 R, � > 0:

This transformation is obtained, for example, as the fundamental solution of the
time-dependant Schr½odinger equation with a pertubating force u (t), for which the
isometric operators T �t (u

�
t ) are unitary and M

�
t (u

�
t ) denotes Heisenberg transfor-

mations.
Open-loop quantum dynamical systems of the kind speci�ed below by control-

lable systems with observation cannot, as a rule, be described in terms of propa-
gators T �t (u

�
t ), because the measurements induce a reduction of quantum states,

which is described by transfer operators of another type.
Let fU�t g ; fV �t g ; t 2 R; � > 0 be two-parameter families of sets of admissible

segments u�t 2 U�t ; v
�
t 2 V �t of input and output signals (respectively), satisfying

the consistency condition

(2.4) U�t � U�
0

t+� = U�+�
0

t , V �t � V �
0

t+� = V �+�
0

t :

The sets U�t are usually endowed with Hausdor¤ topologies, and the sets V
�
t

with Borel �-algebras, which are consistent with the products (2.4) and in the
time-invariant case are given by a shift � 7! t + � of the initial sets U� = U�0 and
V � = V �0 :

De�nition 1. A controllable quantum dynamical system with observation is a fam-
ily f��t gt2R, �>0 of controllable transfer-operator measures ��t (u�t ; dv�t ) : A 7! A
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(see Appendix 4) de�ned on spaces U�t 3 u�t ; V �t � dv�t and satisfying the condition

(2.5) ��t (u
�
t ; dv

�
t )�

� 0

t+�

�
u�

0

t+� ; dv
� 0

t+�

�
= ��+�

0

t

�
u�+�

0

t ; dv�+�
0

t

�
for any t 2 R; � ; � 0 > 0, where u�+�

0

t =
�
u�t ; u

� 0

t+�

�
, dv�+�

0

t = dv�t � dv�
0

t+� :

The superoperators ��t (u
�
t ; dv

�
t ) are assumed to be continuous in u

�
t , �-additive

with respect to dv�t (in the strong operator sense) and in the time-invariant case not
to depend explicitly on t [the index t in the condition (2.5) specifying the semigroup
dependance on � can now be omitted].
On the basis of the positive quantities Q 2 A+ 7! ��t (u

�
t ; dv

�
t )Q 2 A+ and the

normalization condition ��t (u
�
t ; V

�
t ) = M

�
t (u

�
t ) ; the mappings �

�
t determine, for a

given instantaneous state %t 2 L and control function u�t , the future (� > 0) states

(2.6) %t+� (u
�
t ; dv

�
t ) = %t ���t (u�t ; dv�t )

of the quantum-mechanical process, normalized to the probabilities

(2.7) ��t (u
�
t ; dv

�
t ) = h%t;��t (u�t ; dv�t ) Ii

of the events v�t 2 dv�t . The ratio of (2.6) to (2.7) determines conditional states
normalized in the usual way, but depending non-linearly on %t = % in general,

(2.8) %�t =
% ���t (u�t ; dv�t )
h�;��t (u�t ; dv�t ) Ii

with respect to measurable events dv�t � V �t of non-zero probability (2.7), to which
states at time t + � the system transfers from the state %t = % as a result of the
control action u�t and the observation dv

�
t on an interval of length � . If the event

dv�t = V �t is certain, the states (2.8) are unconditional: %t = %t+� (u
�
t ) and coincide

with the a priori states, whose controlled evolution is linear. This evolution is
described by expression (2.2), in which M�

t (u
�
t ) = �

�
t (u

�
t ; V

�
t ) denotes controllable

transforms of the open-loop quantum-mechanical system, corresponding to the ab-
sence of observation. The process of precise measurement of the output signal
v�t on an interval of length � > 0 takes the quantum system from a priori state
% = %t to the a posteriori state %

�
t = %M�

%;t (u
�
t ; v

�
t ), where the quasilinear map-

ping % 7! %M�
%;t (u

�
t ; v

�
t ) is given by expression (2.8) in the limit dv

�
t # fv�t g almost

everywhere with respect to the measure (2.7). For example, let the measures ��t
have the density functions

(2.9) ��t (u
�
t ; dv

�
t ) =

Z
dv�t

P�t (u
�
t ; v

�
t )�

�
t (u

�
t ; dv

�
t ) ;

where P�t (u
�
t ; v

�
t ) : A 7! A denotes completely positive superoperators [see the Ap-

pendix, (A.4)], say, of the form (3.10), continuous with respect to u�t and integrable
with respect to v�t in the strong operator sense with respect to speci�ed numerical
measures ��t on V

�
t . Then the a posteriori transfer operatorsM

�
%;t (u

�
t ; v

�
t ) coincide,

up to normalization, with P�t (u
�
t ; v

�
t ) :

(2.10) M�
%;t (u

�
t ; v

�
t ) =

P�t (u
�
t ; v

�
t )

h�;P�t (u�t ; v�t ) Ii
;

where the ratio is de�ned for those u�t 2 U�t ; v�t 2 V �t for which the densities
(2.11) p�t (u

�
t ; v

�
t ) = h�;P�t (u�t ; v�t ) Ii
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of the probability measure (2.7) with respect to ��t are non-vanishing.
The following theorem states that the a posteriori mapping (2.10) in fact de-

termines the classical Markov process introduced in the analogous situation for
classical systems in [20], where it is called a secondary, or conditional (a posteriori)
Markov process.

Theorem 1. The family
�
M�
%;t

	
of a posteriori transfer operators M�

%;t (u
�
t ; v

�
t )

satis�es, with respect to composition, the consistency condition

(2.12) M�
%;t (u

�
t ; v

�
t )M

� 0

%0;t+�

�
u�

0

t+� ; v
� 0

t+�

�
= M�+� 0

%;t

�
u�+�

0

t ; v�+�
0

t

�
almost everywhere under the measure (2.7), where %0 = %M� 0

%;t (u
�
t ; v

�
t ).

Proof. It is required to verify the property (2.12) for sublimiting conditional map-
pings (2.8), for which it follows at once from the de�nition and (2.5), and then to
pass to the limit dv�t # fv�t g. In the case (2.9) condition (2.12) is veri�ed by simply
computing the product (2.12) of the a posteriori transfer operators (2.10); for this
purpose it is necessary to invoke the corresponding condition

(2.13) P�t (u
�
t ; v

�
t ) P

� 0

t+�

�
u�

0

t+� ; v
� 0

t+�

�
= P�+�

0

t

�
u�+�

0

t ; v�+�
0

t

�
;

which it is su¢ cient to require on V �+�
0

t almost everywhere (mod��t ) and which
guarantees the satisfaction of condition (2.4) if

��t (u
�
t ; dv

�
t )�

� 0

t+�

�
u�

0

t+� ; dv
� 0

t+�

�
= �

�
u�+�

0

t ; dv�+�
0

t

�
:

�

Remark 1. If the superoperator densities P�t of the transition measures (2.9) pre-
serve unity: P�t (u

�
t ; v

�
t ) I = p�t (u

�
t ; v

�
t ) I, the ratio (2.10) determines �-independent

transfer operators M�
t (u

�
t ; v

�
t ) describing the controllable quantum dynamics of a

system with inputs u and v, the second of which is an observable stochastic process
with probability measures ��t (u

�
t ; v

�
t ) = p�t (u

�
t ; v

�
t )�

�
t (u

�
t ; v

�
t ) independent of the

state of the system. The a posteriori mappings (2.8) in this case are linear:
%�t = %M�

t (u
�
t ; v

�
t ) almost everywhere under the measure �

�
t :

3. Sufficient coordinates of quantum-mechanical systems

The description of the dynamics of simple closed-loop quantum-mechanical sys-
tems for a certain class of initial states is known to be often reducible to the de-
termination of the time evolution of certain coordinates, the role of which can be
taken, for example, by vectors  2 H, if only vector initial states are considered.
Aspects of the controllability of closed-loop quantum-mechanical systems described
by a su¢ cient coordinate  t 2 H, satisfying the controlled Schr½odinger equation
have been investigated previously [8].
The concept of su¢ cient coordinates, which is introduced below for general con-

trollable quantum dynamical systems with observation and is intimately related
to the classical notion of su¢ cient statistics [20], plays an even greater role for
quantum control theory than the analogous concept in stochastic control theory,
because it permits control problems for quantum-mechanical systems to be reduced
to classical control problems with lumped or distributed parameters.
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De�nition 2. Let X be a Borel space1 and let
�
�x;t

	
x2X;t2R be a family of states

that generates, for every t 2 R, a measurable mapping x 7! %x;t of the space X
into the space of states %x;t of a quantum-mechanical system at time t, where the
controlled evolution (2.5) of the system during an observation leaves this family
invariant:

(3.1) %x;t�
�
t (u

�
t ; dv

�
t ) = ��x;t (u

�
t ; dv

�
t ) %f�x;t(u�t ;v�t );t+�

Then X is called the space of su¢ cient coordinates x 2 X with respect to
�
%x;t

	
,

the controlled statistical evolution of which x 2 X 7! f�x;t (u
�
t ; v

�
t ) � x�t 2 X is

described by mappings f�x;t : U
�
t � V �t ! X continuous with respect to u�t 2 U�t and

measurable with respect to v�t 2 V �t almost everywhere under the measure

��x;t (u
�
t ; dv

�
t ) = h�x;��t (u�t ; dv�t ) Ii :

Proceeding from (3.1) taken in the limit dv�t # fv�t g, we note that a su¢ cient
coordinate x = % with respect to the family f% 2 Lg of all states % on A is speci�ed,
for example, by the a posteriori mapping f�%;t (u

�
t ; v

�
t ) = %M�

%;t (u
�
t ; v

�
t ), provided

only [as in the case (2.9)] that there exists the derivative

(3.2) M�
%;t (u

�
t ; v

�
t ) =

��t (u
�
t ; dv

�
t )

��%;t (u
�
t ; dv

�
t )
:

Theorem 2. The mapping f�x;t determined in (3.1) generates for %t 2
�
%x;t

	
x2X

and for a certain �xed t 2 R a su¢ cient statistic x�t = f�x;t (u
�
t ; v

�
t ), in terms

of which are described the a posteriori states %�t = %M�
%;t (u

�
t ; v

�
t ) for %t = %x;t

in correspondence with the formula %�t = %�x;t;t+�8� > 0. Here the transition
probabilities xt = x! dx0 3 x�t de�ned by the formula

(3.3) ��x;t (u
�
t ; dx

0) =


�x;�

�
x;t (u

�
t ; dx

0)
�
;

where

��x;t (u
�
t ; dx

0) = ��t
�
u�t ; f

�1
x;t (u

�
t ; dx

0)
�
;

(3.4) f�1x;t (u
�
t ; dx

0) =
�
v�t : f

�
x;t (u

�
t ; v

�
t ) 2 dx0

	
;

satisfy the Chapman-Kolmogorov equation

(3.5)
Z

x02X

��x;t (u
�
t ; dx

0)��
0

x0;t+�

�
u�

0

t+� ; dx
00
�
= ��+�

0

x;t

�
u�+�

0

t ; dx00
�

for all t 2 R; � ; � 0 > 0; u�t ; u�
0

t+� ; so that the su¢ cient statistics form a controllable
Markov process.

Proof. The existence of the su¢ cient statistic is determined by the a posteriori
mapping, which for % = %x;t according to expression (2.8) in correspondence with
(3.1) gives

(3.6) %�t = %M%;t (u
�
t ; v

�
t ) = %f�x;t(u�t ;v�t );t+� 0

1Usually standard, i.e. a complete seperable metric space, also known as a Polish space (for
example, Rn;Cn; or any countable set).
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thus proving the �rst statement of Theorem 2. The transition mappings x 7!
f (u�t ; v

�
t ) in correspondence with Theorem 1 satisfy the following semigroup prop-

erty with respect to their composition:

(3.7) f�
0

t+�

�
u�

0

t+� ; v
� 0

t+�

�
� f�t (u�t ; v�t ) = f�+�

0

t

�
u�+�

0

t ; v�+�
0

t

�
;

which, according to (2.5), yields the equation

(3.8)
Z

x02X

��x;t (u
�
t ; dx

0)��
0

x0;t+�

�
u�

0

t ; dx
00
�
= ��+�

0

x;t

�
u�+�

0

t ; dx00
�

for the transfer-operator measures speci�ed in (3.3) and (3.4) for the transitions
x 7! dx0. For states in the class

�
%x;t

	
; (3.8) is equivalent to the Chapman-

Kolmogorov equation (3.5), because in accordance with (3.1),

(3.9) %x;t�
�
x;t (u

�
t ; dx

0) = ��x;t (u
�
t ; dx

0) %x0;t+� :

Equation (3.5) determines the Markov stochastic evolution bx (t) of the su¢ cient
coordinates x (t) 2 X generating, according to a theorem of Kolmogorov (see, e.g.
[10], p. 48) for a standard space X; a Markov measure in the functional Borel space
of trajectories fx (t)g. This completes the proof. �

We now discuss in more detail the most interesting case, in which the transition
measures (2.9) have the superoperator densities

(3.10) P�t (u
�
t ; v

�
t )Q = F �t (u

�
t ; v

�
t )
y
QF �t (u

�
t ; v

�
t )

under a consistent family of measures ��t (u
�
t ; dv

�
t ). Here F

�
t (u

�
t ; v

�
t ) denotes oper-

ators belonging to the Hilbert space H and satisfying the normalization condition

(3.11)
Z
F �t (u

�
t ; v

�
t )
y
F �t (u

�
t ; v

�
t )�

�
t (u

�
t ; dv

�
t ) = I

as well as the condition

(3.12) F �
0

t+�

�
u�

0

t+� ; v
� 0

t+�

�
F �t (u

�
t ; v

�
t ) = F �+�

0

t

�
u�+�

0

t ; v�+�
0

t

�
;

which guarantees the ful�llment of (2.13).
It is seen at once that the a posteriori transfer operators (2.10) preserve the

vectorial property of the vector states h�;Qi = h jQ i : h��t ; Qi = h �t jQ �t i,
where  �t = T � ;t (u

�
t ; v

�
t ) for any  2 H, � > 0 and

(3.13) T � ;t (u
�
t ; v

�
t ) =

F �t (u
�
t ; v

�
t )

kF �t (u�t ; v�t ) k
:

Corollary 1. The set X of all vectors  2 H, for which k k = 1 forms, in the case
(3.10) with respect to the family

�
% 
	
 2X of vector states



� ; Q

�
= h jQ i the

space of su¢ cient coordinates speci�ed by an a posteriori mapping f� ;t (u
�
t ; v

�
t ) =

T � ;t (u
�
t ; v

�
t ) of the quasilinear form (3.13).

We note that the a posteriori propagators T � ;t (u
�
t ; v

�
t ) satisfy the semigroup

property (3.7):

(3.14) T �
0

 0;t+�

�
u�

0

t+� ; v
� 0

t+�

�
T � ;t (u

�
t ; v

�
t ) = T �+�

0

t

�
u�+�

0

t ; v�+�
0

t

�
;

where  0 = T � ;t (u
�
t ; v

�
t ) and in contrast with the operators F

�
t (u

�
t ; v

�
t ) preserve

the norm in H, but they are non-linear. Only in the case discussed at the end
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of Section 3, where F �t (u
�
t ; v

�
t )
y
F �t (u

�
t ; v

�
t ) = p�t (u

�
t ; v

�
t ) I are the operators (3.13)

 -independent isometries: T �t (u
�
t ; v

�
t ) = F �t (u

�
t ; v

�
t ) =

p
p�t (u

�
t ; v

�
t ). We note, how-

ever, that the a priori transfer operators

(3.15) M�
t (u

�
t )Q =

Z
F �t (u

�
t ; v

�
t )
y
QF (u�t ; v

�
t )�

�
t (u

�
t ; dv

�
t )

determining the controllable Markov dynamics of the quantum system (2.9), (3.10)
in the absence of observations are not described by the propagators T �t (u

�
t ), with

the exception of the degenerate case in which the a posteriori states coincidemod��t
with a priori states, i.e., actually do not depend on the results of the observations
v�t :

4. Optimal quantum control

We now discuss the optimal control of a quantum dynamical system with ob-
servation f��t g, the performance of which as a function of the initial time t 2 R is
determined by the mathematical expectation h�t; Qt (ut; dvt)i of a certain physical
quantity Qt (ut; dvt) 2 A depending on the input state ut = fu (t+ �)g��0 contin-
uously2 and on the output event dvt = d fv (t+ �)g�>0 according to the equation
in t

(4.1) Qt (ut; dvt) = �
�
t (u

�
t ; dv

�
t )Qt+� (ut+� ; dvt+� ) + S

�
t (u

�
t ; dv

�
t ) :

Here S�t (u
�
t ; dv

�
t ) 2 A denotes Hermitian operators having the integral form3

(4.2) S�t (u
�
t ; dv

�
t ) =

�Z
0

��
0

t

�
u�

0

t ; dv
� 0

t

�
S (u (t+ � 0) ; t+ � 0) d� 0

where S (u; t) = S (u; t)
y denotes Hermitian operator functions completely deter-

mining (4.1) for a certain boundary condition QT (uT ; dvT ) = Q at the �nal time
T > t, corresponding to the speci�cation of a terminal risk h�T ; Qi (Q = Qy is a
certain Hermitian operator).

De�nition 3. A measurable mapping vt 7! ut (vt) 2 Ut is called a non-advanced
control strategy if its components u (t+ � ; �) : vt 7! u (t+ �) are determined by
functions independent of vt+� and it is called a retarded control strategy if all

u (t+ � ; �) are determined by functions v� 0t 7! u
�
t+ � ; v�

0

t

�
for some measurable

� 0 = � 0 (t+ �) < � . A non-advanced strategy ut (�) is called admissible if the
integral

Qt [u (�)] =
Z
Qt (ut (vt) ; dvt)

exists in strong operator topology and it is called optimal for an initial state %t = %
if it realizes the extremum

(4.3) q (%; t) = inf
ut(�)2Ut(�)

h�;Qt [ut (�)]i ;

2In strong operator topology
3The conditions for the existence of the integral 4.2, its continuous dependence on u�t , and its

�-additivity with respect to dv�t , requiring of the operator function (u; t)! S (t; u) 2 A continuity
in u 2 U and measurablilty with respect to t 2 R under strong operator topology, are presumed
to be ful�lled.
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where Ut (�) is a certain set of admissible strategies ut (�) ["-optimal if h�;Qt [ut (�)]i
exceeds (4.3) at most by "].

We note that in accordance with (4.1), a strategy ut (�) is admissible with respect
to Qt (�; �) if and only if its segments ut+� (�) for �xed v�t are admissible strategies
with respect to Qt+� (�; �) and for the segments u�t (�) there exist measures

(4.4) �u;�t (dv�t ) =

Z
dv�t

��t (u
�
t (v

�
t ) ; dv

�
t ) ;

specifying operator-valued integrals

(4.5) S�t [u
�
t (�)] =

�Z
0

Z
v�t

�u;�
0

t

�
dv�

0

t

�
S
�
t+ � 0; u

�
t+ � 0; v�

0

t

��
:

The latter holds for any delayed strategy that is admissible for a given boundary
condition QT (�; �) = Q.

Theorem 3. Let the sets U�t (�) of segments of admissible strategies satisfy the
condition

(4.6) U�t (�)� U�
0

t+� (�) � U�+�
0

t (�) 8t 2 R, � ; � 0 > 0

Then the minimum risk (4.3) as a function of the state % and the time t satis�es
the functional equation

(4.7) q (%; t) = inf
u�t (�)2U�

t (�)

�
h�; S�t [u�t (�)]i+

Z
�u�%t (dv

�
t ) q (%; t+ �)

�
;

where �u�%t (�) = h�;�u�t (�) Ii, b% = %��%t (u
�
t (v

�
t ) ; v

�
t ) denotes the probability mea-

sures (2.7) and a posteriori states (2.8) corresponding to an admissible strategy
u = u�t (�) and an initial state % = %t.

Proof. The proof of (4.7), which generalizes the Bellman equation [7], is reducible
to the substitution of (4.1) into (4.3) and the transition from minimization on ut (�)
to the successive minimization of (4.7), �rst on ut+� (�) and then on u�t (�), which
by condition (4.6) yields the same result as (4.3). Since the integral (4.5) does not
depend on ut+� (�) and by de�nition,
(4.8) %�u�t (dv�t ) = �u�%t (dv

�
t ) %

u�
%t ;

the �rst minimization entails �nding the second term of the minimized sum (4.7):

inf
ut+� (�)2Ut+� (�)

Z
�u�%t (dv

�
t )

�b�;Z Qt (ut (vt) ; dvt)

�
=

Z
�u�%t (dv

�
t ) q (b%; t+ �) :

�

In the case of a given boundary condition q (%; t) = h�;Qi the theorem proved
above provides a constructive method of synthesizing an optimal or "-optimal strat-
egy uT�t%t

�
vT�tt

�
by the successive minimization of (4.7) in reverse time. In this

case it is su¢ cient to restrict the discussion to Markov admissible strategies de-
scribed by segments u�%t0 (v

�
t0), � = T � t, depending on the a priori history v�t only

through the agency of their dependence on the a posteriori state b% = %t
0�t
t for any

t0 > t. Accordingly, the determination of the a posteriori quantum states %�t , which
generate an a posteriori Markov process, enables us to reduce the optimal quantum
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control problem to the classical problem of stochastic control theory [20][7] with
numerical transition and �nal risk functions

s (%; t; u) = h�; S (t; u)i q (%; T ) = h�;Qi ;

determined by the operators of the corresponding physical quantum variables S (t; u)
and Q.
We distinguish cases in which the quantum states % are considered in a certain

class f%xtg for which su¢ cient coordinates exist.

Corollary 2. Let f�t : U
�
t � V �t 7! X denote mappings satisfying the conditions

of Theorem 2. Then in problem (4.3) for % 2 f%xtg it is su¢ cient to restrict the
discussion to Markov strategies described by measurable mappings u�t : X�V �t 7! U�t
satisfying the consistency condition

(4.9)
�
u�xt (v

�
t ) ; u

� 0

x0t+�

�
v�

0

t+�

��
= u�+�

0

xt

�
v�+�

0

t

�
;

where x0 = fu�xt (v
�
t ) = f�xt (u

�
t (v

�
t ) ; v

�
t ). In particular, the instantaneous con-

trol functions ux (�) for any � 2 [t; T ) are determined by functions u (� ; x) of the
instantaneous state x in accordance with the equation

(4.10) ux (t+ � ; v
�
t ) = u (t+ � ; fu�xt (v

�
t )) :

The foregoing assertion, which follows directly for the �maximum� su¢ cient
coordinate bx (t) = b% (t) from the optimality equation (4.7), is readily proved on the
basis of the properties formulated for su¢ cient coordinates in Theorem ??.
The further simpli�cation of problem (4.3) entails utilizing the speci�c properties

of the Markov process bx (t), the role of which is logically assigned to su¢ cient
coordinates of the fewest possible dimensions.
For example, in the case where for the transition probabilities ��xt (dx

0) ; the
t-continuous strong limit

(4.11) L (t) q (t) (x) = lim
�#0

Z
x

��xt (u
�
t ; dx

0) (q (x0; t+ �)� q (x; t+ �))

exists on some set D (X) of bounded and measurable functions x 7! q (x; t), depend-
ing continuously on t, the optimality equation (4.3) is written in the in�nitesimal
form

(4.12) � @

@t
q (x; t) = inf

u2U
(s (x; t; u) + L (t; u) q (t) (x)) ;

where s (x; t; u) = h�xt; S (t; u)i : Equation (4.7), which represents the standard
Bellman equation for controlled Markov processes in continuous time, can be used
for q (x; T ) = h�xT ; Qi 2 D (X) to seek optimal or "-optimal Markov control func-
tions u (t) directly as functions u (t; x) of the instantaneous state x.

5. Quantum control with discrete observation

As an example we consider the controlled dynamics of a simple quantum sys-
tem described between discrete measurement times T = ftkg by the Schr½odinger
equation

(5.1) i~
@

@t
 (t) = H (t; u (t)) (t) , t 2 T
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Here H (t; u) is the controlled Hamiltonian, i.e., a self-adjoint operator in H with
a dense domain of de�nition D � H, written in the usual form

H (t; u) = H0 (t) +
mX
i=1

ui (t)Hi (t) ;

where ui (t) 2 R; Hi (t) are simple4 functions of t. Under the stated assump-
tion there exists a unique consistent family fT �t g of unitary propagators T �t (u�t ),
representing for any  (t� �) = ' 2 D, a solution of (5.1) between adjacent mea-
surement times tk < tk+1 in the form  (t) = T �t��

�
u�t��

�
 ; t 2 [tk; tk+1), where

lim
�&0

 (t) =  :

Let Evk demote Hermitian projectors, which determine orthogonal decomposi-
tions I =

P
v2Vk

Evk of the unit operator in H and specify measurements at times tk

of quantum physical quantities described by self-adjoint operators

(5.2) Ak =
X
v2Vk

vEvk

with discrete spectra Vk � R.
As a result of measurement of the quantity Ak there occurs a reduction [18] of

the quantum state % 7! %�vk; v 2 Vk, described by the superoperators �vkQ =
EvkQEvk; which determines a priori direct transfer operators

(5.3) �kQ =
X
v2Vk

EvkQEvk:

The states %vk = %�vk to which the system transfers instantaneously depending
on the result of this measurement v 2 Vk are normalized to the probabilities �vk =
h�;Evki of these transitions, where if � is a vector state



� ; Q

�
= h jQ i, the

states �vk are also vectorial, determined by the projections  vk = Evk . The
product EvkT �t (u

�
t ) = F �vt (u

�
t ) for � = tk � t determines a transformation  (t) 7!

Evk (tk) corresponding to the evolution (5.1) on the interval [t; tk) with subsequent
measurement of the quantity Ak:
We introduce the notation Fvk (uk) = F �kvtk

�
u�ktk

�
, where �k = tk+1 � tk, and we

set V �t =
Q

k2K�
t

Vk, where K�
t = fk : tk 2 [t; t+ �)g is the set of all indices of times

in the interval (t; t+ �) (in the case of an empty set K�
t = ; we assume that V �t

consists of some single point fwg).

Proposition 1. Let the set Ks�t
t be �nite for any t < s. Then the chronological

product

(5.4) F s�tvt

�
us�tt

�
= T s�t1t1

�
us�t1t1

�
Fv1l�1 (ul�1) : : : Fvk+1k (uk)F

tk�t
vkt

�
utk�tt

�
;

where k = minKs�t
t , l = maxKs�t

t , and v = (vk; : : : ; vl) = vs�tt , determines
controllable quantum dynamical system described by superoperators f��t g of the
form (2.9), (3.10):

(5.5) ��vt (u
�
t )Q = F �vt (u

�
t )
y
QF �vt (u

�
t ) ;

under the counting measure ��t = 1 on V
�
t 3 v:

4In other words, having one-sided limits; for unbounded self-adjoint operators Hi (t), i =
0; :::;m, this means that H (t; u (t)) is a simple function for any  2 D:
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The proof is reducible to the veri�cation of conditions (3.11) and (3.12), which
take the form

(5.6)
X
v2V �

t

F �vt (u
�
t )
y
F �vt (u

�
t ) = I 8u�t 2 U�t ;

(5.7) F �
0

v0t+�

�
u�

0

t+�

�
F �vt (u

�
t ) = F �

0+�
(v0;v)t

�
u�

0+�
t

�
(where v0 2 V �

0

t+� , v 2 V �t ), which is easily veri�ed by induction, owing to the
�niteness of the product (4.4).
Because of the spatial form (5.5) of the consistent family f�vtg on the basis of

Corollary 1, we infer that the space X of normalized vectors  2 H, k k = 1 forms
a space of su¢ cient coordinates, the a posteriori evolution  7! T �vt (u

�
t ; v

�
t ) of

which is described by the nonlinear propagators (3.13): T �vt (u
�
t ) = kT �vt (u�t ) k, and

the a priori evolution by transfer operators of the form (3.15):

��t (u
�
t )Q =

X
v2V �

t

F �vt (u
�
t )
y
QF �vt (u

�
t ) :

We give special consideration to the case of complete measurements described
by the operators Ak with a non-degenerate spectrum.

Proposition 2. Let f vkgv2Vk denote the complete orthonormal systems of eigen-
vectors of the operators Ak, and let Evk be the corresponding one-dimensional pro-
jectors onto  vk. Then the a posteriori states at the times ftkg are vector states,
which are completely determined by the last result of measurement vk 2 Vk :

(5.8)


�tk�tt ; Q

�
=


Q vkk;  vkk

�
8t < tk; % = %t,

and the measurement process fvkg is a Markov process, which is described by the
controllable transition probabilities

(5.9) �vk (uk; vk) =
���Tk (uk) vkk;  vkk+1��� 2;

where Tk (uk) = T �ktk
�
u�ktk

�
; �k = tk+1 � tk:

This proposition follows from the property

EvkQEvk = h vkjQ vkiEvk

of the one-dimensional orthogonal projection operators Evk corresponding to the
eigenvectors  vk, so that the application of any state % to (5.5) at t = tk � �
leads to (5.8), up to normalization. Inasmuch as the a posteriori state (5.8) does
not depend on the previous measurements, the conditional probability given by
expression (5.9) for the even vk+1 = v for �xed preceding results is Markovian.
In the proposition proved above, the controllable su¢ cient coordinate xk = vk

is indicated, provided only that the quantum system is analyzed at discrete mea-
surement times ftkg :
We now consider the optimal control problem for a discretely observed quantum

system. Let the control performance, as a function of the initial t; be described by
the operator (4.1), which is determined by the integral (4.2) of some operator-valued
function S (t; u) : H 7! H.
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Proposition 3. Under the conditions of Theorem 3, for a vector initial state % 
the minimum risk

(5.10) q ( ; t) = inf
ut(�)2Ut(�)

Z
vt

h jQt (ut (vt) ; dvt) i

in the intervals (tk; tk+1) between measurements satis�es the functional equation in
variational derivatives

(5.11) � @

@t
q ( ; t) = inf

u2U(t)

�
k k2S(t;u) + 2~

�1 Im h�q ( ; t) =� jH (t; u) i
�
;

where k k2S = h jS i, and at the measurement times ftkg it satis�es the recursive
equation

(5.12) qk ( ) = inf
uk2Uk

0@k k2Sk(uk) + X
_2Vk+1

�uvk ( ) qk+1

�b �
1A ;

which determines the boundary values q (tk � 0;  ) = qk ( ) for (5.11). Here
�uvk ( ) = kTvk (uk) k

2,  = Tvk (uk) =
p
�uvk ( ), and

(5.13) Sk (uk) =

�Z
0

T t�tktk

�
ut�tktk

�y
S (t; u (t))T t�tktk

�
ut�tktk

�
dt:

Equation (5.11) is readily proved on the assumption of analyticity of the function
 7! q ( ; t), as is natural for a quadratic boundary condition q ( ; t) = k k2Q at
some �nal time T . Here (5.11) represents a functional version of the Bellman
equation corresponding to the Schr½odinger equation (5.1) and a quadratic transition
objective function S (t; u;  ) = k k2S(t;u). Equation (5.12) follows directly from
(4.7) for t = tk; � = tk+1 � tk and % = % if it is taken into account that the
integral (4.2) now has the form (5.13).
In conclusion we consider the optimal control problem described above in the

complete measurement case. Making use of the fact that the process of complete
measurement at discrete times ftkg induces a Markov su¢ cient coordinate xk = vk,
from (5.12) we deduce the customary equation

(5.14) qk (vk) = inf
uk2Uk

0@sk (uk; vk) + X
v2Vk+1

�vk (uk; vk) qk+1 (v)

1A ;

which describes the optimum risk for the control of a discrete Markov process
fvkg with the transition probabilities (5.9), an objective function sk (uk; vk) = vk2Sk(uk) and a boundary condition of the form qk (v) =

 vk2Q : The solution
of the given Bellman equation (5.14) is easily implemented on a computer by stan-
dard dynamic programming methods in the case of piecewise-constant admissible
strategies, for which Uk = U (tk) � Rm:

Appendix A. Notations, Definitions and Facts

(1) Let fQigi2I be a family of self-adjoint operators acting in a complex Hilbert
space H. The von Neumann algebra generated by the family fQig is de-
�ned as the minimal weakly closed self-adjoint sub-algebra A of bounded
operators in H containing the spectal projectors of this operators, along
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with the unit operator I. It consists of all bounded operators that com-
mute with the commutant fQig0 = fQ : QQi = QiQ 8i 2 Ig, i.e., it is the
seconed commutant A = fQig00 of the family fQig. The latter can be
taken as the de�nition of the von Neumann algebra generated by the fam-
ily fQig in the case of unbounded self-adjoint operators Qi densely de�ned
on a domain D � H. The simplest example of von Neumann algebra is
the algebra B (H) of all bounded operators acting in H [11].

(2) A (normal) state on a von Neumann algebra A is de�ned as a linear ul-
traweakly continuous functional % : A ! C (which will be denoted as
% (Q) = h�;Qi) satisfying the positivity and normalization conditions

(A.1) h�;Qi � 0; 8Q = 0, h�; Ii = 1
[Q = 0 signi�es the nonnegative de�niteness h jQ i = 0 8 2 H called
Hermitian positivity of Q]. They are usually identi�ed with the density
operators � as the elements of the opposite, or transposed algebra A| =
fA| : A 2 Ag with respect to thre pairing h�;Qi. The linear span of all
normal states is a Banach subspace A? of the dual space A?, called predual
to A as A?? = A. A state � is called vector state if h�;Qi = h jQ i � = � )
for some  2 H. Any state is a closed convex hull of vector states � , k k =
1. If on an algebra A there exists a normal semi-�nite trace Q 7! tr fQg,
then the states on A can be described by the transposed density operators
�| = �� 2 A (or a¢ laited to A, if they are unbounded), determining � by
means of the bilinear form h�;Qi = tr f�|Qg. For the case A = B (H) the
density operator � is any nuclear positive operator with unit trace [11].

(3) Let A1, A2 be von Neumann algebras in respective Hilbert spaces H1 and
H2, and letM : A2 ! A1 be a linear operator that transforms the operators
Q2 2 A2 into operators Q1 2 A1 (superoperator, in the terminology of [13]).
The operator M is called a transfer operator if it is ultraweakly continuous,
completely positive in the sense

(A.2)
X
i;k=1

D
 ijM

�
QyiQk

�
 k

E
= 0, 8Qi 2 A2;  i 2 H1;

(i = 1; : : : ; n <1), and unity-preserving: MI2 = I1. A composition %1 �M
with any state %1 : A1 ! C is the state A2 ! C described by the predual
action of the superoperator M on �1:

h�1;MQ2i = hM?�1; Q2i ;8Q2 2 A2; �1 2 A
|
1 :

A transfer operator M is called spatial if

(A.3) MQ2 = T yQ2T or M?�1 = T y?�1T?;

where T : H1 ! H2 is a linear isometric operator, T yT = I, called the
propagator, and T? is the transposed operator such that T

|
? = T . Every

transfer operator on A2 = B (H2) is a closed convex hull of spatial transfer
operators.

(4) Let V be a measurable space, and B its Borel �-algebra. A mapping � :
dv 2 B 7! �(dv) with values �(dv) in ultraweakly continuous, completely
positive superoperators A2 ! A1 is called a transfer-operator measure if
for any �1 2 A

|
1 , Q2 2 A2 the numerical function
h�(dv)? �1; Q2i = h�1;�(dv)Q2i
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of the set dv � V is a countably additive measure normalized to unity for
Q2 = I. In other words, �(dv) is an operator-valued measure that is
�-additive in the weak (strong) operator sense and for dv = V is equal to
some transfer operator M. The quantum-state transformations �1 7! �2
corresponding to ideal measurements are described by transfer-operator
measures of the form

(A.4) �(dv)Q = F (v)
y
QF (v)� (dv) ;

where F (v) denotes linear operatorsH1 ! H2, the integral under a positive
numerical measure � on V is interpreted in strong operator topology, andR
F y (v)F (v)� (dv) = I1: Every transfer-operator M : A2 ! A1 for A2 =

B (H) can be represented by the integral (A.4) with respect to dv � V of
some ideal measure �(dv) :
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