G13CCR/CC2 2006/07

Chapter 1 Information and Uncertainty

1.1. Equal probabilities. Suppose that some situation has n possible outcomes, all of which are equally likely.

E.g. tossing a fair coin
$$(n = 2)$$
,
throwing a fair die $(n = 6)$,
throwing two fair dice $(n = 36)$.

Can we assign a numerical value to the uncertainty in this situation? If we can—call it U(n)—we surely expect:

(A1)
$$U(n) \leqslant U(n+1)$$
 for all n ,

(A2)
$$U(mn) = U(m) + U(n)$$
 for all m, n .

 $m \left\{ \begin{array}{c} \\ \\ \end{array} \right.$

Theorem 1.1. A function $U: \mathbb{N} \to \mathbb{R}$ satisfies (A1) and (A2) if and only if

$$U(n) = C \log n \tag{1}$$

for some $C \geqslant 0$.

Proof. 'If' is obvious. To prove 'only if', assume (A1) and (A2) hold. From (A2), $U(n^r) = U(n^{r-1}) + U(n)$ and so, by induction,

$$U(n^r) = rU(n) \qquad (\forall n, r \in \mathbb{N}).$$
 (2)

Thus $U(1) = rU(1) \ \forall r$, whence U(1) = 0.

Choose $C := \frac{U(2)}{\log 2}$, $\geqslant 0$ by (A1), so that (1) holds when n = 1 or 2. Assume $n \geqslant 3$. For any $s \in \mathbb{N}$, $\exists r \in \mathbb{N}$ s.t.

$$2^r \leqslant n^s \leqslant 2^{r+1}. (3)$$

Then

$$U(2^r) \leqslant U(n^s) \leqslant U(2^{r+1})$$
 by (A1)

and so

$$rU(2) \leqslant sU(n) \leqslant (r+1)U(2)$$
 by (2).

Also

$$r \log 2 \leqslant s \log n \leqslant (r+1) \log 2$$
 by (3).

Thus

$$\frac{r}{s} \leqslant \frac{U(n)}{U(2)} \leqslant \frac{r+1}{s}$$
 and $\frac{r}{s} \leqslant \frac{\log n}{\log 2} \leqslant \frac{r+1}{s}$,

and so

$$\left| \frac{U(n)}{U(2)} - \frac{\log n}{\log 2} \right| \leqslant \frac{1}{s}.$$

Since s was arbitrary, $\frac{U(n)}{U(2)} = \frac{\log n}{\log 2}$, and so $\frac{U(n)}{\log n} = \frac{U(2)}{\log 2} = C$, as required. //

Note that changing the value of C simply changes the scale of units for uncertainty. Also, changing the base of logarithms is equivalent to changing C, since $\log_a n = (\ln n)/(\ln a)$. (Proof:

$$x = \log_a n \iff n = a^x = (e^{\ln a})^x = e^{x \ln a}$$

 $\iff \ln n = x \ln a \iff x = (\ln n)/(\ln a).$

We choose to take $\log = \log_2$ and C = 1, and so define $U(n) := \log_2 n$, measured in bits. [Richard W. Hamming, 1915–1998; Bell labs; $\log = \log_2$?]

- **1.2.** Unequal probabilities. Suppose now that the n outcomes have probabilities p_1, p_2, \ldots, p_n ($\sum_{i=1}^n p_i = 1$). Can we still assign a numerical value to the uncertainty? If we can—call it $H_n(p_1, \ldots, p_n)$ —we expect:
- (B1) $H_n(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}) = U(n) = \log_2 n.$
- (B2) $H_n(p_1,\ldots,p_n)$ is a continuous function of p_1,\ldots,p_n .
- (B3) If $p_1 + \ldots + p_r = p > 0$ and $q_1 + \ldots + q_s = q > 0$ and p + q = 1, then $H_{r+s}(p_1, \ldots, p_r, q_1, \ldots, q_s) =$

$$H_2(p,q) + pH_r(\frac{p_1}{p},\ldots,\frac{p_r}{p}) + qH_s(\frac{q_1}{q},\ldots,\frac{q_s}{q}).$$

Note that, if $\sum_{i=1}^{r} p_i = p$, then

$$-p \log_2 p - p \sum_{i=1}^r \frac{p_i}{p} \log_2 \frac{p_i}{p} = -\sum_{i=1}^r \left(p_i \log_2 p + p_i \log_2 \frac{p_i}{p} \right)$$
$$= -\sum_{i=1}^r p_i \log_2 p_i. \tag{4}$$

Theorem 1.2. A set of functions H_n (n = 1, 2, ...) satisfies (B1), (B2) and (B3) if and only if $[H_n: [0,1]^n \to \mathbb{R}? \text{ No!}]$

$$H_n(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log_2 p_i \quad (\geqslant 0).$$

Proof. '<u>If</u>': (B1) holds because $-\sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = \frac{n}{n} \log_2 n = \log_2 n = U(n)$. (B2) is obvious. And (B3) holds because

$$-p \log_2 p - q \log_2 q - p \sum_{i=1}^r \frac{p_i}{p} \log_2 \frac{p_i}{p} - q \sum_{j=1}^s \frac{q_j}{q} \log_2 \frac{q_j}{q}$$

$$= -\sum_{i=1}^r p_i \log_2 p_i - \sum_{j=1}^s q_j \log_2 q_j \qquad \text{by (4)}.$$

'Only if': We prove the result by induction on n. It is true if n = 1 since $H_1(1) = \log_2 1 = 0$ by (B1). Suppose next that n = 2, and suppose first that p_1, p_2 are rational, say $p_1 = p = \frac{r}{t}$, $p_2 = q = \frac{s}{t}$ where r + s = t. By (B3),

$$H_t(\frac{1}{t},\ldots,\frac{1}{t}) = H_2(\frac{r}{t},\frac{s}{t}) + \frac{r}{t}H_r(\frac{1}{r},\ldots,\frac{1}{r}) + \frac{s}{t}H_s(\frac{1}{s},\ldots,\frac{1}{s})$$

and so, by (B1),

$$H_2(\frac{r}{t}, \frac{s}{t}) = \log_2 t - \frac{r}{t} \log_2 r - \frac{s}{t} \log_2 s = -\frac{r}{t} \log_2 \frac{r}{t} - \frac{s}{t} \log_2 \frac{s}{t}$$

since $\log_2 t = (\frac{r}{t} + \frac{s}{t}) \log_2 t$. Thus

$$H_2(p_1, p_2) = -p_1 \log_2 p_1 - p_2 \log_2 p_2$$

whenever p_1 and p_2 are rational. By continuity (B2), this holds even if p_1 and p_2 are irrational.

Finally, let $n \ge 3$ and apply (B3) with r = n - 1, s = 1, $p = \sum_{i=1}^{n-1} p_i$ and $q = p_n$. Then

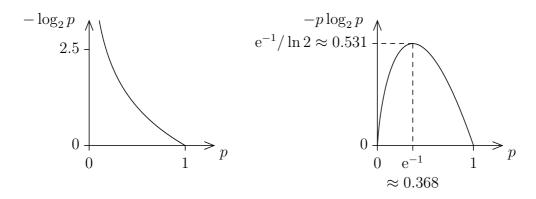
$$H_n(p_1, \dots, p_n) = H_2(p, q) + pH_{n-1}(\frac{p_1}{p}, \dots, \frac{p_{n-1}}{p}) + qH_1(1)$$

$$= -p\log_2 p - q\log_2 q - p\sum_{i=1}^{n-1} \frac{p_i}{p}\log_2 \frac{p_i}{p} + 0$$
by induction

$$= -\sum_{i=1}^{n-1} p_i \log_2 p_i - q \log_2 q \quad \text{by (4)}$$
$$= -\sum_{i=1}^{n} p_i \log_2 p_i$$

as required. //

Note that $-p \log_2 p \to 0$ as $p \to 0+$ (because it is $\frac{\log_2 \frac{1}{p}}{\frac{1}{p}} \to 0$ as $\frac{1}{p} \to \infty$). So we shall interpret $-0 \log_2 0$ as 0 and feel free to write $-p \log_2 p$ even when p may be 0.



1.3. Definitions and properties. If X is a random variable that takes n values with probabilities p_1, \ldots, p_n ($\sum_{i=1}^n p_i = 1$), or if X is a finite probability space with probability distribution (p_1, \ldots, p_n) , then we define the *uncertainty* or *entropy* of X, measured in bits, to be

$$H(X) := H_n(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log_2 p_i$$

(Claude E. Shannon, 1948). (1916–2001; Bell Labs \leqslant 1957, then MIT.)

The information content of an event x with probability p > 0 is defined to be $I(x) = I(p) := -\log_2 p$. Thus $H(X) = \sum_{i=1}^n p_i I(p_i)$ is the average or expected value of the information content of X.

Lemma 1.3.1. If (p_1, \ldots, p_n) and (q_1, \ldots, q_n) are probability distributions, then

$$-\sum_{i=1}^{n} p_i \log_2 p_i \leqslant -\sum_{i=1}^{n} p_i \log_2 q_i,$$

with equality iff $p_i = q_i$ for each i.

Proof. Since $e^x \ge 1 + x$, with equality iff x = 0, therefore $y \ge 1 + \ln y$ (y > 0), with equality iff y = 1.

Hence $\ln \frac{q_i}{p_i} \leqslant \frac{q_i}{p_i} - 1$, with equality iff $p_i = q_i$.

Thus

$$\sum_{i=1}^{n} p_i \ln q_i - \sum_{i=1}^{n} p_i \ln p_i = \sum_{i=1}^{n} p_i \ln \frac{q_i}{p_i}$$

$$\leq \sum_{i=1}^{n} p_i (\frac{q_i}{p_i} - 1) = 1 - 1 = 0,$$

with equality iff $p_i=q_i$ for each i. Dividing by $\ln 2$ gives the result. $/\!/$

Theorem 1.3. (a) $H_n(p_1, \ldots, p_n) \leq \log_2 n$, with equality iff $p_i = \frac{1}{n} \ \forall i$.

- (b) $H_n(p_1, ..., p_n) \ge 0$, with equality iff $p_i = 1$ for some i.
- (c) $H_{n+1}(p_1,\ldots,p_n,0) = H_n(p_1,\ldots,p_n).$

Proof. (a) By Lemma 1.3.1 with $q_i = \frac{1}{n}$ for each i,

$$H_n(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log_2 p_i \leqslant -\sum_{i=1}^n p_i \log_2 \frac{1}{n} = \log_2 n,$$

with equality iff $p_i = \frac{1}{n}$ for each i.

- (b) $-\sum_{i=1}^{n} p_i \log_2 p_i \geqslant 0$, with equality iff, for each i, either $p_i = 0$ or $\log_2 p_i = 0$, i.e., $p_i = 1$. But $\sum p_i = 1$, so that $p_i = 1$ for exactly one i.
- (c) Obvious in view of our convention that $0 \log_2 0 = 0$. //

If X and Y are random variables, each taking finitely many values, write (X,Y) for the random variable that takes value (x,y) iff X=x and Y=y. Suppose

$$X = \begin{pmatrix} x_1 \dots x_n \\ p_1 \dots p_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \dots y_m \\ q_1 \dots q_m \end{pmatrix}, \quad (X, Y) = \begin{pmatrix} (x_1, y_1) \dots (x_n, y_m) \\ r_{11} \dots r_{nm} \end{pmatrix}$$

(that is, $X = x_i$ with probability p_i , etc.). We say that X and Y are *independent* if $r_{ij} = p_i q_j$ for all i and j. We write H(X, Y) for H((X, Y)).

Theorem 1.4. $H(X,Y) \leq H(X) + H(Y)$, with equality iff X,Y are independent.

Proof. Note that

$$p_i = \sum_{j=1}^m r_{ij}, \qquad q_j = \sum_{i=1}^n r_{ij}$$
 (5)

whether or not X and Y are independent. Also,

$$\sum_{i=1}^{n} \sum_{j=1}^{m} p_i q_j = \left(\sum_{i=1}^{n} p_i\right) \left(\sum_{j=1}^{m} q_j\right) = 1.$$

Hence

$$H(X) + H(Y) = -\sum_{i=1}^{n} p_{i} \log_{2} p_{i} - \sum_{j=1}^{m} q_{j} \log_{2} q_{j}$$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{m} (r_{ij} \log_{2} p_{i} + r_{ij} \log_{2} q_{j})$$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_{2} p_{i} q_{j}$$

$$\geq -\sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_{2} r_{ij} = H(X, Y),$$

by Lemma 1.3.1, with equality iff $r_{ij} = p_i q_j$ for all i and j. //

With X, Y as before and fixed y_j , write $X|y_j$ for the random variable that takes value $x_i|y_j$ with probability $P(x_i|y_j) = \frac{P(x_i,y_j)}{P(y_j)} = \frac{r_{ij}}{q_j}$. (Note that $\sum_{i=1}^n \frac{r_{ij}}{q_j} = 1$ by (5).) By our previous definitions, therefore,

$$I(x_i|y_j) = -\log_2 \frac{r_{ij}}{q_j}$$

and

$$H(X|y_j) = \sum_{i=1}^n P(x_i|y_j)I(x_i|y_j) = -\sum_{i=1}^n \frac{r_{ij}}{q_j}\log_2\frac{r_{ij}}{q_j}.$$

The conditional uncertainty or conditional entropy of X given Y is defined to be

$$H(X|Y) := \sum_{j=1}^{m} q_{j}H(X|y_{j})$$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_{2} \frac{r_{ij}}{q_{j}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij}I(x_{i}|y_{j}),$$
(6)

which is the average or expected value of $H(X|y_j)$ over all y_j , or (in a sense) of $I(x_i|y_j)$ over all x_i and y_j .

Theorem 1.5. (a) H(X|Y) = H(X,Y) - H(Y).

- (b) H(X|X) = 0.
- (c) $H(X|Y) \ge 0$, with equality iff X is uniquely determined by Y.
- (d) $H(X|Y) \leq H(X)$, with equality iff X and Y are independent.

Proof. (a)
$$H(X|Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_2 \frac{r_{ij}}{q_j}$$
 by (7)

$$= -\sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_2 r_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_2 q_j$$

$$= H(X, Y) - H(Y)$$

since $\sum_{i=1}^{n} r_{ij} = q_j$ by (5).

- (b) If Y = X then $y_i = x_i$ and $r_{ij} = P(y_i, y_j) = \begin{cases} q_j & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$ Thus $r_{ij} \log_2 \frac{r_{ij}}{q_i} = 0$ for every term contributing to H(X|X).
- (c) $H(X|Y) \ge 0$ by (7), and H(X|Y) = 0 iff $r_{ij} = 0$ or q_j for each i and j. By (5), this means that, for each j, $r_{ij} = q_j$ for exactly one

i, say i = i(j), which means that if $Y = y_j$ then $X = x_{i(j)}$. Thus X is uniquely determined by Y. The converse follows similarly.

(d) By (a) and Theorem 1.4,

$$H(X|Y) = H(X,Y) - H(Y) \le H(X) + H(Y) - H(Y) = H(X),$$

with equality iff X and Y are independent. //

The information about X given by y_i is

$$I(X|y_i) := H(X) - H(X|y_i) \qquad \text{(can be negative!)}. \tag{8}$$

The information about X given by Y is

$$I(X|Y) := \sum_{j=1}^{m} q_j I(X|y_j) = H(X) - H(X|Y)$$
(9)

by (6) and (8), which is the expected amount of uncertainty in X that is removed by Y.

Example. Three horses are entered for a race. Their probabilities of winning are $\frac{7}{8}$, $\frac{1}{16}$, $\frac{1}{16}$. The uncertainty as to the result is

$$H(X) = H_3(\frac{7}{8}, \frac{1}{16}, \frac{1}{16}) = -\frac{7}{8} \log_2 \frac{7}{8} - \frac{2}{16} \log_2 \frac{1}{16}$$

$$\approx 0.169 + 0.5$$

$$= 0.669.$$

I tell you that the favourite has broken its leg and will not run. If the probability of this is $2^{-14} \approx \frac{1}{16000}$, then I have given you $-\log_2 2^{-14} = 14$ bits of information. But the uncertainty in the result of the race is now

$$H(X|y) = H_2(\frac{1}{2}, \frac{1}{2}) = U(2) = 1,$$

and so I have given you 0.669 - 1 = -0.331 bits of information about the result of the race.

Theorem 1.6. (a) I(X|Y) = H(X) + H(Y) - H(X,Y) = I(Y|X).

- (b) I(X|X) = H(X).
- (c) $I(X|Y) \leq H(X)$, with equality iff X is uniquely determined by Y.
- (d) $I(X|Y) \ge 0$, with equality iff X and Y are independent.
- (e) $I(X|Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_2 \frac{r_{ij}}{p_i q_j}$.

Proof.(a) By (9) and Theorem 1.5(a),

$$I(X|Y) = H(X) - H(X|Y) = H(X) - H(X,Y) + H(Y)$$

as required. I(Y|X) = I(X|Y) because clearly H(Y,X) = H(X,Y).

(b), (c) and (d) follow immediately from the corresponding parts of Theorem 1.5, since I(X|Y) + H(X|Y) = H(X).

(e)
$$I(X|Y) = H(X) - H(X|Y)$$
 by (9)

$$= -\sum_{i=1}^{n} p_i \log_2 p_i + \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_2 \frac{r_{ij}}{q_j}$$
 by (7)

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \left[-\log_2 p_i + \log_2 \frac{r_{ij}}{q_j} \right]$$
 by (5)

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} \log_2 \frac{r_{ij}}{p_i q_j}.$$
 //