Edge-Colourings of Simple Graphs

If a graph G is properly edge-coloured, let $C(v)$ denote the set of colours present on edges at vertex v. An \((a, b)\)-chain is a component (a maximal path or a circuit) of the subgraph of edges coloured a or b.

Theorem 1. (D. König, 1916.) If G is a bipartite multigraph then $\chi'(G) = \Delta(G)$.

Proof. Suppose $\chi'(G) \geq \Delta(G) + 1$ and let $t := \Delta(G)$. Let H be a minimal subgraph of G that is not edge-t-colourable, and let $e = uw \in E(H)$. Choose an edge-t-colouring of $H - e$. Every colour c is used at u or w, otherwise we could colour e with c. But there are colours $c_u \notin C(u)$ and $c_w \notin C(w)$, since $d_{H-e}(u) < t$ and $d_{H-e}(w) < t$. Let P be the \((c_w, c_u)\)-chain starting from u. Since H is bipartite, P could only reach u or w along an edge coloured c_u or c_w respectively, which is impossible. So interchange the colours c_u and c_w along P and colour e with c_w. This shows that $\chi'(H) \leq t$, a contradiction. //

Vizing proved a general upper bound for $\chi'(G)$, which we will prove only for simple graphs. From now on, assume G is simple. A \textit{fan sequence} at a vertex w is a sequence of distinct edges of the form wv_1, \ldots, wv_s such that, for each $i \geq 2$, $c(wv_i) \notin C(v_{i-1})$.

Lemma 2.1. Suppose $t \geq \Delta(G)$ and G is not edge-t-colourable but $G - e$ is, for some edge $e = uw$ of G. For some edge-t-colouring c of $G - e$, suppose there is an edge wv_1 s.t. $c(wv_1) \notin C(u)$, and let wv_1, \ldots, wv_s be a longest fan sequence starting with wv_1. Then

(i) $\forall i, C(u) \setminus C(w) \subseteq C(v_i)$;
(ii) if $j < i$ then $c(wv_j) \in C(v_i)$;
(iii) $d(v_s) = \Delta(G) = t$.

Proof. If \(a \in C(u) \setminus C(w) \) and \(a \notin C(v_i) \) then we can (re)colour
\[
e, \quad wv_1, \ldots, wv_{i-1}, wv_i
\]
with \(c(wv_1), c(wv_2), \ldots, c(wv_i), a \). (*)

This contradiction proves (i). To prove (ii), note that \(C(u) \setminus C(w) \neq \emptyset \), since clearly \(|C(u) \cup C(w)| = t \) and so \(C(u) \subseteq C(w) \) would imply \(d(w) \geq 1 + t > \Delta(G) \). Fix \(a \in C(u) \setminus C(w) \), and suppose \(\exists j < i \) s.t. \(c(wv_j) \notin C(v_i) \). Let \(P \) be the \((a, c(wv_j))\)-chain starting from \(v_i \).

Case 1: \(j = 1 \). If \(P \) does not end at \(u \) (even if \(P \) ends along \(v_1w \)) interchange colours along \(P \) and then use (*). If \(P \) does end at \(u \) then interchange colours along the \((a, c(wv_1))\)-chain starting along \(wv_1 \) (which does not end at \(u \)) and colour \(e \) with \(c(wv_1) \). Either way we have a contradiction.

Case 2: \(j \geq 2 \). If \(P \) does not end at \(v_{j-1} \), interchange colours along \(P \) and then use (*). Otherwise, interchange colours along \(P \) and then (re)colour
\[
e, \quad wv_1, \ldots, wv_{j-2}, wv_{j-1}
\]
with \(c(wv_1), c(wv_2), \ldots, c(wv_{j-1}), a \).

This contradiction proves (ii). Now (iii) follows because if any colour \(b \) were missing from \(v_s \), then by (i) and (ii), and since \(|C(u) \cup C(w)| = t \), there would be an edge at \(w \) of colour \(b \notin \{c(wv_1), \ldots, c(wv_s)\} \), and so there would be a longer fan sequence. Thus all \(t \) colours are present at \(v_s \). //

Theorem 2. Vizing’s Theorem (V. G. Vizing, 1964; R. P. Gupta, 1966.) For every simple graph \(G \) with maximum degree \(\Delta \), \(\chi'(G) \leq \Delta + 1 \).

Proof. Suppose \(\chi'(G) \geq \Delta + 2 \). Set \(t = \Delta + 1 \) and let \(H \) be a minimal subgraph of \(G \) that is not edge-\(t \)-colourable. Then \(H - e \)
is edge-t-colourable, for each edge $e = uw$ of H, and so Lemma 2.1 implies that $t = \Delta(H) \leq \Delta$, a contradiction.

It follows from Vizing’s theorem that $\chi'(G) = \Delta(G)$ or $\Delta(G) + 1$ for every simple graph G. G is said to be of class one if $\chi'(G) = \Delta(G)$ and of class two if $\chi'(G) = \Delta(G) + 1$. Theorem 1 shows that every bipartite graph is of class one. So is K_n (n even):

$$\begin{array}{c}
\text{times } n-1 \text{ rotations}
\end{array}$$

But K_n (n odd) is of class two, since each colour can be used on at most $\lceil \frac{n}{2} \rceil = \frac{n}{2}(n-1)$ edges and so $\chi'(K_n) \geq \frac{n(n-1)}{2} = n = \Delta(K_n)+1$. A graph G is called overfull if $|E(G)| > \Delta(G)\lceil \frac{1}{2}|V(G)| \rceil$. If G is overfull then $|V(G)|$ is odd and G is of class two.

Conjecture. (A. G. Chetwynd and A. J. W. Hilton, 1986.) If $\Delta(G) > \frac{1}{3}|V(G)|$, then G is of class two if and only if G contains an overfull subgraph H with $\Delta(H) = \Delta(G)$.

The Petersen graph minus 1 vertex is of class two, and has no such overfull subgraph, and has $\Delta = \frac{1}{3}|V|$.

Lemma 3.1. Let G and c be as in Lemma 2.1 with $t = \Delta(G)$. Let wv_1, \ldots, wv_s and wx_1, \ldots, wx_r be fan sequences at w with $v_1 \neq x_1$ and $c(wv_1), c(wx_1) \notin C(u)$. Then $v_i \neq x_j$, $\forall i, j$.

Proof. Suppose $v_i = x_j$ and (w.l.o.g.) $i \geq 2$ and the vertices $v_1, \ldots, v_i, x_1, \ldots, x_j$ are otherwise distinct. Let $a \in C(u) \setminus C(w)$ as before, and interchange colours along the $(c(wv_i), a)$-chain P starting along $wv_i = wx_j$. If P does not end at v_i-1 we can use (*). So suppose P ends at v_i-1. If $j = 1$, we can simply colour e with $c(wv_i)$, since $c(wv_i) = c(wx_1) \notin C(u)$ and P does not end at u. If $j \geq 2$, we can reverse the roles of the two fans and then use (*) (since P does not end at x_{j-1}).

//
Theorem 3. Vizing’s Adjacency Lemma (1965). Let G be a minimal graph that is not edge-Δ-colourable, where $\Delta = \Delta(G)$, and let u, w be adjacent vertices of G, where $d(u) = k$. Then w is adjacent to at least $\Delta - k + 1$ vertices of degree Δ different from u.

Proof. Consider an edge-Δ-colouring of $G - uw$. For each of the $\Delta - k + 1$ colours appearing at w but not at u, there is a longest fan sequence at w starting with an edge of that colour. By Lemma 3.1 these fan sequences are all disjoint, and by Lemma 2.1 each ends with an edge wv_s with $d(v_s) = \Delta$. //

Corollary 3.1. Each vertex of G has at least two neighbours of degree Δ, and G contains at least three Δ-vertices. //

Theorem 4. (V. G. Vizing, 1968.) If G is a simple planar graph with maximum degree $\Delta \geq 8$, then $\chi'(G) = \Delta$.

Proof. (H. Hind and Y. Zhao, DM 190 (1998) 107–114.) Let $G = (V, E, F)$ be a minimal counterexample. Then $d(u) \geq 2$ and $d(u) + d(w) \geq \Delta + 2 \geq 10$ for each edge uw. Let $d(f)$ denote the number of edges bounding face f. Euler’s formula $|V| - |E| + |F| \geq 2$ gives

$$\sum_{v \in V}(4 - d(v)) + \sum_{f \in F}(4 - d(f)) \geq 8.$$

(1)

Assign ‘charge’ $M(x) := 4 - d(x)$ to each $x \in V \cup F$. Note that only 2-vertices, 3-vertices and 3-faces have positive charge, but the total charge is positive by (1). Now redistribute the charge as follows.

For each edge uw,

(R1) if $d(u) = 2$ then $d(w) = \Delta$: send 1 from u to w;

(R2) if $d(u) = 3$ then $d(w) \geq \Delta - 1$: send $\frac{1}{3}$ from u to w.

For each 3-face $f = uvw$,

(R3) if $d(u) \leq 4$ and $d(v), d(w) \geq 7$, f sends $\frac{1}{2}$ to each of v, w: $\frac{1}{3}$ directly and $\frac{1}{6}$ via u;
(R4) if \(d(u) = 4 \) and \(d(v) = 6 \), then \(d(w) = \Delta = 8 \), since \(d(u) + d(v) \geq \Delta + 2 \), and if \(d(u), d(w) < \Delta \) then \(d(v) \geq 2 + (\Delta - d(u) + 1) \geq 7 \) by Theorem 3; and \(f \) sends \(\frac{1}{3} \) to \(v \) and \(\frac{2}{3} \) to \(w \): \(\frac{1}{3} \) directly and \(\frac{1}{6} \) via each of \(u, v \);

(R5) if \(d(u), d(v), d(w) \geq 5 \) then \(f \) sends \(\frac{1}{3} \) to each of \(u, v, w \).

Finally,

(R6) each 5-vertex \(v \) sends \(\frac{2}{(3d_{\geq 7}(v))} \) to each vertex in \(N_{\geq 7}(v) \), where \(d_i(v) \) and \(N_i(v) \) denote the number and set of neighbours of \(v \) with degree \(i \), etc. Note that \(d_{\geq 7}(v) \geq 2 \) by Corollary 3.1, and \(v \) loses exactly \(\frac{2}{3} \) by (R6).

Claim. If \(d(w) \geq 7 \), then the charge that \(w \) receives by (R6):

(a) from each neighbouring 5-vertex is \(\leq \frac{1}{6} \) if \(d(w) = 7 \), \(\leq \frac{2}{9} \) otherwise;

(b) in total, is \(\leq \frac{1}{2} \) if \(d(w) = 7 \), \(\leq \frac{8}{9} \) otherwise.

Proof of Claim. Suppose \(v \in N_5(w) \). If \(d_{\leq 6}(v) \geq 1 \), then \(d_\Delta(v) \geq \Delta - 6 + 1 \geq 3 \) by Theorem 3. Thus \(d_{\geq 7}(v) \geq 3 \), and \(\geq 4 \) if \(d(w) < \Delta \). This proves (a). (b) follows because if \(d_5(w) > 0 \) then \(d_\Delta(w) \geq \Delta - 4 \) by Theorem 3, so that \(d_5(w) \leq 4 \), and \(\leq 3 \) if \(d(w) < \Delta \). This proves the Claim. \(/\)

If \(x \in V \cup F \), let the charge on \(x \) after the redistribution be \(M'(x) = M(x) + R(x) \), where \(R(x) \) is the net change. If \(x \) is a 3-face then \(M(x) = 1, R(x) = -1 \) by (R3)–(R5), and so \(M'(x) = 0 \). If \(x \) is any other face then \(M'(x) = M(x) \leq 0 \). So suppose \(x = v \), a vertex.

\[
\begin{align*}
d(v) = 2: & \quad M(v) = 2, R(v) = -2 \text{ by (R1), } M'(v) = 0. \\
d(v) = 3: & \quad M(v) = 1, R(v) = -1 \text{ by (R2), } M'(v) = 0. \\
d(v) = 4: & \quad M(v) = 0, R(v) = 0, M'(v) = 0. \\
d(v) = 5: & \quad M(v) = -1, R(v) \leq \frac{5}{3} - \frac{2}{3} \text{ by (R5) & (R6), } M'(v) \leq 0. \\
d(v) = 6: & \quad M(v) = -2, R(v) \leq \frac{5}{3} \text{ by (R4) & (R5), } M'(v) \leq 0. \\
d(v) = 7: & \quad M(v) = -3, \text{ so we must prove } R(v) \leq 3. \text{ Now,}
\end{align*}
\]
\[R(v) \leq \frac{7}{3} + \frac{2d_3(v)}{3} + \frac{d_4(v)}{3} + \frac{d_5(v)}{6}. \]

If \(d_3(v) > 0 \) then \(d_\Delta(v) = 6 \) by Theorem 3, so \(R(v) \leq \frac{7}{3} + \frac{2}{3} = 3 \).
If \(d_3(v) = 0 \) but \(d_4(v) > 0 \) then \(d_\Delta(v) \geq 5 \) by Theorem 3, so \(d_4(v) + d_5(v) \leq 2 \); again \(R(v) \leq \frac{7}{3} + \frac{2}{3} = 3 \).
If \(d_\leq 4(v) = 0 \) then \(R(v) \leq \frac{7}{3} + \frac{1}{2} < 3 \) by (b) of the Claim.

If \(d(v) = k \geq 8 \): \(M(v) = 4 - k \) and
\[
R(v) \leq \frac{k}{3} + \frac{5d_2(v)}{6} + \frac{2d_3(v)}{3} + \frac{d_4(v)}{3} + \frac{2d_5(v)}{9} + \min\{d_4(v), d_6(v)\}\
\]

since (i) if \(w \in N_2(v) \) then, since \(G \) is simple, \(vw \) lies in the boundary of at most one 3-face, and so \(v \) receives 1 from \(w \) by (R1) and \(\leq \frac{1}{2} \) from the two faces either side of edge \(vw \) by (R3), instead of the \(\frac{2}{3} \) allowed for in the first term; and (ii) a 4-vertex is adjacent to at most one 6-vertex, and a 6-vertex to at most one 4-vertex, by Theorem 3. It suffices to prove that \(R(v) \leq \frac{k}{3} + \frac{4}{3} \), since \(4 - k + \frac{k}{3} + \frac{4}{3} = \frac{2}{3}(8 - k) \leq 0 \).
If \(d_2(v) > 0 \) then \(d_\Delta(v) = \Delta - 1 \) and \(R(v) \leq \frac{k}{3} + \frac{5}{6} < \frac{k}{3} + \frac{4}{3} \).
If \(d_2(v) = 0 \) but \(d_3(v) > 0 \) then \(d_\Delta(v) \geq \Delta - 2 \) and \(R(v) \leq \frac{k}{3} + \frac{4}{3} \).
If \(d_\leq 3(v) = 0 \) but \(d_4(v) > 0 \) then \(d_\Delta(v) \geq \Delta - 3 \) and
\[
R(v) \leq \frac{k}{3} + \frac{3}{3} < \frac{k}{3} + \frac{4}{3}.
\]
If \(d_\leq 4(v) = 0 \) then \(d_\Delta(v) \geq \Delta - 4 \) and \(R(v) \leq \frac{k}{3} + \frac{8}{9} < \frac{k}{3} + \frac{4}{3} \).
Thus \(M'(x) \leq 0 \) \forall x \in V \cup F \), and this contradicts (1). //

Vizing conjectured the result of Theorem 4 if \(\Delta \geq 6 \). (It is false if \(2 \leq \Delta \leq 5 \): subdivide an edge of \(C_4 \), \(K_4 \), octahedron, icosahedron.) L. Zhang (Graphs Combin. 16 (2000) 467–495) and D. P. Sanders and Y. Zhao (JCT(B) 83 (2001) 201–212) proved it if \(\Delta = 7 \). Both this and the proof of Theorem 4 work also in the projective plane. For the torus and Klein bottle, the result is false if \(\Delta = 6 \) (consider \(K_7 - e \)); it was proved by Hind and Zhao (loc. cit.) for \(\Delta \geq 8 \), and by Sanders and Zhao (JCT(B) 87 (2003) 254–263) for \(\Delta = 7 \).