Matchings and Factors of Graphs

1. **Necessary and sufficient conditions.** Let G be a multigraph and $f : V(G) \rightarrow \mathbb{N} \cup \{0\}$ be a function. An f-factor of G is a subgraph H such that $d_H(v) = f(v)$ $\forall v \in V(G)$. A k-factor is an f-factor s.t. $f(v) = k$ $\forall v \in V(G)$. A matching is a subgraph with maximum degree ≤ 1; i.e., a set of pairwise nonadjacent edges. A perfect matching is a 1-factor.

Theorem 1. Let G be a bipartite multigraph on two sets S, T of vertices. Then G has an f-factor if and only if

(i) $\sum_{v \in S} f(v) = \sum_{w \in T} f(w) = \Sigma$, say; and

(ii) $\forall X \subseteq S, Y \subseteq T$, the number $e(X, Y)$ of edges of G between X and Y is at least $\sum_{v \in X} f(v) + \sum_{w \in Y} f(w) - \Sigma$.

Proof. Condition (i) is clearly necessary; so suppose it holds. Form \tilde{G} by directing all edges of G from S to T, and adding a new vertex s joined to each v in S by $f(v)$ arcs, and a new vertex t with $f(w)$ arcs from each w in T to t. Then G has an f-factor if and only if \tilde{G} contains Σ arc-disjoint s, t-paths. The edge-separation analogue of Menger’s theorem says that this happens if and only if every set of arcs separating s from t in \tilde{G} contains at least Σ arcs. Suppose C is a separating set of arcs. Let

$$X := \{v \in S : \text{not all } sv\text{-arcs are in } C\},$$

$$Y := \{w \in T : \text{not all } wt\text{-arcs are in } C\}.$$

Then all XY-arcs are in C, and so

$$|C| \geq \sum_{v \in S \setminus X} f(v) + \sum_{w \in T \setminus Y} f(w) + e(X, Y)$$

$$= 2\Sigma - \sum_{v \in X} f(v) - \sum_{w \in Y} f(w) + e(X, Y).$$
Moreover, $\forall X \subseteq S, Y \subseteq T$, there exists a separating set with this number of arcs. So G has an f-factor if and only if, $\forall X \subseteq S, Y \subseteq T$,

$$2\Sigma - \sum_{v \in X} f(v) - \sum_{w \in Y} f(w) + e(X, Y) \geq \Sigma,$$

which is (ii). //

Corollary 1.1. G has a 1-factor if and only if $|N(X)| \geq |X| \ \ \forall X \subseteq V(G)$. (Here $N(X) := \bigcup_{x \in X} N(x)$.)

Proof. The condition is clearly necessary. To prove that it is sufficient, note first that it implies

$$|S| \geq |N(T)| \geq |T| \ \ \text{and} \ \ |T| \geq |N(S)| \geq |S|,$$

so that $|S| = |T|$, which is (i) in Theorem 1. Also, $\forall X \subseteq S, Y \subseteq T$,

$$e(X, Y) \geq |N(X) \cap Y| = |N(X)| + |Y| - |N(X) \cup Y| \geq |X| + |Y| - |T|,$$

which is (ii). The result follows from Theorem 1. //

Corollary 1.2. G has a 1-factor if and only if the following three conditions hold:

(i) $|N(X)| \geq |X| \ \ \forall X \subseteq S,$

(ii) $|N(Y)| \geq |Y| \ \ \forall Y \subseteq T,$

(iii) $|S| = |T|.$

Moreover, any two of these imply the third.

Proof. (i) & (ii) $\iff |N(X)| \geq |X| \ \ \forall X \subseteq V(G)$

$\iff G$ has a 1-factor by Corollary 1.1,

\implies (iii).
To see that (i) & (iii) \(\implies \) (ii), let \(Y \subseteq T \), and define \(X := S \setminus N(Y) \). Then \(N(X) \cap Y = \emptyset \) and
\[
|N(Y)| = |S| - |X| = |T| - |X| \quad \text{by (iii)} \\
\geq |T| - |N(X)| \quad \text{by (i)} \\
\geq |Y|.
\]
Similarly (ii) & (iii) \(\implies \) (i). //

If \(S \subseteq V(G) \) (where now \(G \) is not necessarily bipartite), let \(o(S) = o_G(S) \) denote the number of odd components (components with an odd number of vertices) in \(G - S \).

Theorem 2. (W. T. Tutte, 1947.) \(G \) has a 1-factor if and only if \(o(S) \leq |S| \quad \forall S \subseteq V(G) \).

Proof. (I. Anderson, 1971.) ‘Only if’ holds because in any 1-factor of \(G \), at least one vertex of \(S \) is matched with each odd component of \(G - S \). We prove ‘if’ by induction on \(|V(G)| \). Assume \(o(S) \leq |S| \quad \forall S \subseteq V(G) \). Taking \(S = \emptyset \) we see that \(|V(G)| \) is even. Hence \(o(S) \equiv |S| \pmod{2} \), and
\[
\text{if } o(S) \neq |S| \text{ then } o(S) \leq |S| - 2. \quad (\ast)
\]

If \(|S| = 1 \) then clearly \(o(S) = |S| \). Choose \(S \) maximal such that \(o(S) = |S| \). Then \(G - S \) has \(|S| \) odd components \(C_1, \ldots, C_{|S|} \) — and no even components, otherwise transferring a vertex from one of them to \(S \) would increase \(|S| \) and \(o(S) \) by one and contradict the maximality of \(S \). Let \(T = \{1, 2, \ldots, o(S)\} \), and form a bipartite graph \(H \) on \(S \cup T \) by joining \(s \) to \(t \) iff \(s \in N_G(C_t) \). For each \(Y \subseteq T \),
\[
|N_H(Y)| \geq o_G(N_H(Y)) \geq |Y|
\]
since \(G - N_H(Y) \) has at least the \(|Y| \) odd components \(C_t : t \in Y \). By Corollary 1.2, \(H \) has a 1-factor, and so we can take a vertex \(x_i \)
in each \(C_i \) and match it with a vertex in \(S \). Let \(U \subseteq V(C_i - x_i) \), for some \(i \). Then

\[
o_{C_i - x_i}(U) = o_G(U \cup \{x_i\} \cup S) - (o_G(S) - 1) \\
\leq |U \cup \{x_i\} \cup S| - 2 - (|S| - 1) \\
= |U|.
\]

By the induction hypothesis each set \(C_i - x_i \) has a 1-factor, and hence so does \(G \). \hfill //

Theorem 3. (W. T. Tutte, 1952.) \(G \) has an \(f \)-factor if and only if, for every pair of disjoint subsets \(A, B \) of \(V(G) \), the number of components \(C \) of \(G - (A \cup B) \) for which \(e(B, C) + \sum_{v \in C} f(v) \) is odd, is at most \(\sum_{v \in A} f(v) + \sum_{v \in B} [d_{G-A}(v) - f(v)] \).

Proof. Both the existence of an \(f \)-factor, and the condition (with \(A = \emptyset, B = \{v\} \)) require \(f(v) \leq d(v) \forall v \in V(G) \); so suppose this is true. We may assume \(d(v) \neq 0, \forall v \in V(G) \). Form \(G' \) from \(G \) by carrying out the following construction at every vertex \(v \):

![Diagram](image)

Then \(G \) has an \(f \)-factor iff \(G' \) has a 1-factor. We must prove that the given condition is equivalent to \(o_{G'}(S) \leq |S|, \forall S \subseteq V(G') \). Choose \(S \) minimal s.t. \(|S| - o_{G'}(S) \) takes its minimum value.

Claim 1. \(\forall v \in V(G) , \) either \(\emptyset \neq B(v) \subseteq S \) or \(B(v) \cap S = \emptyset \); otherwise, removing a vertex \(w \) of \(B(v) \) from \(S \) would reduce \(|S| \)
by 1 and change $o_{G'}(S)$ by at most one (since all neighbours of w in $G' - S$ are in the same component), thereby violating the choice of S.

Claim 2. If $B(v) \subseteq S$ then $A(v) \cap S = \emptyset$ (for the same reason, removing a vertex w of $A(v)$ from S).

Claim 3. $\forall v \in V(G)$, either $A(v) \subseteq S$ or $A(v) \cap S = \emptyset$. This follows from Claim 2 if $B(v) \subseteq S$, and so by Claim 1 we may assume that $B(v) \neq \emptyset$ and $B(v) \cap S = \emptyset$. Now a vertex $w \in A(v) \cap S$ has neighbours in at most two components of $G' - S$, and the result follows by the same reasoning as before.

Let $A := \{v \in V(G) : A(v) \subseteq S\}$

and $B := \{v \in V(G) : B(v) \subseteq S\}$.

Then A and B are disjoint by Claim 2, and, by Claims 1 and 3, $A(v) \cap S = \emptyset$ if $v \notin A$ and $B(v) \cap S = \emptyset$ if $v \notin B$. Each component C of $G - (A \cup B)$ corresponds to a component of $G' - S$ with $\sum_{v \in C} [2d_G(v) - f(v)] + e(B, C)$ vertices, which is odd iff $e(B, C) + \sum_{v \in C} f(v)$ is. The other odd components of $G' - S$ are all isolated vertices: $\sum_{v \in A} [d_G(v) - f(v)]$ of them corresponding to vertices in A, and $e(A, B) = \sum_{v \in B} d_A(v)$ of them corresponding to edges between A and B. Thus $o_{G'}(S) \leq |S|$ iff the number of components C of $G - (A \cup B)$ for which $e(B, C) + \sum_{v \in C} f(v)$ is odd is at most

$$|S| - \sum_{v \in A} [d_G(v) - f(v)] - \sum_{v \in B} d_A(v). \quad (1)$$

Since

$$|S| = \sum_{v \in A} d_G(v) + \sum_{v \in B} [d_G(v) - f(v)],$$

(1) is equal to

$$\sum_{v \in A} f(v) + \sum_{v \in B} [d_G - A(v) - f(v)],$$

as required.
It follows that if the condition given in the Theorem holds, then \(o_{G'}(S) \leq |S|, \forall S \subseteq V(G') \). To prove the converse, let \(A \) and \(B \) be disjoint subsets of \(V(G) \), and let

\[
S := \bigcup \{A(v) : v \in A\} \cup \bigcup \{B(v) : v \in B\} \subseteq V(G').
\]

Then the results of Claims 1–3 hold by definition, and the above argument shows that if \(o_{G'}(S) \leq |S| \) then the condition in the Theorem holds for \(A \) and \(B \). //

[In fact, the necessity of the condition in Theorem 3 is not difficult to see directly. Suppose \(G \) has an \(f \)-factor \(F \). Then the number of ends of edges of \(F \) in \(B \) is \(\sum_{v \in B} d_F(v) = \sum_{v \in B} f(v) \). Of the other ends of these edges, \(e_F(A, B) \) are in \(A \), and \(\sum_{v \in B} d_{F-A}(v) \) are not in \(A \). However, for each component of \(G - (A \cup B) \) for which \(e(B, C) + \sum_{v \in C} f(v) \) is odd, the number of edges between \(A \) and \(C \) that are in \(F \), plus the number between \(B \) and \(C \) that are not in \(F \), is odd. So if there are \(s \) such components, then \(e_F(A, B) + \sum_{v \in B} d_{F-A}(v) \leq \sum_{v \in A} f(v) + \sum_{v \in B} d_{G-A}(v) - s \). Thus \(\sum_{v \in B} f(v) \leq \sum_{v \in A} f(v) + \sum_{v \in B} d_{G-A}(v) - s \), which is the given condition.]

A multigraph \(G \) has the odd cycle property (OCP) if each two of its odd circuits either overlap (in at least one vertex) or are joined by an edge. Equivalently, if \(S \subseteq V(G) \), then at most one component of \(G - S \) contains an odd circuit.

Theorem 4. If \(G \) has the OCP then \(G \) has a 1-factor if and only if \(|V(G)| \) is even and \(|N(X)| \geq |X| \) \(\forall X \subseteq V(G) \) s.t. \(X \) is independent.

Proof. The conditions are clearly necessary. To prove they are sufficient, we use Theorem 2. Suppose \(\exists S \subseteq V(G) \) s.t. \(o(S) > |S| \). Since \(|V(G)| \) is even, \(o(S) \geq |S| + 2 \). Since \(G \) has the OCP, at
most one component of \(G - S \) contains an odd circuit. Let \(C_i \)
\((i = 1, 2, \ldots, |S| + 1)\) be bipartite odd components of \(G - S \). Let
\(X_i \) be the larger partite set of \(C_i \), so that \(|N_{C_i}(X_i)| \leq |X_i| - 1\), and
let \(X := \bigcup_{i=1}^{|S|+1} X_i \). Then \(X \) is independent and
\[
|N(X)| \leq |S| + \sum_{i=1}^{|S|+1} |N_{C_i}(X_i)| \\
\leq |S| + \sum_{i=1}^{|S|+1} (|X_i| - 1) \\
= |S| + |X| - |S| - 1 < |X|.
\]
This contradiction shows that \(o(S) \leq |S|, \forall S \subseteq V(G) \), so that \(G \)
has a 1-factor by Theorem 2. //

Theorem 5. (D. R. Fulkerson, A. J. Hoffman and M. H. McAndrew, 1965; Canad. J. Math. 17, 166–177.) If \(G \) has the OCP then
\(G \) has an \(f \)-factor if and only if \(\sum_{v \in V(G)} f(v) \) is even and
\[
t(A, B) := \sum_{v \in A} f(v) + \sum_{v \in B} \left[d_{G-A}(v) - f(v) \right] \geq 0
\]
for every pair of disjoint subsets \(A, B \) of \(V(G) \).

Proof. Let \(s(A, B) \) denote the number of odd components \(C \) of
\(G - (A \cup B) \), where \(odd \) means now that \(e(B, C) + \sum_{v \in C} f(v) \) is
odd. By Tutte’s \(f \)-factor theorem (Theorem 3),
\[
G \text{ has an } f \text{-factor } \iff s(A, B) \leq t(A, B) \ \forall A, B \\
\implies \sum_{v \in V(G)} f(v) \text{ is even and } \\
t(A, B) \geq 0 \ \forall A, B.
\]
So suppose \(\sum_{v \in V(G)} f(v) \) is even and \(t(A, B) \geq 0 \ \forall A, B \), and
suppose \(s(A, B) > t(A, B) \) for some \(A, B \). Choose \(A, B \) such that
\(A \cup B \) is maximal with this property. Note that \(s(A, B) + t(A, B) \)
has the same parity as
\[
r(A, B) := \sum_{C \text{ a cpt of } G = (A \cup B)} \left[e(B, C) + \sum_{v \in C} f(v) \right] + t(A, B).
\]
But
\[\sum_{v \in B} d_{G-A}(v) = 2e(B, B) + e(B, V(G) - (A \cup B)), \]
and so \(r(A, B) \) has the same parity as
\[2e(B, V(G) - (A \cup B)) + \sum_{v \in V(G)} f(v), \]
which is even. Thus \(s(A, B) \) has the same parity as \(t(A, B) \), and \(s(A, B) \geq t(A, B) + 2 \geq 2 \). At most one odd component of \(G - (A \cup B) \) contains an odd circuit, since \(G \) has the OCP; so let \(C \) be one that is bipartite, with bipartition \((X, Y)\), say. The two quantities
\[r_X := e(B, X) - \sum_{v \in X} f(v) \]
and
\[r_Y := e(B, Y) - \sum_{v \in Y} f(v) \]
are not equal, since their sum has the same parity as \(e(B, C) + \sum_{v \in C} f(v) \), which is odd. Suppose w.l.o.g. \(r_X > r_Y \). Let \(A' := A \cup X, B' := B \cup Y \). Then \(s(A', B') = s(A, B) - 1 \), and, since \(N(Y) \subseteq X \cup A \cup B = A' \cup B \),
\[t(A', B') = t(A, B) + \sum_{v \in X} f(v) - \sum_{v \in Y} f(v) - e(B, X) + e(B, Y) = t(A, B) - r_X + r_Y < t(A, B). \]
So \(s(A', B') > t(A', B') \). This contradicts the maximality of \(A \cup B \), so we conclude that \(s(A, B) \leq t(A, B) \ \forall A, B \), whence \(G \) has an \(f \)-factor by Theorem 3. //

Exercises. Theorem 5 \(\implies \) Theorem 1,
Theorem 3 \(\implies \) Theorem 1 (directly).

Problem. Is there any other class of multigraphs, other than bipartite and those with the OCP, for which there is a n.s.c. for the existence of an \(f \)-factor that is different from Theorem 3?
2. **Sufficient conditions.** I. Anderson (1971) proved that if $|V(G)|$ is even and $|N(X)| \geq \frac{4}{3}|X| \forall X \subseteq V(G)$ s.t. $|X| \leq \frac{3}{4}|V(G)|$, then G has a 1-factor. D. R. Woodall (1973) defined the *binding number* of G to be

$$
\text{bind}(G) := \min \left\{ \frac{|N(X)|}{|X|} : \emptyset \not\subseteq X \subseteq V(G) \text{ and } N(X) \neq V(G) \right\}
$$

$$
= \max\{c : |N(X)| \geq c|X| \forall X \subseteq V(G) \text{ s.t. } N(X) \neq V(G)\}.
$$

So Anderson’s result says that if $|V(G)|$ is even and $\text{bind}(G) \geq \frac{4}{3}$ then G has a 1-factor. The figure $\frac{4}{3}$ here is best possible in view of the graph $(t + 2)K_3 + tK_1$ (where + denotes ‘join’), which has no 1-factor and has binding number

$$
\frac{3(t + 1) + t}{3(t + 1)} = \frac{4t + 3}{3t + 3} \to \frac{4}{3} \quad \text{as } t \to \infty.
$$

However, the result can be improved in other ways.

Theorem 6. *(Fundamental Lemma.)* Let G be a multigraph and a, b, c, d real numbers such that $a, b \geq 0$. Then

$$
a|N(X)| \geq b|X| + c|V(G)| + d
$$

whenever $\emptyset \not\subseteq X \subseteq V(G)$ \hfill (2)

if and only if

$$
b|N(X)| \geq a|X| + (c + b - a)|V(G)| + d
$$

whenever $X \subseteq V(G), N(X) \neq V(G)$. \hfill (3)

Proof. Suppose (2) holds and let $Y \subseteq V(G), N(Y) \neq V(G)$. Put $X := V(G) \setminus N(Y)$, so that $X \neq \emptyset$ and $N(X) \subseteq V(G) \setminus Y$. Then

$$
b|N(Y)| = b|V(G)| - b|X|
$$

$$
\geq b|V(G)| - a|N(X)| + c|V(G)| + d \quad \text{by (2)}
$$

$$
\geq b|V(G)| - a|V(G)| + a|Y| + c|V(G)| + d
$$

$$
= a|Y| + (c + b - a)|V(G)| + d.
$$
Thus (2) implies (3). The converse is proved similarly. //

\(G\) is *sesquiconnected* if \(G\) is connected and, \(\forall v \in V(G), G - v\) has at most two components. Let \(\delta(G) := \min\{|N(v)| : v \in V(G)\}\). (If \(G\) is simple, this is the minimum degree.)

Theorem 7. If \(G\) is sesquiconnected, \(n = |V(G)|\) is even, \(\delta(G) \geq \frac{1}{4}(n + 3)\) and
\[
|N(X)| \geq \frac{1}{4}(2|X| + n - 5) \tag{4}
\]
for every nonempty *independent* subset \(X\) of \(V(G)\), then \(G\) has a 1-factor.

Proof. Suppose not. Then \(\exists S \subseteq V(G)\) s.t. \(o(S) \geq |S| + 2\). Since \(\delta(G) \geq \frac{1}{4}(n + 3)\), each of the odd components of \(G - S\) has at least \(\frac{1}{4}(n + 3) + 1 - |S|\) vertices, and so
\[
n \geq |S| + (|S| + 2)
\left[
\frac{1}{4}(n + 3) + 1 - |S|
\right],
\]
whence
\[
|S|^2 - \frac{1}{4}(n + 3)|S| + \frac{1}{2}(n - 7) \geq 0,
\]
i.e.,
\[
(|S| - 2)(|S| - \frac{1}{4}(n - 5)) \geq 1.
\]
This is impossible if \(2 \leq |S| \leq \frac{1}{4}(n - 5)\). Since \(|S| \geq 2\) by the sesquiconnectedness of \(G\), \(|S| > \frac{1}{4}(n - 5)\). Let \(x\) of the odd components consist of a single vertex each, and let \(X\) be the set of these. If \(x = 0\) then \(n \geq |S| + 3(|S| + 2)\) and \(|S| \leq \frac{1}{4}(n - 6)\), which is impossible. So \(X \neq \emptyset\) and, by (4),
\[
|S| \geq |N(X)| \geq \frac{1}{4}(2x + n - 5). \tag{5}
\]
Also,
\[
n \geq |S| + x + 3(|S| + 2 - x). \tag{6}
\]
Adding 4 times (5) to (6) gives \(0 \geq 6 - 5 = 1\), a contradiction. //
Corollary 7.1. If \(n = |V(G)| \) is even and
\[|N(X)| \geq \frac{1}{4}(2|X| + n + 1) \]
whenever \(\emptyset \not\subseteq X \subseteq V(G) \) (7)
then \(G \) has a 1-factor.

Proof. Clearly (7) implies (4), and also implies \(\delta(G) \geq \frac{1}{4}(n + 3) \)
take \(|X| = 1 \). If \(G \) is disconnected, let \(X \) be the vertex-set of a
smallest component, for which \(|N(X)| \leq |X| \leq \frac{1}{2}n \). Then (7) gives
\[|X| \geq \frac{1}{4}(2|X| + n + 1) \implies \frac{1}{2}|X| \geq \frac{1}{4}(n + 1) \implies |X| \geq \frac{1}{2}(n + 1), \]
a contradiction. If \(G - v \) has more than two components, let \(X \) be
the vertex-set of a smallest one, for which \(|N(X)| \leq |X| + 1 \) and
\(|X| \leq \frac{1}{3}(n - 1) \). Then (7) gives
\[|X| + 1 \geq \frac{1}{4}(2|X| + n + 1) \implies |X| \geq \frac{1}{2}(n - 3) > \frac{1}{3}(n - 1) \]
if \(n > 7 \). But if \(n \leq 7 \) then \(n \leq 6 \) (because \(n \) is even), so \(|X| \leq \frac{5}{3} \),
i.e., \(|X| = 1 \). But then \(|N(X)| = |X| \), and we have already seen
that it is impossible that \(|N(X)| \leq |X| \leq \frac{1}{2}n \). So (7) implies that
\(G \) is sesquiconnected, and so \(G \) has a 1-factor by Theorem 7. //

Corollary 7.2. If \(n = |V(G)| \) is even then \(G \) has a 1-factor if:

(a) (I. Anderson, 1971) \(\operatorname{bind}(G) \geq \frac{4}{3} \);
(b) (I. Anderson, 1972) \(|N(X)| \geq \frac{1}{2}(4|X| - n + 1) \) whenever
\(X \subseteq V(G), N(X) \neq V(G) \).

Proof. (a) \(\iff \frac{3}{4}|N(X)| \geq |X| \)
whenever
\(X \subseteq V(G), N(X) \neq V(G) \)
\(\iff |N(X)| \geq \frac{3}{4}|X| + \frac{1}{4}n \)
whenever \(\emptyset \not\subseteq X \subseteq V(G) \) by Thm 6
\(\iff |N(X)| \geq \frac{1}{2}|X| + \frac{1}{4}n + \frac{1}{4} \)
whenever \(\emptyset \not\subseteq X \subseteq V(G) \iff (7) \)
\(\iff \frac{1}{2}|N(X)| \geq |X| - \frac{1}{4}n + \frac{1}{4} \)
whenever \(X \subseteq V(G), N(X) \neq V(G) \)
by Thm 6
\(\iff (b)\).
The result follows from Corollary 7.1. //

There could be 12 theorems analogous to Theorem 7: for 1-factors, \(k\)-factors, \([a, b]\)-factors and \(f\)-factors, and in arbitrary graphs, bipartite graphs and graphs with the OCP. The 1-factor theorems are given above, A. M. Robertshaw did \(k\)-factors in bipartite graphs, and T. R. Poole did \([a, b]\)-factors in bipartite and arbitrary graphs. For \(k\)-factors in arbitrary graphs we have the following.

Theorem 8. (Woodall, 1990; Egawa and Enomoto, 1989.) Let \(G\) be a graph with \(n\) vertices, and let \(k \geq 2\) be an integer. If \(k\) is odd, suppose \(n\) is even and \(G\) is connected. Suppose that
\[
|N(X)| \geq \frac{1}{2k-1}(|X| + (k-1)n - 1)
\]
for every nonempty independent subset \(X\) of \(V(G)\), and
\[
\delta(G) \geq \frac{(k-1)(n+2)}{2k-1}.
\]
Suppose further that, if \(n \leq 4k+1-4\sqrt{k+2}\), then
\[
\delta(G) > n+2k-2\sqrt{kn}+2.
\]
Then \(G\) has a \(k\)-factor. //

Theorem 9. (C. Chen, 1995; DM 146, 303–306.) If \(n = |V(G)|\) is even, \(l \geq 1\) and
\[
\text{bind}(G) = b > \max\{l, \frac{7l+13}{12}\} = \begin{cases}
\frac{5}{3} & \text{if } l = 1, \\
\frac{9}{4} & \text{if } l = 2, \\
l & \text{if } l \geq 3,
\end{cases}
\]
then every matching of \(l\) edges in \(G\) can be extended to a 1-factor.
Proof. Suppose not. Let L be the vertex-set of a matching that is not extendable, so that $|L| = 2l$. Then $\exists T \subseteq V(G - L)$ s.t. $o_{G-L}(T) \geq |T| + 2$; that is, writing $S := T \cup L$,

$$o_G(S) \geq |S| - 2l + 2.$$ (8)

Let $i(G - S)$ denote the number of isolated vertices in $G - S$. There are two cases.

Case 1: $i(G - S) = 0$. Let X be the vertex-set of any $|S| - 2l + 1$ odd components of $G - S$. Since $N(X) \neq V(G)$,

$$|X| + |S| \geq |N(X)| \geq b|X|,$$

and so $|X| \leq \frac{|S|}{b - 1}$. But $|X| \geq 3(|S| - 2l + 1)$, and so

$$3(|S| - 2l + 1) \leq \frac{|S|}{b - 1}.$$ (9)

Since $3(b - 1) \geq 3\left(\frac{5}{3} - 1\right) > 1$ and $|S| \geq 2l$, (9) remains true with $|S|$ replaced by $2l$. Hence $3(b - 1) \leq 2l$, and so $b \leq \frac{3}{2}l + 1$, a contradiction unless $l = 2$. If $l = 2$ and some odd component of $G - S$ has at least 5 vertices, then the LHS of (9) is increased by 2 and we get $5(b - 1) \leq 2l = 4$ or $b \leq \frac{4}{5}$, a contradiction. So we may assume that every odd component of $G - S$ has exactly 3 vertices. Add one vertex from another odd component to X, so that

$$|X| + |S| + 1 \geq |N(X)| \geq b|X|$$

and

$$3(|S| - 2l + 1) + 1 \leq |X| \leq \frac{|S| + 1}{b - 1}.$$

This gives $4(b - 1) \leq 2l + 1 = 5$, and so $b \leq \frac{5}{4}$, a contradiction.

Case 2: $i(G - S) > 0$. Let $X := V(G) - S$. Then

$$n - i(G - S) \geq |N(X)| \geq b|X| = bn - b|S|,$$

and so

$$b|S| - i(G - S) \geq (b - 1)n.$$

From this and (8),

$$o_G(S) - i(G - S) \geq |S| - 2l + 2 + (b - 1)n - b|S|$$

$$= (b - 1)(n - |S|) - 2l + 2.$$

But

$$n - |S| \geq 3|o_G(S) - i(G - S)| + i(G - S)$$

$$\geq (3b - 3)(n - |S|) - 6l + 6 + i(G - S).$$

Rearranging,

$$(3b - 4)(n - |S|) \leq 6l - 6 - i(G - S).$$ (10)

Now, $n - |S| \geq o_G(S) \geq 2$, by (8), and so if $i(G - S) \geq 2$ then (10) gives $6b - 8 \leq 6l - 8$, whence $b \leq l$, a contradiction. But if $i(G - S) = 1$ then $n - |S| \geq 4$ (since the second odd component of $G - S$ has at least 3 vertices), and so $12b - 16 \leq 6l - 7$, giving the contradiction $b \leq \frac{6l + 7}{12} < \frac{7l + 13}{12}$. In either case, the theorem is proved. //
Robertshaw and Woodall replaced the binding-number condition in Theorem 9 by the correct (best possible) condition on $|N(X)|$ for X independent as in Theorem 7. Poole extended this to k-factors in bipartite graphs, and Philpotts and Woodall extended it to k-factors in arbitrary graphs. Nothing is known about f-factors or graphs with the OCP.