Jacobi Forms of Lattice Index

Andreea Mocanu

The University of Nottingham
7th of December, 2016
Aim of the talk

1. Definition of Jacobi forms
2. Examples and parallels
3. Some results
I. What are Jacobi forms?

Some notation:

- As usual, $e_m(x) = e^{2\pi i x/m}$ and write $e(x)$ when $m = 1$.
- $\Gamma = \text{SL}_2(\mathbb{Z})$, with elements $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- Upper-half plane: $\mathbb{H} = \{ \tau \in \mathbb{C} : \Im(\tau) > 0 \}$.
- The weight of a Jacobi form will be $k \in \mathbb{Z}_+$.

Apart from the weight, Jacobi forms also have an index. Some prerequisites:

- Denote by $L = (L, \beta)$, where:
 - L is a finite rank \mathbb{Z}-module.
 - $\beta : L \times L \to \mathbb{Z}$ is symmetric, positive-definite, even \mathbb{Z}-bilinear form.

Andreea Mocanu | Jacobi Forms of Lattice Index
Remark

1. **Even** means $\beta(x, x) \in 2\mathbb{Z}$, $\forall x \in L$.
2. We denote $\beta(x) := \frac{1}{2}\beta(x, x)$.

The **rank** of L is $\text{rk}(L)$ (note: $L \simeq \mathbb{Z}^{\text{rk}(L)}$).

The **determinant** of L is $\det(L) := \det(G)$, where

- G is the **gram matrix** of L with respect to β: pick $\{e_i\}_{i=1, \text{rk}(L)}$ a \mathbb{Z}-basis for $L \implies G = (\beta(e_i, e_j))_{i,j}$.
- Note this also gives $\beta(x, y) = x^t G y$.

The **dual** of L is $L^\# := \{y \in L \otimes \mathbb{Q} : \beta(x, y) \in \mathbb{Z}, \forall x \in L\}$.

The **level** of L is $\text{lev}(L) := \min_{\mathbb{N}^+}\{N : N \cdot \beta(y) \in \mathbb{Z}, \forall y \in L^\#\}$
What is the modular group?
The Jacobi Group

More prerequisites: the Heisenberg group associated to \(L \) is
\[
H_L(\mathbb{Z}) := \{ h = (x, y, 1) : x, y \in L \}, \text{ with } hh' = (x + x', y + y', 1).
\]

Remark

\(\Gamma \) acts on \(H_L(\mathbb{Z}) \) from the right via \((x, y, 1)^A = ((x, y)A, 1)\).

Combine action of \(\Gamma \) and \(H_L(\mathbb{Z}) \) to get

Definition (The Jacobi group associated to \(L \))

We define \(J_L(\mathbb{Z}) \) to be the semi-direct product \(\Gamma \ltimes H_L(\mathbb{Z}) \), with composition law:

\[
(A, h)(A', h') = (AA', h^A h').
\]
More actions

- $J_L(Z)$ acts on $\mathcal{H} \times (L \otimes \mathbb{C})$ via $(A, h)(\tau, z) = \left(A\tau, \frac{z+x\tau+y}{c\tau+d}\right)$. We have a *modular* variable and an *elliptic* variable.

- $J_L(Z)$ acts on $\text{Hol}(\mathcal{H} \times (L \otimes \mathbb{C}))$. If $\phi \in \text{Hol}(\mathcal{H} \times (L \otimes \mathbb{C}))$, then

$$\phi|_{k, L}(A, h) := (\phi|_{k, L} A)|_{k, L} h,$$

where

$$\phi|_{k, L} A(\tau, z) := \phi \left(A\tau, \frac{z}{c\tau+d}\right) (c\tau+d)^{-k} e \left(\frac{-c\beta(z)}{c\tau+d}\right)$$

and

$$\phi|_{k, L} h(\tau, z) := \phi(\tau, z + x\tau + y)e(\tau \beta(x) + \beta(x, z)).$$
Jacobi forms

Definition (Jacobi forms of lattice index)

The space $J_{k,L}$ of Jacobi forms of weight k and index L consists of all $\phi \in \text{Hol}(\mathfrak{H} \times (L \otimes \mathbb{C}))$ that satisfy

1. $\phi|_{k,L}(A, h) = \phi$, $\forall (A, h) \in J_L(\mathbb{Z})$.
2. ϕ has a Fourier expansion of the form:

$$\sum_{n \in \mathbb{Z}, r \in L^\# \atop n \geq \beta(r)} c(n, r)e(n\tau + \beta(r, z)).$$
We have a ‘modular interpretation’: elliptic modular forms $f \in M_k(\Gamma)$ are in 1 : 1 correspondence with functions $F(\Lambda_\tau)$ ($\Lambda_\tau = \mathbb{Z}\tau \oplus \mathbb{Z}$) satisfying $F(\lambda \Lambda_\tau) = \lambda^{-k} F(\Lambda_\tau)$, for all $\lambda \in \mathbb{C}^\times$ (Koblitz).

Consider the following:

- $\mathbb{H}_L(\mathbb{Z})$ acts on $\mathfrak{H} \times (L \otimes \mathbb{C})$ via $h(\tau, z) = (\tau, z + x\tau + y)$.
- This is properly discontinuous and fixed point free, so $\mathbb{H}_L(\mathbb{Z}) \setminus (\mathfrak{H} \times (L \otimes \mathbb{C}))$ is an $\text{rk}(L)$—dimensional complex manifold \mathcal{E}_L.
• The projection $\mathcal{H} \times (L \otimes \mathbb{C}) \rightarrow \mathcal{H}$ induces a projection $E_L \rightarrow \mathcal{H}$ whose fiber over τ is $(L \otimes \mathbb{C})/L_{\tau} \oplus L \cong (\mathbb{C}/\Lambda_{\tau})^{rk(L)} =: T_{\tau,L}$.

• Any $A \in \Gamma$ gives an isomorphism of tori $(T_{\tau,L},0) \cong (T_{A\tau,L},0)$, induced by the map $z \mapsto \frac{z}{c_{\tau}+d}$.

• Consider the action of Γ on $\mathcal{H} \times (L \otimes \mathbb{C})$: $(\tau, z) \mapsto \left(A\tau, \frac{z}{c_{\tau}+d} \right)$.

• Combine the actions of Γ and $\mathcal{H}_L(\mathbb{Z})$ and set $\mathcal{A}_L = J_L(\mathbb{Z}) \setminus \mathcal{H} \times (L \otimes_{\mathbb{Z}} \mathbb{C})$. There is a projection $\mathcal{A}_L \rightarrow \Gamma \setminus \mathcal{H}$, whose fiber over τ is $T_{\tau,L}/\text{Aut}(T_{\tau,L},0)$.

Andreea Mocanu
Jacobi Forms of Lattice Index
Jacobi forms $\phi \in J_{k,L}$ become functions $\Phi(L_\tau, z)$, with $L_\tau := L_\tau \oplus L$ and $z \in \mathcal{T}_{\tau,L} = (L \otimes \mathbb{C})/L_\tau$, which satisfy:

\[
\Phi(L_\tau, z + \omega) = e(-\tau \beta(x) - \beta(x, z))\Phi(L_\tau, z),
\]

\[
\Phi(\lambda L_\tau, \lambda z) = \lambda^{-k} e(\lambda c \beta(z))\Phi(L_\tau, z),
\]

for $\lambda \in \mathbb{C}^\times$ and $\omega = x\tau + y \in L_\tau$.

Elliptic modular forms can be interpreted as global sections of line bundles on the modular curve $\Gamma \setminus \mathcal{H} \cup \{\text{cusps}\}$. Jacobi forms play a similar role for $J_{L}(\mathbb{Z}) \setminus \mathcal{H} \times (L \otimes_{\mathbb{Z}} \mathbb{C}) \cup \{\text{cusps}\}$.

This also gives:

\[
J_{k,0} \simeq M_k(\Gamma), \quad \text{for } 0 = (L, 0).
\]
Example (Jacobi theta functions associated to L)

Fix $x \in L^\#$. Define:

$$\vartheta_{L,x}(\tau, z) := \sum_{\substack{r \in L^\# \
r \equiv x \mod L}} e(\tau \beta(r) + \beta(r, x)).$$

- These transform ‘nicely’ with weight $rk(L)/2$ and index L.
- They give isomorphism between spaces of Jacobi forms and spaces of vector-valued Hilbert modular forms (Boylan).
- Every Jacobi form has a theta-expansion (Ajouz). When $rk(L)$ is odd, this gives a connection to half-integral elliptic modular forms.
3) Jacobi forms of scalar index

Example

Fix $L = (\mathbb{Z}, (x, y) \mapsto 2mxy)$, for $m \geq 0$. We get $J_{k,L} = J_{k,m}$, studied extensively by Eichler and Zagier.

We get a connection to Siegel modular forms, because:

- Let Γ^J denote $J_L(\mathbb{Z})$ for this particular choice of L.

\[\Gamma \hookrightarrow \Gamma^J \hookrightarrow \text{Sp}_2(\mathbb{Z}). \]

- Every SMF of degree 2 has a Jacobi-Fourier expansion (Piatetski–Shapiro). This also holds for degree $g > 2$, where now the expansion is in terms of Jacobi forms of matrix index $(g - 1)$ (Bringmann).
From the work of Gritsenko:

- Modular forms of *orthogonal type* can be obtained as liftings of Jacobi forms. The former determine Lorentzian Kac–Moody Lie (super) algebra of Borcherds type.
- Jacobi forms are solutions to the *mirror symmetry* problem for $K3$ surfaces.
- For a compact complex manifold, one defines its elliptic genus, which can be a weak Jacobi form ($n \geq 0$).
- And much more...
III. Work done
1) Poincaré and Eisenstein series

Definition

Let \(r \in L^\# / L \) and \(D \in \mathbb{Q}_{\leq 0} \) be such that \(\beta(r) \equiv D \mod \mathbb{Z} \). We define

\[
g_{L,r,D} := e(\tau(\beta(r) - D) + \beta(r, z)).
\]

When \(D < 0 \), we define

\[
P_{k,L,r,D} := \sum_{\gamma \in J_L(\mathbb{Z})_\infty \setminus J_L(\mathbb{Z})} g_{L,r,D} |_{k,L} \gamma
\]

and, when \(\beta(r) \in \mathbb{Z} \), let

\[
E_{k,L,r} := \frac{1}{2} \sum_{\gamma \in J_L(\mathbb{Z})_\infty \setminus J_L(\mathbb{Z})} g_{L,r,0} |_{k,L} \gamma.
\]
Why the interest?

- Both are elements of $J_{k,L}$.
- Eisenstein series:
 - Perpendicular to *Jacobi cusp forms* ($n > \beta(r)$) with respect to a suitably defined *Petersson scalar product*.
 - We get a decomposition:
 $$J_{k,L} = S_{k,L} \oplus J_{k,L}^{Eis}.$$
 - Their *twists* by Dirichlet characters modulo N_x (level of x) form a *basis of eigenforms* of $J_{k,L}^{Eis}$ with respect to (again) suitably defined *Hecke operators*.
Poincaré series (previously undefined in this setting):

- They are cusp forms.
- They reproduce Fourier coefficients of other cusp forms via the Petersson scalar product.
- Furthermore, they generate $S_k(\Gamma)$.
- Our main interest is in reproducing kernels of linear operators defined between spaces of Jacobi cusp forms and elliptic modular forms.
Proposition

For any $\phi \in S_{k,L}$,

$$\langle \phi, P_{k,L,r,D} \rangle = \lambda_{k,L,D} c(n, r),$$

where

$$\lambda_{k,L,D} := 2^{-2k + \frac{rk(L)}{2} + 2} \Gamma \left(k - \frac{rk(L)}{2} - 1 \right) \det(L)^{-\frac{1}{2}} (\pi |D|)^{-k + \frac{rk(L)}{2} + 1}$$

and $c(n, r)$ is the Fourier coefficient of ϕ corresponding to $e(\tau(\beta(r) - D) + \beta(r, z))$.
Theorem

For $k > \text{rk}(L) + 2$, $P_{k,L,r,D}$ is a cusp form. It has the following Fourier expansion:

$$P_{k,L,r,D}(\tau, z) = \sum_{n' \in \mathbb{Z}, r' \in L^\# \atop n' > \beta(r')} G_{k,L,D,r}(n', r') e \left(n' \tau + \beta(r', z) \right),$$

where

$$G_{k,L,D,r}(n', r') := \delta_L(D, r, D', r') + (-1)^k \delta_L(D, r, D', -r') + 2\pi i^k$$

$$\times \det(L)^{-\frac{1}{2}} \left(\frac{D'}{D} \right)^{\frac{k - \text{rk}(L)}{4} - \frac{1}{2}} \cdot \sum_{c \geq 1} (H_{L,c}(n, r, n', r'))$$

$$+ (-1)^k H_{L,c}(n, r, n', -r')) \cdot J_{k - \frac{\text{rk}(L)}{2} - 1} \left(\frac{4\pi (DD')^{\frac{1}{2}}}{c} \right),$$

where $D' = \beta(r') - n'$, we use $J_{k - \frac{\text{rk}(L)}{2} - 1} \left(\cdot \right)$ for the Bessel function and

$$H_{L,c}(n, r, n', r') := c^{-\frac{\text{rk}(L)}{2} - 1} \sum_{\lambda(c)} e_c(\beta(r', \lambda + r)) K(n', \beta(\lambda) + \beta(r + \lambda) + n; c).$$

In the last equation, λ runs through a complete set of representatives of L/cL and $K(n', \beta(\lambda) + \beta(r + \lambda + n); c)$ is a Kloosterman sum.
2) Operators on the spaces of Jacobi forms

- Operators give *structure* to the space.
- They facilitate *equivariant lifts* between different types of modular forms.
- They have algebraic interpretations in terms of the surfaces that our modular forms underlie.

In [Ajouz, 2015], we are given

- Hecke operators:

\[
T_0(l)\phi := l^{k-2-rk(L)} \sum_{\gamma \in J_L(\mathbb{Z}) \setminus J_L(\mathbb{Z})} \phi |_{k,L} \gamma,
\]

- Action of the *orthogonal group* of \(L \):

\[
W(\alpha)\phi(\tau, z) = \sum_{n \in \mathbb{Z}, r \in L^\#} c(n, \alpha(r)) e(n\tau + \beta(r, z)).
\]
We want a theory of *newforms*. For that, we need:

Definition

We define the operator $U(l)$ on the space $J_{k,L}$ by:

$$U(l)\phi(\tau, z) := \phi(\tau, lz).$$

Remark

1. The operator $U(l)$ corresponds to the endomorphism “multiplication by l” on $\mathcal{T}_{\tau,L} = (L \otimes \mathbb{C})/(L\tau \oplus L)$.

2. Think of $U(l) : M_k(N) \rightarrow M_k(lN)$,

$$U(l)f(\tau) = \sum a(ln)q^n.$$
Theorem

The operator $U(l)$ maps $J_{k,L}$ to $J_{k,L'}$, where $L' = (L, \beta')$, where $\beta' = l^2 \beta$. Moreover, if $\phi \in J_{k,L}$ has the Fourier expansion

$$\phi(\tau, z) = \sum_{n \in \mathbb{Z}, r \in L^\# \atop n \geq \beta(r)} c(n, r) e(n\tau + \beta(r, z)),$$

then $U(l)\phi$ has the following Fourier expansion:

$$U(l)\phi(\tau, z) = \sum_{n \in \mathbb{Z}, r' \in L'^\# \atop n \geq \beta'(r')} c(n, lr') e(n\tau + \beta'(r', z)),$$

with the convention $c(n, lr') = 0$ unless r' is an l–th multiple of another element of $L'^\#$.

- Note that the level of L' is $\text{lev}(L') = l^2 \cdot \text{lev}(L)$.
Definition

We define the operator $V(I)$ on the space $J_{k,L}$ by:

$$V(I)\phi(\tau, z) = I^{k-1} \sum_{\substack{M \in \Gamma \backslash \mathcal{M}_2(\mathbb{Z}) \\det(M) = I}} U(\sqrt{I}) \left(\phi_{k,L,M} \right) (\tau, z).$$

Remark

1. Assume that L_τ is contained in L' with index I. If $\{\omega_1, \omega_2\}$ is a basis for L', then there exists $M \in \mathcal{M}_2(\mathbb{Z})$ with determinant I, such that $(\begin{smallmatrix} \tau \\ 1 \end{smallmatrix}) = M (\begin{smallmatrix} \omega_1 \\ \omega_2 \end{smallmatrix})$.

2. If $M = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix})$, then $U(\sqrt{I}) \left(\phi_{k,L,M} \right) (\tau, z)$ contains a factor of $\phi(M\tau, \frac{Iz}{c\tau + d})$.
Theorem

The operator $V(l)$ maps $J_{k,L}$ to $J_{k,L''}$, where $L'' = (L, \beta'')$, where $\beta'' = l \beta$. Moreover, if $\phi \in J_{k,L}$ has the Fourier expansion

$$\phi(\tau, z) = \sum_{n \in \mathbb{Z}, r \in L^\#} c(n, r) e(n \tau + \beta(r, z)),$$

then $V(l)\phi$ has the following Fourier expansion:

$$V(l)\phi(\tau, z) = \sum_{n, r''} \sum_{\substack{n \geq \beta''(r''), \quad a| (n,l) \quad \frac{l'r''}{a} \in L'^{**}} \quad a^{k-1} \quad c \left(\frac{n}{a^2}, \frac{l'r''}{a} \right) \quad e(n \tau + \beta''(r'', z)).$$
Goal

- Find isomorphisms of the type

 \[J_{k,m} \cong \mathfrak{m}_{2k-2}(m), \]

 like in [Skoruppa & Zagier, 1988].

- Find decomposition of the type

 \[S_{k,m} \bigoplus V(l') U(l) S_{k,m/l^2 l'}, \]

 like in [Eichler & Zagier, 1985].
Thank you!