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Quadratic forms with absolutely maximal splitting

Oleg Izhboldin and Alexander Vishik

Abstract. Let F be a field and φ be a quadratic form over F . The higher Witt
indices of φ are defined recursively by the rule ik+1(φ) = ik((φan)F (φan)),

where i0(φ) = iW (φ) is the usual Witt index of the form φ. We say that
anisotropic form φ has absolutely maximal splitting if i1(φ) > ik(φ) for all
k > 1.

One of the main results of this paper claims that for all anisotropic
forms φ satisfying the condition 2n−1 + 2n−3 < dim φ ≤ 2n, the following
three conditions are equivalent: (i) the kernel of the natural homomorphism
Hn(F, Z/2Z) → Hn(F (φ), Z/2Z) is nontrivial, (ii) φ has absolutely maximal
splitting, (iii) φ has maximal splitting (i.e., i1(φ) = dim φ− 2n−1). Moreover,
we show that if we assume additionally that dim φ ≥ 2n − 7, then these three
conditions hold if and only if φ is an anisotropic n-fold Pfister neighbor. In our
proof we use the technique developed by V. Voevodsky in his proof of Milnor’s
conjecture.

1. Introduction

Let F be a field of characteristic 6= 2 and let Hn(F ) be the Galois cohomol-
ogy group of F with Z/2Z-coefficients. For a given extension L/F , we denote by
Hn(L/F ) the kernel of the natural homomorphism Hn(F ) → Hn(L). Now, let φ
be a quadratic form over F . An important part of the algebraic theory of qua-
dratic forms deals with the behavior of the groups Hn(F ) under the field extension
F (φ)/F . Of particular interest is the group

Hn(F (φ)/F ) = ker(Hn(F )→ Hn(F (φ))).

The computation of this group is connected to Milnor’s conjecture and plays an
important role in K-theory and in the theory of quadratic forms.

The first nontrivial result in this direction is due to J. K. Arason. In [1], he
computed the groupHn(F (φ)/F ) for the case n ≤ 3. The case n = 4 was completely
studied by Kahn, Rost and Sujatha ([13]). In the cases where n ≥ 5, there are
only partial results depending on Milnor’s conjecture: the group Hn(F (φ)/F ) was
computed for all Pfister neighbors ([26]) and for all 4-dimensional forms ([33]). All
known results make natural the following conjecture.
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Conjecture 1.1. Let F be a field, n be a positive integer, and let φ be an
F -form of dimension > 2n−1. Then the following conditions are equivalent:

(1) the group Hn(F (φ)/F ) = ker(Hn(F )→ Hn(F (φ))) is nonzero,
(2) the form φ is an anisotropic n-fold Pfister neighbor.

Moreover, if these conditions hold, then the group Hn(F (φ)/F ) is isomorphic to
Z/2Z and is generated by en(π), where π is the n-fold Pfister form associated with
φ.

The proof of the implication (2)⇒(1) follows from the fact that the Pfister
quadric is isotropic if and only if the corresponding pure symbol α ∈ KM

n (k)/2 is
zero, and the fact that the norm-residue homomorphism is injective on α (see [36]).
The implication (1)⇒(2) seems much more difficult. In this paper, we give only a
partial answer to the conjecture.

1.1. Forms with maximal splitting. It turns out that Conjecture 1.1 is
closely related to a conjecture concerning so-called forms with maximal splitting.
Let us recall some basic definitions and results. By iW (φ) we denote the Witt
index of φ. For an anisotropic quadratic form φ, the first higher Witt index of φ is
defined as follows: i1(φ) = iW (φF (φ)). Since φF (φ) is isotropic, we obviously have
i1(φ) ≥ 1. In [4] Hoffmann proved the following

Theorem 1.2. Let φ be an anisotropic quadratic form. Let n be such that
2n−1 < dimφ ≤ 2n and m be such that dimφ = 2n−1 +m. Then

• i1(φ) ≤ m,
• if φ is a Pfister neighbor, then i1(φ) = m.

This theorem gives rise to the following

Definition 1.3 (see [4]). Let φ be an anisotropic quadratic form. Let us write
dimφ in the form dimφ = 2n−1 + m, where 0 < m ≤ 2n−1. We say that φ has
maximal splitting if i1(φ) = m.

Our interest in forms with maximal splitting is motivated (in particular) by the
following observation (which depends on the Milnor conjecture, see Proposition 7.5,
and requires char(F ) = 0): Let φ and n be as in Conjecture 1.1. If Hn(F (φ)/F ) 6=
0, then φ has maximal splitting and Hn(F (φ)/F ) ' Z/2Z. Therefore, the problem
of classification of forms with maximal splitting is closely related to Conjecture 1.1.
On the other hand, there are many other problems depending on the classification
of forms with maximal splitting.

Let us explain some known results concerning this classification. By Theorem
1.2, all Pfister neighbors and all forms of dimension 2n + 1 have maximal splitting.
By [5], these examples present an exhaustive list of forms with maximal splitting
of dimension ≤ 9. The case dimφ = 10 is much more complicated. In [9], it was
proved that a 10-dimensional form φ has maximal splitting only in the following
cases:

• φ is a Pfister neighbor,
• φ can be written in the form φ = 〈〈a〉〉 q, where q is a 5-dimensional form.

The structure of quadratic forms with maximal splitting of dimensions 11, 12, 13,
14, 15, and 16 is very simple: they are Pfister neighbors (see [5] or [7]). Since
17 = 24 + 1, it follows that any 17-dimensional form has maximal splitting. The
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previous discussion shows that we have a complete classification of forms with
maximal splitting of dimensions ≤ 17.

Conjecture 1.1 together with our previous discussion make the following prob-
lem natural:

Problem 1.4. Find the condition on the positive integer d such that each d-
dimensional form φ with maximal splitting is necessarily a Pfister neighbor.

The following example is due to Hoffmann. Let F be the field of rational
functions k(x1, . . . , xn−3, y1, . . . , y5) and let

q = 〈〈x1, . . . , xn−3〉〉 ⊗ 〈y1, y2, y3, y4, y5〉 .

Then q has maximal splitting and is not a Pfister neighbor. We obviously have
dim q = 2n−1 + 2n−3. This example gives rise to the following

Proposition 1.5. Let d be an integer satisfying 2n−1 ≤ d ≤ 2n−1 + 2n−3

for some n ≥ 4. Then there exists a field F and a d-dimensional F -from φ with
maximal splitting which is not a Pfister neighbor.

For the proof, we can define φ as an arbitrary d-dimensional subform of the
form q constructed above. We remind that if φ ⊂ q is a subform, where 2n−1 ≤
dimφ ≤ dim q ≤ 2n, and q has maximal splitting , then φ also has maximal splitting
(see [4], Prop.4).

Let us return to Problem 1.4. By Proposition 1.5, it suffices to study Problem
1.4 only in the case where 2n−1 + 2n−3 < d ≤ 2n. Here, we state the following

Conjecture 1.6. Let n ≥ 3 and F be an arbitrary field. For any anisotropic
quadratic F -form with maximal splitting the condition 2n−1 + 2n−3 < dimφ ≤ 2n

implies that φ is a Pfister neighbor.

This conjecture is true in the cases n = 3 and n = 4 (see [5], [7]). At the time
we cannot prove Conjecture 1.6 in the case n ≥ 5. However, we prove the following
partial case of the conjecture.

Theorem 1.7. Let n ≥ 5 and q be an anisotropic form such that 2n − 7 ≤
dim q ≤ 2n. Then the following conditions are equivalent:

(i) q has maximal splitting,
(ii) q is a Pfister neighbor.

Moreover, we show that for any form φ satisfying the condition 2n−1 + 2n−3 <
dimφ ≤ 2n, Conjectures 1.1 and 1.6 are equivalent for all fields of characteristic
zero (here we use the Milnor conjecture). The equivalence of the conjectures follows
readily from the following theorem.

Theorem 1.8. ((*M*), see the end of Section 1) Let n be an integer ≥ 4 and F
be a field of characteristic 0. Let φ be an anisotropic form such that 2n−1 +2n−3 <
dimφ ≤ 2n. Then the following conditions are equivalent:

(1) φ has maximal splitting,
(2) Hn(F (φ)/F ) 6= 0.

On the other hand, Theorems 1.7 and 1.8 give rise to the proof of the following
partial case of Conjecture 1.1.
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Corollary 1.9. ((*M*), see the end of Section 1) Let F be a field of char-
acteristic zero and let n ≥ 5. Then for any F -form φ satisfying the condition
dimφ ≥ 2n − 7, the following conditions are equivalent:

(1) the group Hn(F (φ)/F ) = ker(Hn(F )→ Hn(F (φ))) is nonzero,
(2) the form φ is an anisotropic n-fold Pfister neighbor.

1.2. Plan of works. In section 3, we prove Theorem 1.7. Our proof is based
on the following ideas of Bruno Kahn ([11]): First of all, we recall some result
of M. Knebusch: let q be an anisotropic F -form. If the F (q)-form (qF (q))an is
defined over F , then q is a Pfister neighbor. Now, let q be an F -form satisfying the
hypotheses of Theorem 1.7 (in particular, dim q > 16). Let us consider the F (q)-
form φ = (qF (q)))an. By the definition of forms with maximal splitting, we obviously
have dimφ ≤ 7. By the construction, the form φ belongs to the image of the
homomorphism W (F )→ W (F (q)). This implies that φ belongs to the unramified
partWnr(F (q)) of the Witt groupW (F (q)). Using some deep results concerning the
group Wnr(F (q)), we prove that all forms of dimension ≤ 7 belonging to Wnr(F (q))
are necessarily defined over F (provided that dim q > 16). In particular, this implies
that φ = (qF (q))an is defined over F . Then Knebusch’s theorem says that q is a
Pfister neighbor. This completes the proof of Theorem 1.7.

To prove Theorem 1.8, we need the Milnor conjecture. The implication (1)⇒(2)
is the most difficult part of the theorem. To explain the plan, we introduce the
notion of “forms with absolutely maximal splitting”. First, we recall that for any
F -form φ, we can define the higher Witt indices by the following recursive rule:
is+1(φ) = is((φan)F (φan)).

Definition 1.10. Let φ be an anisotropic quadratic form. We say that φ has
absolutely maximal splitting, or that φ is an AMS-form, if i1(φ) > ir(φ) for all
r > 1.

Such terminology is justified by the fact that at least in the case char(F ) = 0,
AMS implies maximal splitting (see Theorem 7.1). It is not difficult to show, that if
the form φ has maximal splitting and satisfies the condition 2n−1 +2n−3 < dimφ ≤
2n, then φ is an AMS-form (see Lemma 4.1). This shows, that the form φ satisfying
the condition (1) of Theorem 1.8, is necessarily an AMS-form. Therefore, it suffices
to prove the following theorem.

Theorem 1.11. ((*M*), see the end of Section 1) Let F be a field of charac-
teristic zero. Let φ be an AMS-form satisfying the condition 2n−1 < dimφ ≤ 2n.
Then Hn(F (φ)/F ) 6= 0.

To prove this theorem, we study the motive of the projective quadric Q cor-
responding to a subform q of φ of codimension i1(φ) − 1. It is well known that
the function fields of the forms φ and q are stably equivalent. Hence, it suffices to
prove that Hn(F (q)/F ) 6= 0. In §5, we show that the motive M(Q) of the quadric
Q has some specific endomorphism ω : M(Q) → M(Q) which we call the Rost
projector. Let us give the definition of the latter. First, we recall that the set of
endomorphisms M(Q) → M(Q) is defined as CHd(Q ×Q), where d = dimQ. We
say that ω ∈ End(M(Q)) is a Rost projector, if ω is an idempotent (ω ◦ ω = ω),
and the identity ωF̄ = pt × QF̄ + QF̄ × pt holds over the algebraic closure F̄ of
F . The existence of the Rost projector means that M(Q) contains a direct sum-
mand N such that Nk is isomorphic to the direct sum of two so-called Tate-motives
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Z ⊕ Z(d)[2d] (since the mutually orthogonal projectors QF̄ × pt and pt × QF̄ give
direct summands isomorphic to Z and Z(d)[2d], respectively). The final step in the
proof of theorem 1.8 is based on the following theorem.

Theorem 1.12. ((*M*), see the end of Section 1) Let F be a field of character-
istic zero. Let Q be the projective quadric corresponding to an anisotropic F -form
q. Assume that Q admits a Rost projector. Then dim q = 2m−1 + 1 for suitable m.
Moreover, Hm(F (q)/F ) 6= 0.

Now, it is very easy to complete the proof of the implication (1)⇒(2) of The-
orem 1.8. Since 2m−1 < dim q ≤ 2m, 2n−1 < dimφ ≤ 2n, and the extensions
F (φ)/F and F (q)/F are stably equivalent, it follows that n = m (this follows eas-
ily from Hoffmann’s theorem [4]). Therefore, Hn(F (φ)/F ) = Hm(F (q)/F ) 6= 0.
This completes the proof of the implication (1)⇒(2).

The proof of Theorem 1.12 is given in section 6. It is based on the technique
developed by V.Voevodsky for the proof of Milnor’s conjecture (see [36]). All
needed results of Voevodsky’s preprints are collected in Appendix A. Aside from
the Appendix we also use the main results of [26] (in Theorem 7.3). Here we should
point out that these results can be obtained from those of the Appendix in a rather
simple way (the recipe is given, for example, in [14, Remark 3.3.]). All the major
statements of the current paper which are using the abovementioned unpublished
results are marked with (*M*) with the reference to this page.

Acknoledgements. An essential part of this work was done while the first
author was visiting the Bielefeld University and the second author was visiting the
Max-Plank Institute für Mathematik. We would like to express our gratitude to
these institutes for their support and hospitality. The support of the Alexander
von Humboldt Foundation for the first author is gratefully acknowledged. Also,
we would like to thank Prof. Ulf Rehmann who made possible the visit of the
second author to Bielefeld. Finally, we are grateful to the referee for the numerous
suggestions and remarks which improved the text substantially.

2. Notation and background

In this article we use the standard quadratic form terminology from [19],[30].
We use the notation 〈〈a1, . . . , an〉〉 for the Pfister form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.
Under GPn(F ) we mean the set of forms over F which are similar to n-fold Pfis-
ter forms. The n-fold Pfister forms provide a system of generators for the abelian
group In(F ). We recall that the Arason–Pfister Hauptsatz (APH in what follows)
states that: every quadratic form over F of dimension < 2n which lies in In(F )
is necessarily hyperbolic; if φ ∈ In(F ) and dimφ = 2n, then the form φ is neces-
sarily similar to a Pfister form. We use the notation en for the generalized Arason
invariant 1

In(F )/In+1(F )→ Hn(F ), where 〈〈a1, . . . , an〉〉 7→ (a1, . . . , an).

The following statements describe the relationship between the Witt ring W (F )
and the cohomology Hn(F ). They will be used extensively in the next two sections.

Theorem 2.1. ([24],[1],[10],[32],[21],[23],[27],Rost-unpublished)
For n ≤ 4, we have canonical isomorphisms en : In(F )/In+1(F )→ Hn(F )

1The existence of en was proven by Arason for n ≤ 3, and by Jacob-Rost/Szyjevski for n = 4.
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Theorem 2.2. (Arason[1], Kahn-Rost-Sujatha[13], Merkurjev[22])
Let 0 ≤ m ≤ n ≤ 4 and π be an m-fold Pfister form over F . Then Hn(F (π)/F ) =

em(π)Hn−m(F ).

Theorem 2.3. (Arason[1], Kahn-Rost-Sujatha[13])
Let n ≤ 4 and ρ be a form over F of dimension > 2n. Then Hn(F (ρ)/F ) = 0.

The following statement is an evident corollary of the theorems above.

Corollary 2.4. Let ρ be a form over F and n be a positive integer ≤ 5. Let
ξ be a form over F such that ξF (ρ) ∈ In(F (ρ)). Then

• if ρ is a Pfister neighbour of a Pfister form π, then ξ ∈ πW (F ) + In(F ),
• if dim ρ > 2n−1, then ξ ∈ In(F ).

Remark 2.5. Actually, the restriction on the integer n here is unnecessary (at
least in characteristic 0) - see Theorem 7.3.

In section 5 we use the notation Z for the trivial Tate-motive (which is just
the motive of a point M(Spec(k))), and Z(m)[2m] for the tensor power Z(1)[2]⊗m

of the Tate-motive Z(1)[2], where the latter is defined as a complementary direct
summand to Z in M(P1) (M(P1) = Z ⊕ Z(1)[2]). For this reason, we use the
notation Z for all groups and rings Z throughout the text. In section 5 we work
in the classical Chow-motivic category of Grothendieck (see [3],[20],[31],[29]). We
remind that in this category the group Hom(M(P ),M(Q)) is naturally identified
with CHdim(Q)(P ×Q), for any smooth connected projective varieties P and Q over
k.

In this connection we should mention that the motive of a completely split
quadric P (of dimension d) is a direct sum of Tate-motives:

M(P ) = ⊕0≤i≤dZ(i)[2i], if d is odd;
M(P ) = (⊕0≤i≤dZ(i)[2i])⊕ Z(d/2)[d], if d is even.

The corresponding mutually orthogonal projectors in End(M(P )) are given by hi×
li, and li × hi, where 0 ≤ i < d/2, and hi ⊂ P is a plane section of codimension i,
and li ⊂ P is a projective subspace of dimension i (in the case d even, we also have
l1d/2 × l

2
d/2 and l2d/2 × l

1
d/2, where l1d/2, l

2
d/2 ⊂ P are the projective subspaces of half

the dimension from the two different families).
In section 6 we work in the bigger triangulated category of motives DMeff

− (k)
constructed by V.Voevodsky (see [34]). This category contains the category of
Chow-motives as a full additive subcategory closed with respect to direct sum-
mands. All the necessary facts and references are given in the Appendix.

3. Descent problem and forms with maximal splitting

The main goal of this section is to prove Theorem 1.7. It should be noticed
that in all cases except for dim q = 2n − 7 this theorem was proved earlier:

• if dim q = 2n or 2n − 1, the theorem was proved by M. Knebusch and A.
Wadsworth (independently);

• if dim q = 2n − 2 or 2n − 3, the theorem was proved by D. Hoffmann [4];
• if dim q = 2n − 4 or 2n − 5, the theorem was proved by B. Kahn [11,

remark after Th.4] (see also more elementary proofs in [5] or [7]);
• In the case dim q = 2n − 6, the theorem follow easily from a result of A.

Laghribi [18].
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To prove the theorem in the case dim q = 2n − 7 we use the same method as in
the paper of Bruno Kahn [11]. Namely, we reduce Theorem 1.7 to the study of a
descent problem for quadratic forms (see Proposition 3.8 and Theorem 3.9). As in
the paper of B. Kahn, we work modulo a suitable power In(F ) of the fundamental
ideal I(F ).

We start with the following notation.

Definition 3.1. Let ψ be a form over F and n ≥ 0 be an integer. We define
dimn ψ as follows:

dimn ψ = min{dimφ |φ ≡ ψ (mod In(F ))}

Lemma 3.2. Let ψ be a form over F and L/F be some field extension. Then
dimn ψL ≤ dimn ψ. If L/F is unirational, then dimn ψL = dimn ψ.

Proof. The inequality dimn ψL ≤ dimn ψ is obvious. If L/F is unirational, the
identity dimn ψL = dimn ψ follows easily from standard specialization arguments.

�

Corollary 3.3. Let ψ and q0 ⊂ q be forms over F . Then dimn ψF (q0) ≤
dimn ψF (q).

Proof. Since q0 ⊂ q, it follows that qF (q0) is isotropic and hence the extension
F (q, q0)/F (q0) is purely transcendental. By Lemma 3.2, we have dimn ψF (q0) =
dimn ψF (q,q0) ≤ dimn ψF (q). �

Now, we recall an evident consequence of Merkurev’s index reduction formula:
if A is a central simple algebra of index 2n and q is a form of dimension > 2n+ 2,
then indAF (q) = indA. The following lemma is an obvious generalization of this
statement.

Lemma 3.4. Let A be a central simple F -algebra of index 2n and q be a quadratic
form over F . Let F0 = F, F1, . . . , Fh be the generic splitting tower of q. Let i ≥ 1
be an integer such that dim((qFi−1)an) > 2n+ 2. Then indAFi = indA.

Lemma 3.5. Let A be a central simple F -algebra of index 2n and q be a quadratic
form of dimension > 2n+ 4. Then there exists a unirational extension E/F and a
3-dimensional form q0 ⊂ qE such that ind(AE ⊗ C0(q0)) = 2n+1

Proof. Let F̃ = F (X,Y, Z), q̃ = qF̃ ⊥ −X 〈〈Y, Z〉〉, and Ã = AF̃ ⊗ (Y, Z).
Clearly, ind Ã = 2 indA = 2n+1. Let F̃0 = F̃ , F̃1, . . . , F̃h be the generic splitting
tower for q̃. Let q̃i = (q̃F̃i

)an for i = 0, . . . , h. Let s be the minimal integer such
that dim q̃s ≤ dim q− 2. We have dim q̃s−1 ≥ dim q > 2(n+ 1) + 2. By Lemma 3.4,
we have indAF̃s

= ind Ã = 2n+1.
We set E = F̃s. Since q̃E = qE ⊥ −X 〈〈Y, Z〉〉, the forms qE and X 〈〈Y, Z〉〉

contain a common subform of dimension
1
2
(dim q + dim(X 〈〈Y, Z〉〉)− dim(q̃E)an) =

1
2
(dim q + 4− dim q̃s)

≥ 1
2
(dim q + 4− (dim q − 2)) = 3.

Hence, there exists a 3-dimensional E-form q0 such that q0 ⊂ qE and q0⊂X〈〈Y, Z〉〉E .
Clearly, C0(q0) = (Y, Z). Hence, ind(AE ⊗E C0(q0)) = ind ÃE = 2n+1.
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To complete the proof, it suffices to show that E/F is unirational. To prove
this, let us write q in the form q = x 〈1,−y,−z〉 ⊥ q0 with x, y, z ∈ F ∗. Let us
consider the field

K = F̃ (
√
X/x,

√
Y/y,

√
Z/z) = F (X,Y, Z)(

√
X/x,

√
Y/y,

√
Z/z).

Clearly, K/F is purely transcendental. In the Witt ring W (K), we have q̃K =
qK −X 〈〈Y, Z〉〉K = x 〈1,−y,−z〉K + q0−X 〈1,−Y,−Z, Y Z〉 = q0−〈XY Z〉. Hence
dim(q̃K)an ≤ dim q0 +1 = dim q− 3+1 = dim q− 2. Since s is the minimal integer
such that dim q̃s ≤ dim q − 2, it follows that the extension (K · F̃s)/K is purely
transcendental (see, e.g., [16, Cor. 3.9 and Prop. 5.13]), where K · F̃s is the free
composite of K and F̃s over F̃ . Since K/F is purely transcendental, it follows that
(K · F̃s)/F is also purely transcendental. Hence F̃s/F is unirational. Since E = F̃s,
we are done. �

Lemma 3.6. Let ρ be a Pfister neighbor of 〈〈a, b〉〉 and n be a positive integer.
Let ψ be a form such that dimn ψF (ρ) < 2n−1. Then there exists an F -form µ such
that dimµ = dimn ψF (ρ) and ψF (ρ) ≡ µF (ρ) (mod In(F )).

Proof. Let ξ be an F (ρ)-form such that dim ξ = dimn ψF (ρ) and ψF (ρ) ≡ ξ
(mod In(F (ρ))). By [18, Lemme 3.1], we have ξ ∈Wnr(F (ρ)/F ). By the excellence
property of F (ρ)/F (see [2, Lemma 3.1]), there exists an F -form µ such that ξ =
µF (ρ). �

Corollary 3.7. Let ρ be a Pfister neighbor of 〈〈a, b〉〉 and n be a positive integer
such that n ≤ 5. Let ψ be a form such that dimn ψF (ρ) < 2n−1. Then there exist
F -forms µ and γ such that dimµ = dimn ψF (ρ) and ψ ≡ µ+ 〈〈a, b〉〉 γ (mod In(F )).

Proof. Let µ be a form as in Lemma 3.6. We have (ψ − µ)F (ρ) ∈ In(F (ρ)).
By Corollary 2.4, we have ψ−µ ∈ 〈〈a, b〉〉W (F )+In(F ). Hence, there exists γ such
that ψ − µ ∈ 〈〈a, b〉〉 γ + In(F ). �

Proposition 3.8. Let q be an F -form of dimension > 16 and ψ be a form over
F such that dim5 ψF (q) ≤ 7. Then dim5 ψ = dim5 ψF (q). In particular, dim5 ψ ≤ 7.

Proof. By Lemma 3.2, we have dim5 ψ ≥ dim5 ψF (q). Hence, it suffices to
verify that dim5 ψ ≤ dim5 ψF (q). As usually, we denote as C0(ψ) the even part
of the Clifford algebra and as c(ψ) the Clifford invariant of ψ. We start with the
following case:

Case 1. either dim5 ψF (q) ≤ 6 or dim5 ψF (q) = 7 and indC0(ψ) 6= 8.
By the definition of dim5 ψF (q), there exists an F (q)-form φ such that dimφ =

dim5 ψF (q) ≤ 7 and φ ≡ ψF (q) (mod I5(F (q))). In particular, we have c(φ) =
c(ψF (q)). Since dimφ ≤ 7 and dim q > 16, the index reduction formula shows that
indC0(φ) = indC0(ψ). By the assumption of Case 1, we see that

• either dimφ ≤ 6,
• or dimφ = 7 and indC0(φ) 6= 8.

Since φ ≡ ψF (q) (mod I5(F (q))), it follows that φ ∈ im(W (F ) → W (F (q))) +
I5(F (q)). The principal theorem of [18] shows that φ is defined over F . In other
words, there exists an F -form µ such that φ = µF (q). Therefore, ψF (q) ≡ φ ≡
µF (q) (mod I5(F (q)). By Corollary 2.4, we see that ψ ≡ µ (mod I5(F )). Hence,
dim5(ψ) ≤ dimµ = dimφ = dim5(ψF (q)). This completes the proof in Case 1.

Case 2. dim5 ψF (q) = 7 and indC0(ψ) = 8.



QUADRATIC FORMS WITH ABSOLUTELY MAXIMAL SPLITTING 9

Lemma 3.2 shows that we can change the ground field by an arbitrary uni-
rational extension. After this, Lemma 3.5 (applied to A = C0(ψ), n = 3 and q)
shows, that we can assume that there exists a 3-dimensional subform q0 ⊂ q such
that ind(C0(ψ)⊗ C0(q0)) = 16.

Let a, b ∈ F ∗ be such that q0 is a Pfister neighbor of 〈〈a, b〉〉.
By Corollary 3.3, we have dim5 ψF (q0) ≤ 7. By Corollary 3.7, there exists a

form µ of dimension ≤ 7 and a form λ such that ψ ≡ µ+ 〈〈a, b〉〉λ (mod I5(F )).
First, consider the case where dimλ is odd. Then c(ψ) = c(µ)+(a, b). Therefore

indC0(µ) = ind(C0(ψ) ⊗ (a, b)) = ind(C0(ψ) ⊗ C0(q0)) = 16. On the other hand,
dimµ ≤ 7 and hence indC0(µ) ≤ 8. We get a contradiction.

Now, we can assume that dimλ is even. Then λ ≡ 〈〈c〉〉 (mod I2(F )), where
c = d±λ. Hence, 〈〈a, b〉〉λ ≡ 〈〈a, b, c〉〉 (mod I4(F )). Hence, ψ − µ ≡ 〈〈a, b〉〉λ ≡
〈〈a, b, c〉〉 (mod I4(F )). Let π = 〈〈a, b, c〉〉. We have ψ ≡ µ+ π (mod I4(F )).

Since πF (π) is hyperbolic, it follows that ψF (q,π) ≡ µF (q,π) (mod I4(F (q, π)).
Since dim5 ψF (q) = 7, there exists a 7-dimensional F (q)-form ξ such that ψF (q) ≡ ξ
(mod I5(F (q))). This implies that µF (q,π) ≡ ψF (q,π) ≡ ξF (q,π) (mod I4(F (q, π))).
Since dimµ+ dim ξ ≤ 7 + 7 = 14 < 24, APH shows that µF (q,π) = ξF (q,π). Hence,
ψF (q,π) ≡ ξF (q,π) ≡ µF (q,π) (mod I5(F (q, π))). Since dim q > 16, Corollary 2.4
shows that ψF (π) ≡ µF (π) (mod I5(F (π))). Hence (ψ − µ)F (π) ∈ I5(F (π)).

By Corollary 2.4, there exists an F -form γ such that ψ − µ ≡ πγ (mod I5(F )).
Since ψ − µ ≡ π (mod I4(F )), it follows that either π is hyperbolic or dim γ is
odd. In any case, we can assume that dim γ is odd. Then γ ≡ 〈k〉 (mod I2(F )),
where k = d±γ. Hence, ψ − µ ≡ πγ ≡ kπ (mod I5(F )). Therefore, ξ ≡ ψF (q) ≡
(µ+ kπ)F (q) (mod I5(F (q))). Since dim ξ + dimµ+ dimπ = 7 + 7 + 8 < 25, APH
shows that ξ = (ζF (q))an, where ζ = (µ ⊥ kπ)an. Since dim ζ ≤ dim(µ ⊥ kπ) ≤
7 + 8 < 24 < dim q, Hoffmann’s theorem shows that ζF (q) is anisotropic. Hence,
ξ = ζF (q). In particular, dim ζ = 7. We have ψF (q) ≡ ξ ≡ ζF (q) (mod I5(F (q))).
Since dim q > 16, Corollary 2.4 shows that ψ ≡ ζ (mod I5(F )). Hence, dim5 ψ ≤
dim ζ = 7. On the other hand, dim5 ψ ≥ dim5 ψF (q) = 7. The proof is complete. �

The essential part of the following theorem was proved by Ahmed Laghribi in
[18].

Theorem 3.9. (cf. [18, Théorème principal]). Let q be a form of dimension
> 16. Let φ be a form of dimension ≤ 7 over the field F (q). Then the following
conditions are equivalent.

(1) φ is defined over F ,
(2) φ ∈ im(W (F )→W (F (q))),
(3) φ ∈ im(W (F )→W (F (q))) + I5(F (q)),
(4) φ ∈Wnr(F (q)/F ).

Proof. This theorem is proved in [18] except for the case where dimφ = 7
and indC0(φ) = 8. Implications (1)⇒(2)⇒(3) ⇐⇒ (4) are also proved in [18]. It
suffices to prove implication (3)⇒(1).

Condition (3) shows that there exists a form ψ over F such that ψF (q) ≡ φ

(mod I5(F (q))). Therefore dim5 ψF (q) ≤ dimφ ≤ 7. By Proposition 3.8, we have
dim5 ψ ≤ 7. Hence there exists an anisotropic F -form µ of dimension ≤ 7 such
that ψ ≡ µ (mod I5(F )). Thus φ ≡ ψF (q) ≡ µF (q) (mod I5(F (q))). Since dimφ+
dimµ = 7 + 7 < 25, APH shows that φan = (µF (q))an. Since dimµ < 8 < dim q,
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Hoffmann’s theorem shows that µF (q) is anisotropic. Hence φan = µF (q). Therefore
φan is defined over F . Hence, φ is defined over F . �

Proof of theorem 1.7. (i)⇒(ii). Let φ = (qF (q))an. By [17, Th. 7.13], it
suffices to prove that φ is defined over F . Since n ≥ 5, we have dim q ≥ 2n−7 > 16.
Clearly, φ ∈ im(W (F )→W (F (q))). Since q has maximal splitting, it follows that
dimφ = 2n − dim q ≤ 7. By Theorem 3.9, we see that φ is defined over F .

(ii)⇒(i). Obvious. �

4. Elementary properties of AMS-forms

In this section we start studying forms with absolutely maximal splitting (AMS-
forms) defined in the introduction (Definition 1.10).

Lemma 4.1. Let φ be an anisotropic form and n be an integer such that 2n−1 +
2n−3 < dimφ ≤ 2n. Suppose that φ has maximal splitting. Then φ has absolutely
maximal splitting.

Proof. Let m = dimφ − 2n−1. Clearly, dimφ = 2n−1 +m and 2n−3 < m ≤
2n−1. Since φ has maximal splitting, we have i1(φ) = m. Let F = F0, F1, . . . , Fh

be the generic splitting tower of φ. Let φi = (φFi)an for i = 0, . . . , h. Let us fix
r > 1. To prove that φ has absolutely maximal splitting, we need to verify that
ir(φ) < m. Clearly, ir(φ) = i1(φr). Thus, we need to verify that i1(φr) < m. In
the case where dimφr ≤ 2n−2, we have i1(φr) ≤ 1

2 dimφr ≤ 1
22n−2 = 2n−3 < m.

Thus, we can suppose that dimφr > 2n−2. Since r ≥ 1, we have dimφr ≤
dimφ1 = dimφ − 2i1(φ) = 2n−1 +m − 2m = 2n−1 −m. Hence, 2n−2 < dimφr ≤
2n−2 + (2n−2−m). By Theorem 1.2, we have i1(φr) ≤ 2n−2−m. Since m > 2n−3,
we have 2n−2 −m < m. Hence i1(φr) ≤ 2n−2 −m < m. �

From the results proven in the next sections (see Theorem 7.1) it follows that
in the dimension range we are interested in (2n−1 + 2n−3 < dimφ ≤ 2n), the form
has maximal splitting if and only if it has absolutely maximal splitting.

Remark 4.2. We cannot change the strict inequality 2n−1 + 2n−3 < dimφ
by 2n−1 + 2n−3 ≤ dimφ in the formulation of the lemma. Indeed, for any n ≥ 3
there exists an example of (2n−1+2n−3)-dimensional form φ with maximal splitting
which is not an AMS-form. The simplest example is the following:

φ = 〈〈x1, x2, . . . , xn−3〉〉 ⊗ 〈1, 1, 1, 1, 1〉 over the field R(x1, . . . , xn−3).

In this case i1(φ) = i2(φ) = 2n−3.

5. Motivic decomposition of AMS-Quadrics

In this section we will produce some “binary” motive related to an AMS-
quadric.

Let X,Y and Z be smooth projective varieties over k of dimensions l,m and
n, respectively. Then we have a natural (associative) pairing:

◦ : CHn+b(Y × Z)⊗ CHm+a(X × Y )→ CHn+a+b(X × Z),

where v ◦ u := (πX,Z)∗(π∗X,Y (u) ∩ π∗Y,Z(v)), and πX,Y : X × Y × Z → X × Y ,
πY,Z : X×Y ×Z → Y ×Z, πX,Z : X×Y ×Z → X×Z are the natural projections.
In particular, taking X = Spec(k), we get a pairing:

CHn+b(Y × Z)⊗ CHr(Y )→ CHr−b(Z).
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In this case, we will denote v ◦ u as v(u).

Theorem 5.1. (cf. [33, Proof of Statement 6.1]) Let Q be an AMS-quadric.
Let P ⊂ Q be any subquadric of codimension = i1(q) − 1. Then P possesses
a Rost projector (in other words, M(P ) contains such direct summand N that
N |k ' Z⊕ Z(dim(P ))[2 dim(P )]).

Proof. We say that “we are in the situation (∗)”, if we have the following
data:

Q - some quadric; P ⊂ Q - some subquadric of codimension d;
Φ ∈ CHm(Q×Q), where m := dim(P ).

In this case, let Ψ ∈ CHm+d(P × Q) denote the class of the graph of the natural
embedding P ⊂ Q, and let Ψ∨ ∈ CHm+d(Q× P ) denote the dual cycle. We define
ε := Ψ∨ ◦ Φ ◦Ψ ∈ CHm(P × P ).

The action on CH∗(Pk) identifies: CHm(Pk × Pk) =
∏

r End(CHr(Pk)) (see
[29, Lemma 7]), and we will denote as ε(r) ∈ End(CHr(Pk)) the corresponding
coordinate of εk.

• If 0 ≤ s < m/2, then CHs(Pk) = Z with the generator ls - the class of
projective subspace of dimension s on Pk ;

• if m/2 < s ≤ m, then CHs(Pk) = Z with the generator hm−s - the class
of plane section of codimension m− s on Pk ;

• if s = m/2, then CHs(Pk) = Z ⊕ Z with the generators l1m/2 and l2m/2

- the classes of m/2-dimensional projective subspaces from two different
families.

This permits to identify End(CHs(Pk)) with Z if 0 ≤ s ≤ m, s 6= m/2, and
with Mat2×2(Z), if s = m/2. We should mention, that since for an arbitrary
field extension E/k, the natural map CHs(P |k) → CHs(P |E) is an isomorphism
(preserving the generators above), we have an equality: (εE)(s) = ε(s) (in Z, resp.
Mat2×2(Z)).

We will need the following easy corollary of Springer’s theorem. Under the
degree of the cycle A ∈ CHs(Q) we will understand the degree of the 0-cycle A∩hs.

Lemma 5.2. Let 0 ≤ s ≤ dim(Q)/2. Then the following conditions are equiva-
lent:

(1) q = (s+ 1) ·H ⊥ q′, for some form q′;
(2) Q contains (projective subspace) Ps as a subvariety;
(3) CHs(Q) contains cycle of odd degree.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are evident. (3) ⇒ (1) Use induction on s.
For s = 0 the statement is equivalent to the Theorem of Springer. Now if s > 0,
then CH0(Q) also contains a cycle of odd degree (obtained via intersection with
hs). So, q = H ⊥ q′′. And we have the natural degree preserving isomorphism:
CHs(Q) = CHs−1(Q′′). By induction, q′′ = s ·H ⊥ q′. �

Lemma 5.3. In the situation of (∗), suppose, for some 0 ≤ s < m/2, that
ε(s) ∈ Z is odd. Then for an arbitrary field extension E/k, if QE contains a
projective space of dimension s, then it contains a projective space of dimension
s+ d.

Proof. Let E/k be such an extension that ls ∈ image(CHs(QE)→ CHs(QE)),
and suppose that ε(s) is odd. We have: Ψ ◦Ψ∨ ◦ Φ(ls) = λ · ls ⊂ CHs(QE), where
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λ ∈ Z is odd (since Ψ : CHs(PE) → CHs(QE) is an isomorphism). On the other
hand, the composition Ψ ◦ Ψ∨ : CHs+d(QE) → CHs(QE) is given by the intersec-
tion with the plane section of codimension d, so it preserves the degree of the cycle.
This implies that Φ(ls) ∈ image(CHs+d(QE) → CHs+d(QE)) has odd degree. By
Lemma 5.2, QE contains a projective space of dimension s+ d. �

Lemma 5.4. In the situation of (∗), suppose, for some m/2 < s ≤ m, that ε(s) ∈
Z is odd. Then for an arbitrary field extension E/k, if QE contains a projective
space of dimension (m− s), then it contains a projective space of dimension (m−
s+ d).

Proof. Consider the cycle ε∨ ∈ CHm(P × P ) dual to ε. Since (A ◦ B)∨ =
B∨ ◦ A∨, we have: ε∨ = Ψ∨ ◦ Φ∨ ◦Ψ. On the other hand, (ε∨)(s) = ε(m−s). Now,
the statement follows from Lemma 5.3. �

Lemma 5.5. In the situation of (∗), if d > 0, then εk(l1m/2) = εk(l2m/2) =
c · hm/2, where c ∈ Z.

Proof. Clearly, Ψ(lim/2) = lm/2 ∈ CHm/2(Qk). On the other hand, Φ ◦
Ψ(lim/2) ∈ CHm/2+d(Qk), the later group is generated by hm/2 (since (m/2)+ d>

(m+ d)/2), and Ψ∨(hm/2) = hm/2. �

Let now Q be an AMS-quadric, and P ⊂ Q be a subquadric of codimension
i1(q)− 1. By the definition of AMS-quadrics, either dim(Q) = 0, or i1(q) > 1 and
P is a proper subform of Q. Clearly, it is enough to consider the second possibility.

By the definition of i1(q), we have: qk(Q) = i1(q) · H ⊥ q1. So, the quadric
Qk(Q) contains an (i1(q) − 1)-dimensional projective subspace l(i1(q)−1). Denote:
d := i1(q)− 1, and m := dim(P ). Let Φ ∈ CHm(Q×Q) be the class of the closure
of ld ⊂ Spec(k(Q))×Q ⊂ Q×Q. Let us denote this particular case of (∗) as (∗∗).

Lemma 5.6. In the situation of (∗∗), εk = Pk × l0 +
∑

0<i<m bi · (hm−i× hi) +
a · l0 × Pk, where b1, . . . , bm−1, a ∈ Z.

Proof. If for some 0 ≤ i < m/2, the coordinate ε(i) is odd, then by Lemma
5.3, in the generalized splitting tower k = F0 ⊂ F1 ⊂ · · · ⊂ Fh for the quadrics Q
(see [16]), there exists 0 ≤ t < h such that iW (qFt) ≤ i < i+ i1(q)− 1 < iW (qFt+1).
Since q is an AMS-form, this can happen only if i = 0. In the same way, using
Lemma 5.4, we get that for all m/2 < i < m, the coordinates ε(i) are even.

This implies that on the group CHi(Pk), where 0 < i < m, i 6= m/2, the map
εk acts as some (integral) multiple of hm−i × hi (notice also that hm−i × hi acts
trivially on all CHj(Pk), j 6= i). The same holds for i = m/2 by Lemma 5.5.

Clearly, Pk×l0 (resp. l0×Pk) acts on CH0(Pk) (resp. CHm(Pk)) as a generator
of End(CH0(Pk)) = Z (resp. End(CHm(Pk)) = Z), and acts trivially on CHj(Pk),
j 6= 0 (resp. j 6= m). So, we need only to observe that ε(0) = 1 (since Ψ∨◦Φ◦Ψ(l0) =
Ψ∨◦Φ(l0) = Ψ∨(ld) = l0)(this is the only place where we use the specifics of Φ). �

Now we can use ε to construct the desired projector in End(M(P )), where
M(P ) is a motive of the quadric P , considered as an object of the classical Chow-
motivic category of Grothendieck Choweff (k) (see [3],[20],[31],[29]). We remind
that End(M(P )) is naturally identified with CHm(P × P ) with the composition
given by the pairing ◦.
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Take ω := ε−
∑

0<i<m bi · (hi × hm−i)− [a/2] · (hm × P ) ∈ End(M(P )). Then
ωk is a projector equal to either (Pk × l0 + l0 × Pk), or to Pk × l0 (depending on
the parity of a).

We have the following easy consequence of the Rost Nilpotence Theorem ([29,
Corollary 10]):

Lemma 5.7. ([33, Lemma 3.12]) If for some ω ∈ End(M(P )), ωk is an idem-
potent, then for some r, ω2r

is an idempotent.

The mutually orthogonal idempotents Pk × l0 and l0 ×Pk give the direct sum-
mands Z and Z(m)[2m] in M(Pk). By lemma 5.7, we get a direct summand L in
M(P ) such that either Lk = Z ⊕ Z(m)[2m], or Lk = Z. The latter possibility is
excluded by the following lemma.

Lemma 5.8. Let L be a direct summand of M(P ) such that Lk ' Z. Then P
is isotropic.

Proof. Let w ∈ CHdim(P )(P × P ) be the projector, corresponding to L. We
have: End(M(Pk)) =

∏
r End(CHr(Pk)). So, if dim(P ) > 0, then the restriction

wk of our projector to k has no choice but to be Pk × l0 ∈ CHdim(P )(Pk × Pk).
Then, evidently, degree(w ∩∆P ) = 1, and on P × P , and therefore also on P , we
get a point of odd degree. By Springer’s Theorem, P is isotropic. If dim(P ) = 0,
then End(M(P )) has a nontrivial projector if and only if det±(p) = 1 (⇔ p is
isotropic). �

From Lemma 5.7 it follows that ω2r

is an idempotent, and by Lemma 5.8,
ω2r |k = Pk × l0 + l0 × Pk. Theorem 5.1 is proven. �

6. Binary direct summands in the motives of quadrics

The following result was proven (but not formulated) by the second author in
his thesis (see the proof of Statement 6.1 in [33]). We will reproduce its proof here
for the reader’s convenience.

Theorem 6.1. ([33]) ((*M*), see the end of Section 1) Let k be a field of
characteristic 0, and P be smooth anisotropic projective quadric of dimension n
whose Chow-motive M(P ) contains a direct summand N such that N |k = Z ⊕
Z(n)[2n]. Then n = 2s − 1 for some s.

Proof of Theorem 6.1. The construction we use here is very close to that
used by V.Voevodsky in [36].

The category of Chow-motives Choweff (k) which we used in the previous sec-
tion is a full additive subcategory (closed under taking direct summands) in the
triangulated category DMeff

− (k) - see [34]. The category DMeff
− (k) contains the

“motives” of all smooth simplicial schemes over k. If P is a smooth projective
variety over k, we denote as Č(P )• the standard simplicial scheme corresponding
to the pair P → Spec(k) (see Definition A.8). We will denote its motive by XP .

From the natural projection: Č(P )•
pr→ Spec(k), we get a map: XP

M(pr)−→ Z. By
Theorem A.9, M(pr)k is an isomorphism. From this point, we will denote M(pr)
simply as pr (since we will not use simplicial schemes themselves anymore).

By Theorem A.11, we get that in DMeff
− (k),

N := Cone[−1](XP
µ′−−−−→ XP (n)[2n+ 1]),
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where µ′ is some (actually, the only) nontrivial 2 element from

Hom(XP ,XP (n)[2n+ 1]).

By Theorem A.15, pr : XP → Z induces the natural isomorphism for all a, b:

pr∗ : Hom(XP ,XP (a)[b])→ Hom(XP ,Z(a)[b]).

Denote: µ := pr∗(µ′) ∈ Hom(XP ,Z(n)[2n+ 1]).

Sublemma 6.2. The map

(µ′)∗ : Hom(XP ,Z(c)[d])→ Hom(XP ,Z(c+ n)[d+ 2n+ 1])

coincides with the multiplication by µ ∈ Hom(XP ,Z(n)[2n+ 1]).

Proof. The maps ∆XP
: XP → XP ⊗ XP , and πi : XP ⊗ XP → XP are

mutually inverse isomorphisms (by Theorem A.13). Clearly, µ · u = ∆XP
(µ⊗ u).

The map µ⊗ u : XP ⊗XP → Z(n)[2n+ 1]⊗ Z(c)[d] coincides with the compo-
sition:

XP
µ′−−−−→ XP (n)[2n+ 1]

pr(n)[2n+1]−−−−−−−−→ Z(n)[2n+ 1]

⊗ ⊗ ⊗

XP
id−−−−→ XP

u−−−−→ Z(c)[d]
which can be identified with the composition:

XP
µ′→ XP (n)[2n+ 1] u→ Z(n+ c)[2n+ 1 + d],

which is equal to (µ′)∗(u). �

Sublemma 6.3. Multiplication by µ induces a homomorphism

Hom(XP ,Z(c)[d])→ Hom(XP ,Z(c+ n)[d+ 2n+ 1])

which is an isomorphism if d − c > 0, and which is surjective if d = c. The same
holds for cohomology with Z/2-coefficients.

Proof. Since N is a direct summand in M(P ), Hom(N,Z(a)[b]) = 0, for
b− a > n = dim(P ), by Theorem A.2(1).

Consider Hom’s from the exact triangle N → XP
µ′→ XP (n)[2n+ 1] → N [1] to

Z(n+ c)[2n+ d+ 1]. We have: Hom(N,Z(n+ c)[2n+ d+ 1]) = 0, if d− c ≥ 0, and
Hom(N,Z(n + c)[2n + d]) = 0, if d − c > 0. This, combined with Sublemma 6.2,
implies the statement for Z-coefficients. The case of Z/2-coefficients follows from
the five-lemma. �

We can also consider X̃P := Cone[−1](XP
pr→ Z).

Sublemma 6.4. Let a and b be integers such that b > a. Then
• Hom(XP ,Z(a)[b]) is a 2-torsion group,
• Hom(XP ,Z(a)[b]) embeds into Hom(XP ,Z/2(a)[b]),
• the natural map X̃P

δ→ XP induces an isomorphism

Hom(XP ,Z/2(a)[b]) =→ Hom(X̃P ,Z/2(a)[b]).

2Since, otherwise, XP would be a direct summand of N and hence also of M(P ), and by
Lemma 5.8, P would be isotropic
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Proof. For a finite field extension E/k we have the action of transfers on
motivic cohomology:

Tr : Hom(X|E ,Z(a)[b])→ Hom(X,Z(a)[b]),

which is induced by the natural map Z→M(Spec(E)) (given by the generic cycle
on Spec(k)× Spec(E) = Spec(E)). The main property of the transfer is that Tr ◦j
acts as multiplication by the degree [E : k], where

j : Hom(X,Z(a)[b])→ Hom(X|E ,Z(a)[b])

is the natural restriction.
A quadric P has a point E of degree 2, and over E, XP becomes Z (by Theorem

A.9), so we have that Hom(XP |E ,Z(a)[b]) = 0 for b− a > 0 (by Theorem A.2(1)).
Considering the composition Tr ◦j = ·[E : k] we get that Hom(XP ,Z(a)[b]) is

a 2-torsion group for b > a. In particular, the natural map Hom(XP ,Z(a)[b]) →
Hom(XP ,Z/2(a)[b]) is injective for b > a.

Since Hom(Z,Z/2(a)[b]) = 0 for any b > a (see Theorem A.2(1)), we also have
that for b > a, δ∗ : Hom(XP ,Z/2(a)[b]) → Hom(X̃P ,Z/2(a)[b]) is an isomorphism.

�

We have the action of motivic cohomological operations Qi on
Hom(XP ,Z(∗)[∗′]) and Hom(X̃P ,Z(∗)[∗′]) (see Theorems A.5 and A.6). The differ-
ential Qi acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]) for any i ≤ [log2(n+1)]
(see Theorem A.16).

Denote η := µ(mod2), i.e. the image of µ in the cohomology with Z/2 coeffi-
cients. From Sublemma 6.4 it follows that η 6= 0.

Denote r = [log2(n)].

Sublemma 6.5. Qi(η) = 0, for all i ≤ r.

Proof. In fact, Qi(η) ∈ Hom(XP ,Z/2(n+ 2i − 1)[2n+ 2i+1]), and the latter
group is an extension of 2-cotorsion in Hom(XP ,Z(n + 2i − 1)[2n + 2i+1]), and
2-torsion in Hom(XP ,Z(n+ 2i − 1)[2n+ 2i+1 + 1]).

But, by Sublemma 6.3, the multiplication by µ induces surjections
Hom(XP ,Z(2i − 1)[2i+1 − 1])→ Hom(XP ,Z(n+ 2i − 1)[2n+ 2i+1]) and
Hom(XP ,Z(2i − 1)[2i+1])→ Hom(XP ,Z(n+ 2i − 1)[2n+ 2i+1 + 1]). Furthermore,
the groups: Hom(XP ,Z(2i − 1)[2i+1 − 1]), Hom(XP ,Z(2i − 1)[2i+1]) are zero.

In fact, from the exact triangle N → XP → XP (n)[2n + 1] → N [1], we get an
exact sequence: Hom(N,Z(2i − 1)[2i+1 − 1]) ← Hom(XP ,Z(2i − 1)[2i+1 − 1]) ←
Hom(XP (n)[2n + 1],Z(2i − 1)[2i+1 − 1]). The first group is zero since N is a
direct summand in the motive of a smooth projective variety, and (consequently)
Hom(N,Z(a)[b]) = 0 for b > 2a (see Theorem A.2(2)). The third group is zero,
since n > 2i − 1 (see Theorem A.1). Hence the second is zero as well. The case of
Hom(XP ,Z(2i − 1)[2i+1]) follows in an analogous manner..

Thus, Qi(η) = 0. �

Sublemma 6.6. Let 0 ≤ j ≤ r. Then Qj is injective on Hom(X̃P ,Z/2(c)[d]),
if d− c = n+ 1 + 2j.

Proof. Let ṽ ∈ Hom(X̃P ,Z/2(c)[d]), where d− c = n+ 1 + 2j . If Qj(ṽ) = 0,
then ṽ = Qj(w̃), for some w̃ ∈ Hom(X̃P ,Z/2(c − 2j + 1)[d − 2j+1 + 1]) (since
Qj acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), by Theorem A.16). Since
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(d− 2j+1 + 1)− (c− 2j + 1) = n+ 1 > 0, we have that δ∗ : Hom(XP ,Z/2(c− 2j +
1)[d− 2j+1 + 1])→ Hom(X̃P ,Z/2(c− 2j + 1)[d− 2j+1 + 1]) is an isomorphism, and
there exists w ∈ Hom(XP ,Z/2(c− 2j + 1)[d− 2j+1 + 1]) such that w̃ = δ∗(w).

By Sublemma 6.3, w = η ·u, for some u ∈ Hom(XP ,Z/2(c−2j +1−n)[d−2j+1−
2n]). By Theorem A.6(2), Qj(η · u) = Qj(η) · u+ η ·Qj(u) +

∑
{−1}xiφi(η) ·ψi(u),

where xi > 0, and φi, ψi are cohomological operations of some bidegree (∗)[∗′],
where ∗′ > 2∗ ≥ 0.

Note that c− 2j + 1− n = d− 2j+1 − 2n =: s. But by Theorem A.18, we have

that Hom(Z,Z/2(a)[b])
pr∗→ Hom(XP ,Z/2(a)[b]) is an isomorphism for a ≥ b. Hence,

u = pr∗(u0), where u0 ∈ Hom(Z,Z/2(s)[s]) = KM
s (k)/2. We have: Qj(u0) = 0 and

ψi(u0) = 0 (since Hom(Z,Z/2(a)[b]) = 0 for b > a).
But pr∗ commutes with Qj and ψi. So, Qj(u) = 0 and ψi(u) = 0. That means:

Qj(w) = Qj(η · u) = Qj(η) · u = 0, by Sublemma 6.5.
We get: ṽ = Qj(w̃) = Qj ◦ δ∗(w) = δ∗ ◦ Qj(w) = 0. I.e., Qj is injective on

Hom(X̃P ,Z/2(c)[d]). �

Denote η̃ := δ∗(η) ∈ Hom(X̃P ,Z/2(n)[2n+ 1]). Since η 6= 0, we have η̃ 6= 0 (by
Sublemma 6.4).

Sublemma 6.7. Let 0 ≤ m < r, and η̃ = Qm ◦ · · · ◦ Q1 ◦ Q0(η̃m) for some
η̃m ∈ Hom(X̃P ,Z/2(n−2m+1 +m+2)[2n−2m+2 +m+4]). Then there exists η̃m+1

such that η̃m = Qm+1(η̃m+1).

Proof. Since Qm+1 acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), it is
enough to show that Qm+1(η̃m) = 0.

Denote ṽ := Qm+1(η̃m). We have ṽ ∈ Hom(X̃P ,Z/2(n+m+ 1)[2n+m+ 3]).
SinceQi commutes withQj (by Theorem A.6(1)), we have: Qm◦Qm−1◦· · ·◦Q0(ṽ) =
Qm◦Qm−1◦· · ·◦Q0◦Qm+1(η̃m) = Qm+1◦Qm◦Qm−1◦· · ·◦Q0(η̃m) = Qm+1(η̃) = 0,
by Sublemma 6.5.

But, for any 0 ≤ t ≤ m, Qt−1 ◦ · · · ◦Q0(ṽ) ∈ Hom(X̃P ,Z(c)[d]), where d− c =
n+1+2t, and Qt is injective on Hom(X̃P ,Z(c)[d]), by Sublemma 6.6. So, from the
equality Qm ◦Qm−1 ◦ · · · ◦Q0(ṽ) = 0, we get ṽ = 0. �

From Sublemma 6.7 it follows that η̃ = Qr ◦ · · · ◦Q1 ◦Q0(η̃r). Denote γ̃ := η̃r.
We have γ̃ ∈ Hom(X̃P ,Z/2(n− 2r+1 + 2 + r)[2n− 2r+2 + 4 + r]).

But (2n− 2r+2 + 4 + r)− (n− 2r+1 + 2 + r) = n− 2r+1 + 2, and r = [log2(n)],
hence 2r ≤ n < 2r+1. Since we know that Hom(X̃P ,Z/2(a)[b]) = 0 for a ≥ b (by
Theorem A.18), and η̃ 6= 0, the only possible choice for n is n = 2r+1 − 1.

Theorem 6.1 is proven. �

Lemma 6.8. Let 0 ≤ j ≤ r. Then Qj is injective on Hom(X̃P ,Z/2(c)[d])
provided d− c = 2j.

Proof. Let ṽ ∈ Hom(X̃P ,Z/2(c)[d]), where d − c = 2j . If Qj(ṽ) = 0, then
ṽ = Qj(w̃) for some w̃ ∈ Hom(X̃P ,Z/2(c − 2j + 1)[d − 2j+1 + 1]) (since Qj acts
without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), by Theorem A.16). But (c−2j +1) =
(d−2j+1+1), and Hom(X̃P ,Z/2(c−2j +1)[d−2j+1+1]) = 0, by Theorem A.18. �

Theorem 6.9. (compare with [8, Theorem 3.1]) ((*M*), see the end of Section
1) Let k be a field of characteristic 0, P be a smooth n-dimensional anisotropic
projective quadric over k, and N be a direct summand in M(P ) such that N |k =
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Z⊕ Z(n)[2n]. Then n = 2s−1 − 1, and there exists α ∈ KM
s (k)/2 such that for any

field extension E/k, the following conditions are equivalent:
1) α|E = 0; 2) P |E is isotropic.

In particular, α ∈ Ker(KM
s (k)/2→ KM

s (k(P ))/2) 6= 0.

Proof. It follows from Theorem 6.1 that n = 2r+1 − 1 for some r, and there
exists γ̃ ∈ Hom(X̃P ,Z/2(r + 1)[r + 2]) such that η̃ = Qr ◦ · · · ◦ Q1 ◦ Q0(γ̃). By
Sublemma 6.4, the map δ∗ : Hom(XP ,Z/2(r+1)[r+2])→ Hom(X̃P ,Z/2(r+1)[r+
2]) is an isomorphism, and γ̃ = δ∗(γ) for some γ ∈ Hom(XP ,Z/2(r+1)[r+2]). Let τ
be the only nontrivial element of Hom(Z/2,Z/2(1)) = Z/2. Denote as α the element
corresponding to τ ◦γ via identification (by Theorem A.18) Hom(XP ,Z/2(r+2)[r+
2]) = Hom(Z,Z/2(r + 2)[r + 2]) = KM

r+2(k)/2. Then, by Theorem A.20, for any
field extension E/k, α|E = 0 if and only if γ|E = 0. But γ|E = 0 ⇔ γ̃|E = 0. By
Lemma 6.8, γ̃|E = 0⇔ η̃|E = 0. By Sublemma 6.4, η̃|E = 0⇔ η|E = 0⇔ µ|E = 0.
Finally, µ|E = 0 if and only if XP |E is a direct summand in N and, consequently,
in M(P ), which by Lemma 5.8, is equivalent to P |E being isotropic. �

Remark 6.10. 1) Theorem 6.9 basically says that under the mentioned
conditions, the quadric P is a norm-variety for α ∈ KM

s (k)/2.
2) Taking into account the Milnor conjecture ([36]) and the definition of the

Rost projector, we see that Theorem 6.9 implies Theorem 1.12.
3) It should be mentioned that in small-dimensional cases it is possible to

prove the result (in arbitrary characteristic 6= 2) without the use of Vo-
evodsky’s technique. For example, the case n = 7 was considered in [15].

7. Properties of forms with absolutely maximal splitting

In this section we work with fields satisfying the condition charF = 0. We
begin with the following modification of Theorem 1.11.

Theorem 7.1. ((*M*), see the end of Section 1) Let φ be an anisotropic qua-
dratic form over a field F of characteristic 0. Suppose that φ is an AMS-form.
Then

(1) φ has maximal splitting,
(2) the group Hs(F (φ)/F ) is nontrivial, where s is the integer such that

2s−1 < dimφ ≤ 2s.

Proof. (1) Let ψ be subform of φ of codimension i1(q)−1. Let X be the pro-
jective quadric corresponding to ψ. By Theorem 5.1, X possesses a Rost projector.
Theorem 6.1 shows that dim(X) = 2s−1−1 for suitable s. Hence dimψ = 2s−1 +1.
By the definition of ψ, we have dimφ−i1(φ) = dimψ−1 = 2s−1. Therefore dimφ =
2s−1 + m, where m = i1(φ). To prove that φ has maximal splitting, it suffices to
verify that m ≤ 2s−1. This is obvious because 2s−1 +m = dimφ ≥ 2i1(φ) = 2m.

(2) Obvious in view of Theorem 6.9 and the isomorphism ks(F ) ' Hs(F ). �

Theorem 7.1 and Conjecture 1.1 make natural the following

Conjecture 7.2. If an anisotropic quadratic form has absolutely maximal
splitting, then it is a Pfister neighbor.

In the proof of Theorem 1.8 we will need some deep results related to the Milnor
conjecture.
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Theorem 7.3. (see [36],[26]). ((*M*), see the end of Section 1) Let F be a
field of characteristic 0. Then for any n ≥ 0

(1) there exists an isomorphism en : In(F )/In+1(F ) '→ Hn(F ) such that

en(〈〈a1, . . . , an〉〉) = (a1, . . . , an).

(2) If φ is a Pfister neighbor of π ∈ GPn(F ). Then Hn(F (φ)/F ) is generated
by en(π).

(3) If dim τ > 2n, then Hn(F (τ)/F ) = 0.
(4) The ideal In(F ) coincides with Knebusch’s ideal Jn(F ). In other words,

for any τ ∈ In(F )\In+1(F ), we have deg τ = n.

We need also the following easy consequence of a result by Hoffmann.

Lemma 7.4. Let φ be an anisotropic form such that dimφ ≤ 2n. Let τ be an
anisotropic quadratic form and F0 = F, F1, . . . , Fh be the generic splitting tower of
τ . Let j be such that dim(τFj−1)an > 2n. Suppose that φFj has maximal splitting.
Then φ has maximal splitting.

Proof. Obvious in view of [4, Lemma 5]. �

Proposition 7.5. ((*M*), see the end of Section 1) Let F be a field of charac-
teristic 0. Let φ be a quadratic form over F and n be such that 2n−1< dimφ≤ 2n.
Suppose that Hn(F (φ)/F ) 6= 0. Then Hn(F (φ)/F ) ' Z/2Z and φ has maximal
splitting.

Proof. Let u be an arbitrary nonzero element of the group Hn(F (φ)/F ).
Since the homomorphism en : In(F )/In+1(F ) → Hn(F ) is an isomorphism, there
exists an anisotropic τ ∈ In(F ) such that τ /∈ In+1(F ) and en(τ) = u ∈ Hn(F (φ)/F ).
Let F0 = F, F1, . . . , Fh be the generic splitting tower of τ . Let τi = (τFi)an. Since
τ ∈ In(F )\In+1(F ), Item (4) of Theorem 7.3 shows that deg τ = n. Therefore,
τh−1 is a nonhyperbolic form in GPn(Fh−1). Since en(τ) ∈ Hn(F (φ)/F ), we have
en((τh−1)Fh−1(φ)) = 0. Hence, τh−1 is hyperbolic over the function field of φFh−1 .
Since τh−1 is an anisotropic form in GPn(Fh−1), the Cassels–Pfister subform the-
orem shows that φFh−1 is a Pfister neighbor of τFh−1 . Hence φFh−1 has maximal
splitting. Lemma 7.4 shows that φ has maximal splitting.

Since φFh−1 is a Pfister neighbor of τFh−1 , Item (2) of Theorem 7.3 shows that
|Hn(Fh−1(φ)/Fh−1)| ≤ 2. By Item (3) of Theorem 7.3, we have Hn(Fh−1/F ) =
0. Hence |Hn(Fh−1(φ)/F )| ≤ 2. Since Hn(F (φ)/F ) ⊂ Hn(Fh−1(φ)/F ), we get
|Hn(F (φ)/F )| ≤ 2. Now, since Hn(F (φ)/F ) 6= 0, we have Hn(F (φ)/F ) ' Z/2Z.

�

Corollary 7.6. ((*M*), see the end of Section 1) Let n ≥ 5 and φ be an
anisotropic form such that 2n − 7 ≤ dimφ ≤ 2n Then the following conditions are
equivalent:

(a) φ has maximal splitting,
(b) φ is a Pfister neighbor,
(c) Hn(F (φ)/F ) ' Z/2Z.
(d) Hn(F (φ)/F ) 6= 0.

Proof. (a)⇒(b) follows from Theorem 1.7. (b)⇒(c) follows from Theorem
7.3; (c)⇒(d) is obvious; (d)⇒(a) is proved in Proposition 7.5. �
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Proof of Theorem 1.8. Let φ and n be as in Theorem 1.8. If φ has max-
imal splitting, then Lemma 4.1 shows that φ has absolutely maximal splitting.
Then Theorem 7.1 shows that Hn(F (φ)/F ) 6= 0. Conversely, if we suppose that
Hn(F (φ)/F ) 6= 0, then Proposition 7.5 shows that φ has maximal splitting. �

Appendix A

In this section we will list some results of V.Voevodsky, which we use in the
proof of Theorems 6.1 and 6.9.

We will assume everywhere that char(k) = 0.
First of all, we need some facts about triviality of motivic cohomology of smooth

simplicial schemes. If not specified otherwise, under Hom(−,−) we will mean
HomDMeff

− (k)(−,−). We remind that HomDMeff
− (k)(M(X),Z(a)[b]) is naturally

identified with Hb,a
B (X,Z) (see [36]).

Theorem A.1. ([36, Corollary 2.2(1)]) Let X be smooth simplicial scheme over
k. Then Hom(M(X)(a)[b],Z(c)[d]) = 0, for any a > c.

In the case of smooth variety we have further restrictions on motivic cohomol-
ogy:

Theorem A.2. ([36, Corollary 2.3]) Let N be a direct summand in M(X),
where X is a smooth scheme over k. Then Hom(N,Z(a)[b]) = 0 in the following
cases:

1 If b− a > dim(X);
2 If b > 2a.

The same is true about cohomology with Z/2-coefficients.

In [36] the Stable homotopy category of schemes over Spec(k), SH(k) was
defined (see also [25]). SH(k) is a triangulated category, and there is a functor
S : SmSimpl/k → SH(k), and a triangulated functor G : SH(k) → DMeff

− (k)
such that the compositionG◦S : SmSimpl/k → DMeff

− (k) coincides with the usual
motivic functor: X 7→M(X) (here SmSimpl/k is the category of smooth simplicial
schemes over Spec(k)). In [36], Section 3.3, the Eilenberg-MacLane spectrum HZ/2

(as an object of SH(k)) is defined, together with its shifts HZ/2(a)[b], for a, b ∈ Z.

Theorem A.3. ([36, Theorem 3.12]) If X is a smooth simplicial scheme, then
there exist canonical isomorphisms

HomSH(k)(S(X),HZ/2(a)[b]) = HomDMeff
− (k)(M(X),Z/2(a)[b]).

Definition A.4. ([36, p.31]) The motivic Steenrod algebra is the algebra of
endomorphisms of HZ/2 in SH(k), i.e.:

Ab,a(k,Z/2) = HomSH(k)(HZ/2,HZ/2(a)[b]).

The composition gives a pairing:

HomSH(k)(U,HZ/2(c)[d])⊗Ab,a(k,Z/2)→ HomSH(k)(U,HZ/2(c+ a)[d+ b]),

which is natural on U .
Let now f : X → Y be a morphism in SmSimpl/k. In SH(k) we have an exact

triangle: cone(S(f))[−1] δ′→ S(X)
S(f)→ S(Y )→ cone(f).

Theorem A.3 implies:



20 OLEG IZHBOLDIN AND ALEXANDER VISHIK

Theorem A.5. We have an action of the motivic Steenrod algebra A∗,∗(k,Z/2)
on ⊕a,b HomDMeff

− (k)(M(X),Z/2(a)[b]), ⊕a,b HomDMeff
− (k)(M(Y ),Z/2(a)[b]), and

⊕a,b Hom(cone(M(f))[−1],Z/2(a)[b]), which is compatible with M(f)∗ and δ∗.

We have some special elements Qi ∈ A2i+1−1,2i−1(k,Z/2) (see [36, p.32]).

Theorem A.6. ([36, Theorems 3.17 and 3.14])
1) Q2

i = 0, and QiQj +QjQi = 0.
2) Let u, v ∈ HomDMeff

− (k)(M(X),Z(∗)[∗′]), for a smooth simplicial scheme
X. Then Qi(u · v) = Qi(u) · v + u ·Qi(v) +

∑
{−1}njφj(u) · ψj(v), where

nj > 0, and φj , ψj ∈ A(k,Z/2) are some (homogeneous) elements of
bidegree (b, a), where b > 2a ≥ 0.

3) Qi = [β, qi], where β is Bockstein, and qi ∈ A(k,Z/2).

Following [36], we define:

Definition A.7. ([36, p.32]) Margolis motivic cohomology H̃M b,a
i (U) are co-

homology groups of the complex: HomSH(k)(U,HZ/2(a − 2i + 1)[b − 2i+1 + 1])
Qi→

HomSH(k)(U,HZ/2(a)[b])
Qi→ HomSH(k)(U,HZ/2(a + 2i − 1)[b + 2i+1 − 1]), for any

U ∈ Ob(SH(k)).
If U is Cone[−1](S(f)), for some morphism f : X → Y of simplicial schemes,

then by Theorems A.3 and A.5, H̃M b,a
i (U) coincides with the cohomology of the

complex

Hb−2i+1+1,a−2i+1
M (M(U),Z/2)

Qi→ Hb,a
M (M(U),Z/2)

Qi→ Hb+2i+1−1,a+2i−1
M (M(U),Z/2),

where Hd,c
M (∗,Z/2) := Hom

DM
eff
− (k)

(∗,Z/2(c)[d]), and M(U) = Cone[−1](M(f)).

Since H̃M b,a
i (Cone[−1](S(f))) depends only on M(f), we can denote it simply as

H̃M b,a
i (Cone[−1](M(f))).
Let P be some smooth projective variety over Spec(k).

Definition A.8. The standard simplicial scheme Č(P )•, corresponding to the
pair P → Spec(k) is the simplicial scheme such that Č(P )n = P × · · · × P (n+ 1-
times), with faces and degeneration maps given by partial projections and diagonals.

In SmSimpl/k we have a natural projection: pr : Č(P )• → Spec(k). Let us
denote XP := M(Č(P )•). We get the natural map M(pr) : XP → Z.

Theorem A.9. ([36, Lemma 3.8]) If P has a k-rational point, then M(pr) :
XP → Z is an isomorphism.

Remark A.10. 1) In the notations of [36, Lemma 3.8], one should take X = P ,
Y = Spec(k), and observe that the simplicial weak equivalence gives an isomorphism
on the level of motives. 2) Actually, M(pr) is an isomorphism if and only if P has
a 0-cycle of degree 1 (see [33, Theorem 2.3.4]).

Theorem A.9 shows that XP |k = Z, which means that XP is a form of the
Tate-motive.

Theorem A.11. ([36, Theorem 4.4]) Let P be an anisotropic projective quadrics
of dimension n. Let N be a direct summand in M(P ) such that N |k = Z⊕Z(n)[2n].
Then in DMeff

− (k) there exists a distinguished triangle of the form:

XP (n)[2n]→ N → XP
µ′→ XP (n)[2n+ 1].
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Remark A.12. Actually, Theorem 4.4 of [36] is formulated only for the case
of the Rost motive (as a direct summand in the motive of the minimal Pfister
neighbour). But the proof does not use any specifics of the Pfister form case, and
works with any “binary” direct summand of dimension = dim(P ). At the same
time, Theorem A.11 is a very particular case of [33, Lemma 3.23].

Theorem A.13. ([36, Lemma 3.8]) The natural diagonal map ∆XP : XP →
XP ⊗XP is an isomorphism.

Remark A.14. One should observe that the same proof as in [36, Lemma 3.8]
gives the simplicial weak equivalence Č(P )• × Č(P )•

pr1→ Č(P )• with the inverse -
the diagonal map.

Theorem A.15. ([36, Lemma 4.7])
M(pr)∗ : Hom(XP ,XP (a)[b])→ Hom(XP ,Z(a)[b]) is an isomorphism, for any a, b.

Let us denote: X̃P := Cone[−1](M(pr)). Since X̃P comes from SH(k), it makes
sense to speak of the Margolis cohomology H̃M b,a

i (X̃P ) of X̃P .
Suppose now that P be a smooth projective quadric of dimension ≥ 2i − 1.
The following result of V.Voevodsky is the main tool in studying motivic co-

homology of quadrics:

Theorem A.16. ([36, Theorem 3.25 and Lemma 4.11]) Let P be a smooth
projective quadric of dimension ≥ 2i − 1, then H̃M b,a

i (X̃P ) = 0, for any a, b.

Remark A.17. In [36, Lemma 4.11], the result is formulated only for the case
of a (2i − 1)-dimensional Pfister quadric (corresponding to the form 〈〈a1, . . . , ai〉〉⊥
− 〈ai+1〉). But the proof does not use any specifics of the Pfister case (the only
thing which is used is: for any j ≤ i, P has a plane section of dimension 2j − 1,
which is again a quadric). Thus, for any quadric P of dimension ≥ 2i− 1, the ideal
IP contains a (vi, 2)-element (notations from [36, Lemma 4.11]).

The following statement is a consequence of the Beilinson-Lichtenbaum Con-
jecture for Z/2-coefficients.

Theorem A.18. ([36, Proposition 2.7, Corollary 2.13(2) and Theorem 4.1])
The map M(pr)∗ : Hom(Z,Z/2(a)[b]) → Hom(XP ,Z/2(a)[b]) is an isomorphism
for any b ≤ a.

Remark A.19. We should add that in [36, Theorem 4.1] it is proven that the
condition H90(n, 2) is satisfied for all n and all fields of characteristic 0 - see p.11
of [36]. Also, Hom(M(X),Z/2(a)[b]) can be identified with Hb,a

B (X,Z/2).

Motivic cohomology of XP can be used to compute the kernel on Milnor’s
K-theory (mod 2):

Theorem A.20. ([35, Lemma 6.4], [36, Theorem 4.1] ; or [12, Theorem A.1])
Let τ ∈ HomDMeff

− (k)(Z/2,Z/2(1)) = Z/2 be the only nontrivial element. Let P be
a smooth projective quadric over k. Then the composition

Hom(XP ,Z/2(m− 1)[m])
τ◦→Hom(XP ,Z/2(m)[m]) = Hom(Z,Z/2(m)[m])= KM

m (k)/2

identifies the first group with the ker(KM
m (k)/2→ KM

m (k(P ))/2).
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