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1 Introduction

In this paper we will investigate the structure of undecomposable direct sum-
mands in the motives of quadrics. We will work mostly in the category of
Chow motives Chow(k) (see, for example, [4], 2.2), but since we rely heavily
on the results from [4], we will also be using bigger triangulated category of
mixed motives Deff.

− (k) of V.Voevodsky (see [5]) (though, in most cases it
will be done just to make terminology compatible with that of [4]). By the
latest reason our considerations are restricted to the case of characteristic 0.

Let Q be n-dimensional quadric over the field k. If Q is hyperbolic, then
the Chow motive of Q is very simple - it is isomorphic to the direct sum of
Tate motives ⊕i=0,...,nZ(i)[2i] (⊕Z(n/2)[n] if n is even), so, all undecompos-
able direct summands in this case are given by the Tate motives above. In
particular, this happens if k is algebraically closed.

For arbitrary Q and k the situation is more delicate, but it follows from
the Rost Nilpotence Theorem (see [3], Proposition 9) (see also [4], Lemma
3.10) that for any direct summand N in the motive of Q, N is defined up to
isomorphism by it’s restriction to k (see [4], Lemma 3.21), and this restriction
is isomorphic to ⊕i∈I(N)Z(i)[2i], so N is defined up to isomorphism by the set
I(N) (plus the Q itself). The natural problem arises - to describe possible
sets I(N) for various direct summands N .

It appears that if N is undecomposable, then I(N) has a symmetry, com-
ing from the isomorphism Hom(N,Z(dim(N))[2 dim(N)]) w N (see Corol-
lary 1 ), and, consequently, consists of even number of elements (if Q is
anisotropic). Moreover, there is interaction between the splitting pattern of
Q (or, the set of higher Witt indices) and the possible decomposition of it’s
motive - see the Statement . The Statement can be also used to answer
the question: “When subform p ⊂ q is isotropic over k(Q)?”; as one could
expect, this happens iff codim(p ⊂ q) < i1(q), where i1 is 1-st higher Witt
index - see Corollary 3 . Another interesting question is - to describe min-
imal elements i of I(N) for all possible N (ans so, describe the number of
undecomposable direct summands in the motive of Q). Using Statement , we
show in Proposition 1 that if there exists such quadric P , that p is isotropic
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if and only if q is i+ 1 times isotropic, then i is minimal for some set I(N).
We believe, that this condition should be also nesessary - see Question 1 .
Finally, we improve Lemma 4.5 and Proposition 3.4 from [4] - see Corollary
2 and Corollary 4 .
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We need to make some brief introduction into the terminology of [4].
In the Voevodsky’s categoryDM eff

− (k) we have not only the motives of all
smooth projective varieties (as in Chow(k)), but also of all smooth simplicial
schemes. If P/k is smooth variety (of finite type) over k, then we denote as
XP the smooth simplicial scheme with X n

P = P ×kP ×k · · ·×kP - n+1-times,
where the maps of faces and degenerations are given by partial projections
and partial diagonals. Also we will denote in the same way the image of XP in
DM eff.

− (actually, we will denote motives of all smooth varieties and simplicial
schemes in the same way as objects themselves, so, omitting M(−)). As soon
as P has a rational point (or even the 0-cycle of degree 1), the motive XP

is isomorphic to the trivial Tate motive Z. In particular, over k, the motive
XP will be isomorphic to Z, so we can say that XP is a form of Z. More
generally, for two smooth (connected) varieties P and R we have: the motives
XP and XR are isomorphic if and only if R has a 0-cycle of degree 1 over
k(P ) and P has a 0-cycle of degree 1 over k(R) (see [4], 2.3 for details). The
last statement justifies the following notation: we will write XP > XR if R
has a 0-cycle of degree 1 over k(P ).

If we have triangulated category D and X, Y, Z ∈ D, then we say that Z
is an elementary extension of X and Y iff there exists an exact triangle either
of the form X → Z → Y → X[1], or of the form Y → Z → X → Y [1]. If we
have objects X1, . . . , Xm, Z ∈ D, then (inductively) Z is called an extension
of {Xj}16j6m, iff there exist 1 6 i 6 m and an exact triangle either of the
form Xi → Z → Y → Xi[1], or of the form Y → Z → Xi → Y [1], s.t. Y is
an extension of {Xj}j 6=i,16j6m.
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If Q is a quadric of dimension n, then we can consider the smooth pro-
jective varieties Qi of i-dimensional projective planes on Q, i = 0, . . . , [n/2].
The Theorem 3.1 from [4] states that the motive of Q is an extension (in the
sense specified above, with D = DM eff.

− (k)) of the motives XQ, XQ1(1)[2],...,
XQ[n−1/2]([n − 1/2])[2[n − 1/2]], XQ[n−1/2](n − [n − 1/2])[2n − 2[n − 1/2]], ...,

XQ1(n− 1)[2n− 2], XQ(n)[2n] (plus k
√
det(Q)×XQ[n/2] , if n is even). More-

over, in the abovementioned Theorem 3.1 it is specified in which order the
elementary pieces appear, so (the motive of) Q is a total object in some Post-
nikov system with graded parts as above. This Postnikov system appears to
be compatible with the ring of endomorphisms of the motive Q, i.e. any en-
domorphism of Q extends uniquely to the endomorphism of the whole system
(see [4], Theorem 3.7). This shows that for any direct summand N in Q, the
corresponding projector p in EndDMeff.

−
(Q) gives us the decomposition of the

Postnikov system into a direct sum of two, and provides us with the projectors
pi ∈ EndDMeff.

−
(XQi(i)[2i]) and p′j ∈ EndDMeff.

−
(XQj(n− j)[2n− 2j]). But for

arbitrary smooth P/k, we have EndDMeff.
−

(XP ) = Z (see [4], Theorem 2.3.2,

Theorem 2.3.3 (1)). This shows that pi and p′j’s are either 0·Id, or 1·Id, andN
is an extension of some number of “elementary pieces” from the same set: XQ,
XQ1(1)[2], ... , XQ1(n− 1)[2n− 2], XQ(n)[2n] (namely, those ones, for which
the corresponding projector (pi or p′j) is identity). Over k, these “elementary
pieces” are becoming Tate motives, and their weights give you the set I(N),
i.e.: I(N) = (∪pi=1i)∪(∪p′j=1n−j)∪(n/2, taken 0, 1 or 2 times, if n is even).

This permits one to translate from Chow-motivic terminology to that of [4].

3

For a quadric Q over k we will define (following M.Knebusch, see [1], Def-
inition 5.4) it’s higher Witt indices i0(q), . . . , is(q) inductively in the fol-
lowing way: q0 := q, k0 := k, it(q) := iW (qt), kt+1 := kt((qt)anis.), and
qt+1 := ((qt)anis.)|kt+1 .

LetQ be a quadric of dimension n, which has higher Witt indices i1, . . . , is.
Denote i := (i1, . . . , is). For 0 6 i < n/2, let 1 6 j(i, i) 6 s be such that
i1+· · ·+ij(i,i)−1 6 i < i1+· · ·+ij(i,i), and let i⊥

i
:= 2(i1+· · ·+ij(i,i)−1)+ij(i,i)−i.

Clearly j(i, i) = j(i⊥
i
, i).

Let N be a direct summand in the motive of Q, and 0 6 i < n/2. We
say that “N contains (i)” iff N contains XQi(i)[2i] as an elementary piece in
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the sense of [4], Lemma 3.23. Similarly, we say that “N contains (i)′ “ iff it
contains XQi(n− i)[2n−2i] as an elementary piece. Certainly, the above two
conditions can be reformulated as: “I(N) contains i” and “I(N) contains
n− i”, respectively.

The main restriction on the structure of N , which we use in this paper,
is provided by the following:

Statement . Suppose Q is anisotropic.

(1) Let N be a direct summand in Q. Then N contains (i) iff it contains
(i⊥

i
)′

(2) Suppose N is undecomposable. If N contains (i), but does not contain
any (m), 0 6 m < i, then N contains (i⊥

i
)′ and does not contain any

(l)′, 0 6 l < i⊥
i
.

Proof of the Statement
(1) First of all, we can change k by k(Qi1+···+ij(i,i)−1−1), and assume that

j(i, i) = 1 (i.e., XQi = XQ).
By [4], Lemma 4.5, there are undecomposable direct summands M(v)[2v],

0 6 v 6 i1 − 1 of Q, s.t. M(v)[2v] contains (v). It is enough to prove the
statement for N = M(i)[2i], or which is the same, for M and i = 0.

It is clear, that M can’t contain (m)′, with m < i1 − 1 (look on M(i1 −
1)[2i1 − 2]). So, if M does not contain (i1 − 1)′, that means that it does not
contain any XQm(n−m)[2n− 2m] with XQm = XQ. Suppose it is the case.

Let S be a plane section of Q of codimension i1 − 1. Since XS = XQ =
XQi1−1 , we have a map ϕ : S(i1 − 1)[2i1 − 2] → Q, s.t, over k, ϕ|k maps
(Z)(i1 − 1)[2i1 − 2] to Z(i1 − 1)[2i1 − 2] isomorphically. Let ψ : Q→ S(i1 −
1)[2i1 − 2] is the map given by the cycle “S”, embedded “diagonally” to
Q×S (the map, dual to the embedding). Clearly, ψ|k maps Z(i1−1)[2i1−2]
to (Z)(i1 − 1)[2i1 − 2] isomorphically. By [4], Lemma 3.26, it follows that
S(i1−1)[2i1−2] contains a direct summand, isomorphic to M(i1−1)[2i1−2],
i.e., S contains one isomorphic to M . And, by our assumption, M does not
contain any XSm(n′ − m)[2n′ − 2m] with XSm = XS (n′ = n − i1 + 1 is
the dimension of S). Since, dim(S) < dim(Q), repeating this procedure, if
nesessary, we get a quadric S ′, which contains a direct summand, isomorphic
to M , and i1(S

′) = 1 (in particular, M does not contain (0)′S′).
So, finally, we can assume, that i1(Q) = 1, M contains (0), but not a (0)′.

Lemma 1 .
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Let N be a direct summand of Q. Then the natural map Q × N → N
has a splitting N → Q×N , i.e.: N is a direct summand of Q×N .

Proof of the Lemma 1
We have an exact triangle in DM eff (k): R1 → Q→ XQ → R1[1].
From this we get an exact triangle: R1 × N → Q × N → XQ × N →

R1[1] × N . We have: XQ × N = N (since XQ × Q = Q, and N is a direct
summand in Q).

R1[1] × N is a direct summand in R1[1] × Q and the later is the direct
summand in Q[1]×Q (since the map Q×Q→ XQ ×Q = Q has a splitting
- the diagonal).

So, Hom(N,R1[1]×N) is a subgroup in Hom(Q,Q[1]×Q) = Hom(Q×
Q × Q,Z(2n)[4n + 1]) = 0, since Q × Q × Q is a smooth projective variety
and 4n+ 1 > 2(2n).

Lemma 1 is proven.

Let’s take N = M∨ - dual to M via duality Hom(−,Z(n)[2n]).
Since M does not contain (0)′, but contains (0), we have that N does

not contain (0), but contains (0)′. In particular, N is a direct summand
in R1 (notations as above) (since for corresponding projector pN we have
(pN)0 = 0). ButQ×R1 = Q1(1)[2]⊕Q(n)[2n] (since we have an exact triangle
R1 → Q〈1〉(1)[2]→ XQ(n)[2n+1]→ R1[1], the composition Q(n)[2n] = Q×
XQ(n)[2n]→ Q×R1 → Q×Q has a splitting - the map dual to the diagonal
via duality Hom(−,Z(2n)[4n]), and Q × Q〈1〉 is isomorphic to Q1 - see [4],
Claim 3.2). So, by Lemma 1 , N is a direct summand in Q1(1)[2]⊕Q(n)[2n].
Let ρ1 : N → Q1(1)[2], ρ2 : N → Q(n)[2n], and π1 : Q1(1)[2] → N ,
π2 : Q(n)[2n]→ N be corresponding maps. So, π1 ◦ρ1 +π2 ◦ρ2 = idN . As we
know, N contains XQ(n)[2n]. Since Q is anisotropic, over k, ρ2|k should send
Z(n)[2n] to Z(n)[2n] via multiplication by an even number (otherwise, the

composition Z(n)[2n]→ Q
proj.→ N

ρ2→ Q(n)[2n] would give us a 0-cycle of odd
degree on Q). So, over k, (π1◦ρ1)|k should act on Z(n)[2n] via multiplication
by an odd number. Let K = k(Q). Then over K, q|K = H ⊥ p, where H is
hyperbolic plane and p/K is anisotropic (since i1(Q) = 1). Hence, Q1|K =
P⊕P (1)[2]⊕P 1(2)[4]⊕P (n−1)[2n−2]⊕P (n)[2n]. Also, NK = N ′⊕Z(n)[2n],
and we get the maps: α : Z(n)[2n]→ P ⊕P (1)[2]⊕P 1(2)[4]⊕P (n−1)[2n−
2]⊕P (n)[2n] and β : P ⊕P (1)[2]⊕P 1(2)[4]⊕P (n−1)[2n−2]⊕P (n)[2n]→
Z(n)[2n], s.t. β ◦ α : Z(n)[2n] → Z(n)[2n] is a multiplication by an odd
number.
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Lemma 2 .
Let P/K be anisotropic quadric, and 0 6 m 6 dim(P )/2. Suppose for

some l we have maps: α : Z(l)[2l] → Pm, β : Pm → Z(l)[2l]. Then the
composition β ◦α : Z(l)[2l]→ Z(l)[2l] is a multiplication by an even number.

Proof of the Lemma 2
We have the natural identification: Hom(Z(l)[2l], Pm) = CHl(P

m), and
Hom(Pm,Z(l)[l]) = CHl(Pm), and if α is represented by a cycle A, and β by
cycle B, then the composition β ◦ α : Z(l)[2l] → Z(l)[2l] is a multiplication
by the degree of the intersection A ∩ B ∈ CH0(P

m). If this number would
be odd, then we would have a point of odd degree on Pm, and, because of
the natural projection Pm → P , also on P . By Springer’s theorem, we then
would have a rational point on P - contradiction. So, the degree of A ∩B is
even.

Lemma 2 is proven.

Using Lemma 2 , we get a contradiction. So, (1) is proven.
(2) follows from (1) applied to N and N∨ (the dual to N via duality

Hom(−,Z(n)[2n], n = dim(Q)). Really, clearly, by (1), N will contain (i⊥
i
)′.

Let N contains (l)′, where l < i⊥
i
. Let i1 = l⊥

i
. We have: (i⊥

i
)⊥
i

= i, and

if j(i, i) = j(i⊥
i
, i) > j(l, i), then i > i1, and so, N∨, containing (l), by

(1), should contain also (i1)
′ (i.e., N contains (i1)), which is not the case

by the condition. So, j(i, i) = j(i⊥
i
, i) = j(l, i). Now, we can change k

by K = k(Qi1+···+ij(i,i)−1−1), and assume that j(i, i) = 1. Then we have
by [4], Lemma 4.5, that for each 0 6 u 6 i1 − 1, (u) is contained in an
undecomposable direct summand isomorphic to N(u − i)[2u − 2i]. Taking
u = i1 − 1, and applying (1), we get that l can’t be < i.

Statement is proven.

From the result above we immediately get that undecomposable direct
summands should have some kind of symmetry (the simplest consequence of
which is: if Q is anisotropic, and N undecomposable, then N |k consists of
even number of Tate motives).

Corollary 1 .
LetN be an undecomposable direct summand in the motive of anisotropic

quadric Q. Let lowest term of N is (i), and highest - (j)′. Let M =
N(−i)[−2i]. Define the dimension of M as d = n− i− j, where n = dim(Q).
Then Hom(M,Z(d)[2d]) is isomorphic to M .
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Proof of Corollary 1
Clearly, to prove this statement for N is the same as to prove it for

N∨ = Hom(N,Z(n)[2n]). Evidently, j = i⊥
i
, by Statement (2). Changing N

by N∨, if nesessary, we can assume that i 6 i⊥
i
. Take S to be a plane section

of codimension l = i⊥
i
−i. We have: XQi = XQi+l = X

Q
i⊥
i
. By [4], Lemma 4.5,

Q contains direct summand isomorphic to N(l)[2l]. Let ϕ : S → Q be map,
given by the embedding S ⊂ S ×Q, and ψ : Q→ S(l)[2l] be a map dual to
it (via duality Hom(−,Z(n)[2n])). Let ρN : N → Q, ρN(l)[2l] : N(l)[2l]→ Q,
and πN : Q → N , πN(l)[2l] : Q → N(l)[2l] be maps defining N and N(l)[2l]
as direct summands in Q. Consider ε := ψ(−l)[−2l] ◦ ρN(l)[2l](−l)[−2l] ◦ πN :

Q→ S. It is easy to see, that over k, ϕ ◦ ε : Q→ Q maps Z(i)[2i] to itself
isomorphically. Hence, by [4], Lemma 3.26, S contains a direct summand
N1 isomorphic to N . The lowest term of N1 is XSi(i)[2i], and the highest
term should be XSi(n1 − i)[2n1 − i], where n1 = n − l = dim(S) (really,
i = i⊥

i
− l). Since N1 contains (i) and (i)′, N∨

1 (dual to N1 via duality
Hom(−,Z(n1)[2n1])) should also contain (i) and (i)′. By [4], Lemma 3.21,
that means thatN∨

1 is isomorphic toN1, i.e.: Hom(M,Z(d)[2d]) is isomorphic
to M .

Also, we can improve a bit the Lemma 4.5 from [4].

Corollary 2 .
Let N be an undecomposable direct summand in Q, with the lowest term

(i). Then for any m, s.t. XQm = XQi , there exist an undecomposable direct
summand of Q, isomorphic to N(m− i)[2m− 2i].

Proof of Corollary 2 By Statement (2), the highest term of N will be
(i⊥

i
)′. Since XQi = X

Q
i⊥
i
, it is equivalent to prove the statement for N or for

N∨ = Hom(N,Z(n)[2n]). Changing N by N∨, if nesessary, we can assume
that i 6 i⊥

i
. Then Q〈i〉′ contains N , and from [4], Lemma 4.5 follows the

statement for required m > i. Moreover, if r = i1 + · · · + ij(i,i) − 1, then
N(r − i)[2r − 2i] contains (r) and (i1 + · · · + ij(i,i)−1)

′. Again, applying [4],
Lemma 4.5 to (N(r − i)[2r − 2i])∨ (and then, dualizing back), we get the
statement for required m < i.

Corollary 2 is proven.

One more application of the Statement explains, in which cases the sub-
form of q will be isotropic over the generic point of Q, and computes the 1-st
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higher Witt index for such subforms in terms of that for q.

Corollary 3 .

(1) Let P and Q be such anisotropic quadrics that XP = XQ (in other
words, P has a rational point over k(Q), and Q has a rational point
over k(P ). Then dim(P )− i1(P ) = dim(Q)− i1(Q).

(2) Let Q be anisotropic quadric, and P ⊂ Q - a subquadric of codimension
i. Then the following conditions are equivalent:

(a) XQ = XP .

(b) 0 6 i < i1(Q).

Moreover, if these conditions are satisfied, then i1(P ) = i1(Q)− i.

Proof of Corollary 3 (1) Since XP = XQ, we have direct summands N
of Q, and M of P , s.t. N contains XQ, M contains XP , and M w N . To
construct such summands, consider rational maps: f : Q → P , g : P → Q.
Closure of their graphs in Q × P and P × Q, respectively, gives us motivic
maps φ : Q → P and ψ : P → Q, s.t. φ and ψ, restricted to k map
Z to Z isomorphically. By [4], Lemma 3.26, this implies the existence of
specified motives M and N . From Statement it follows, that the dimension
(see Corollary 1 ) of N is dim(Q) − i1(Q) + 1, and the dimension of M is
dim(P )− i1(Q) + 1. The isomorphism M w N completes the proof.

(2) Clearly, from the existence of rational point on P follows the existence
of such on Q. Hence, XP > XQ. Also, from the existence of i-dimensional
projective subspace on Q follows the existence of rational point on P . Hence,
XQi > XP > XQ.

If 0 6 i < i1(Q), then XQi = XQ, and from the above unequality we get:
XQ = XP . So, (b)⇒ (a).

In the other direction: if XQ = XP , then by (1), dim(P ) − i1(P ) =
dim(Q)− i1(Q). Since i1(P ) > 1, we get: i 6 i1(Q).

The last statement is evident in the light of (1).

The following interesting question in the study of direct summands of Q
arises: for which i we have a direct summand N , “starting” from (i) (that
is: N |k contains Z(i)[2i], but does not contain any Z(j)[2j] with j < i)? We
can give here some sufficient condition (see Proposition 1 below), which, we
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believe, should be also nesessary one (see Question 1 ). Our Statement is
very useful here.

Lemma 3 .
Let Q/k be some quadric, and K/k be some field, such that K has a

smooth point over k(Q). Then i(Q/K) = i(Q/k).

proof of Lemma 3
We just need to check, that over K(Qi1+···+it−1), Qi1+···+it has no smooth

point for any 1 6 t 6 s. But Q has a smooth point over k(Qi1+···+it−1),
and K has a smooth point over k(Q). By transitivity, from the existence of a
K(Qi1+···+it−1)-point on Qi1+···+it would follow the existence of k(Qi1+···+it−1)-
point there, which is not the case.

Lemma 3 is proven.

Lemma 4 .
Let Q be a quadric, and i1, . . . , is be it’s higher Witt indices. Let 1 6 t 6

s, and S be a plane section ofQ of codimension it(Q)−1. Let i = i1+· · ·+it−1.
Then Q contains an undecomposable direct summand with “lowest” term (i)
iff S does.

Proof of Lemma 4
Let dim(Q) = n.
(→) If Q contains such a summandN , then by [4], Lemma 4.5, it contains

also one isomorphic to N(it(Q) − 1)[2it(Q) − 2], with lowest term (i + it −
1) (since XQi−1 6= XQi = · · · = XQi+it(Q)−1). Let ϕ : S → Q be a map,
corresponding to the inclusion S ⊂ Q, and ϕ∨ : Q(−it(Q)+1)[−2it(Q)+2]→
S be the dual map via duality Hom(−,Z(n − it + 1)[2n − 2it + 2]). Let
jN : N → Q, jN(it−1)[2it−2] : N(it − 1)[2it − 2] → Q, and πN : Q → N , and
πN(it−1)[2it−2] : Q→ N(it−1)[2it−2] be maps, realizingN andN(it−1)[2it−2]
as direct summands in Q. Then we have the pair of maps: ϕ : S → Q, and
ψ := ϕ∨ ◦ jN(it−1)[2it−1](1 − it)[2 − 2it] ◦ πN : Q → S. It is easy to see, that
for ψ ◦ ϕ : S → S we have: (ψ ◦ ϕ)i = 1 (see [4], Theorem 3.7 for notations).
That means (see [4], Lemma 3.26) that Q and S contain isomorphic direct
summands, containing (i). Such summands should be isomorphic to N , so
the (i) is the “lowest” term in them.

(←) If S contains such a summand M , then M(−i)[−2i] is a direct
summand in Si (see [4], Claim 3.2 and Lemma 4.6). Really, we need only to
check, that M “is contained” in S〈i〉′, i.e.: i 6 i⊥

i(S)
(by the Statement ). Let
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K = k(Qi−1). Suppose M is not contained in S〈i〉′, then i > i⊥
i(S)

, and by

Lemma 3 , i > i⊥
i(S|K)

.

But over K, Q|K is (i−1)-times isotropic. Then Q contains undecompos-
able direct summand N , whose “lowest” term is (i), then, by the Statement
(2), the “highest” term of N will be (i+ it − 1)′. By (→), S|K also contains
direct summand M ′ isomorphic to N , and M ′ contains (i) and (i)′ as it’s
“lowest” and “highest” terms. By the statement, we get contradiction with
the assumption that i > i⊥

i(S|K)
. So, M(−i)[−2i] is a direct summand in Si.

Since XSi = XSi = XQi = XQi+it−1 , we have the map ε′ : Si(i + it −
1)[2i + 2it − 2] → Q, which over k maps (Z)(i + it − 1)[2i + 2it − 2] to
Z(i + it − 1)[2i + 2it − 2] isomorphicallyically. Since M(−i)[−2i] is a direct
summand in Si, we get a map ε′′ : M(it − 1)[2it − 2] → Q with the same
property. Let ε := ε′′ ◦ πM(it − 1)[2it − 2] : S(it − 1)[2it − 2] → Q, where
πM : S → M is the natural projection. We can see, that ε|k still maps
(Z)(i+ it − 1)[2i+ 2it − 2] to Z(i+ it − 1)[2i+ 2it − 2] isomorphically.

Let ϕ : S → Q be natural map (corresponding to the embedding S ⊂ Q),
and ϕ∨ : Q(1− it)[2− 2it]→ S be map dual to ϕ via duality Hom(−,Z(n−
it + 1)[2n − 2it + 2]). Then ϕ∨ ◦ ε(1 − it)[2 − 2it] : S → S over k maps
Z(i)[2i] to Z(i)[2i] isomorphically. By [4], Lemma 3.26 that means that
Q(1−it)[2−2it] and S contain isomorphic undecomposable direct summands
N1 and N2, containing XQi+it−1(i)[2i] and XSi , respectively. So, they should
be isomorphic to M (see [4], Lemma 3.21). In particular, XQi+it−1(i)[2i] is the
“lowest” term in N1, and XQi+it−1(i+ it−1)[2i+2it−2] is the “lowest term in
N1(it− 1)[2it− 2]. By the Statement (2), XQi(n− i)[2n− 2i] is the “highest”
term in it. If (N1(it− 1)[2it− 2])∨ is the summand dual to N1(it− 1)[2it− 2]
via duality Hom(−,Z(n)[2n]), then it is evidently undecomposable and it’s
“lowest” term is (i).

Lemma 4 is proven.

Proposition 1 .
Let Q and P be such quadrics, that for some i, XQi = XP . Then there

exists a direct summand N in Q, starting from XQi(i)[2i] (i.e. N contains no
XQl(l)[2l] with l < i, but contains XQi(i)[2i] ).

Proof
Changing P , if nesessary, by it’s plane section, we can assume, that

i1(P ) = 1. By Lemma 4 , we can also assume, that ij(i,i(Q)) = 1, i.e.
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XQi−1 6= XQi 6= XQi+1 . Really, first of all we can assume, by [4], Lemma
4.5 and our Statement , that i = i1 + · · · + it−1 for some t. If the corre-
sponding higher Witt index it(Q) is > 1, change Q by it’s plane section S of
codimension it − 1. Since dim(S) < dim(Q), after few such steps we should
get the quadric S ′ with ij(i,i(S′)) = 1. And the existence of the required direct
summand for Q follows from that for S ′ (by Lemma 4 ).

Let dim(Q) = n, dim(P ) = m.
Since XQi = XP , we have a motivic map ϕ : P (i)[2i]→ Q, s.t. ϕ|k sends

(Z)(i)[2i] to Z(i)[2i] isomorphically. Let ϕ∨ : Q(m+2i−n)[2(m+2i−n)]→
P (i)[2i] will be map dual to ϕ with respect to duality Hom(−,Z(m+2i)[2m+
4i]).

Let K = k(Qi−1). Then over K, q is (precisely) i-times isotropic (since
XQi−1 6= XQi); let R/K be anisotropic part of Q|K .

ThenQK = ⊕l=0,...,i−1(Z(l)[2l]⊕Z(n−l)[2n−2l])⊕R(i)[2i], and ϕ|K(−i)[−2i]
gives a map ψ : P |K → R.

But XR/K = XQi/K = XP/K , that means that there exist a map: ρ : R→
P , s.t. for the composition α = ρ ◦ ψ : P → P , we have α0 = 1 (in the sense
of [4], Theorem 3.7, and the text after the Corollary 3.9)(i.e., α|k sends Z to
Z isomorphically). By [4], Lemma 3.26, that means, that R and P |K contain
isomorphic direct summands N and M , containing (0) and (0), respectively.
But by the Statement , M should contain (0)′ (since, by the Lemma 3 ,
i1(P/K) = i1(P ) = 1). and it will be the “highest” elementary piece of M ,
and in the same way, the “highest” elementary piece of N will be (0)′ (again,
by the Lemma 3 , i1(R) = it(Q) = 1). Since M is isomorphic to N , and
dim(R) = n − 2i, dim(P ) = m, we get that: m = n − 2i, and ψ|k sends
Z(m)[2m] to itself via multiplication by an odd number (hence, ϕ(−i)[−2i]
does the same). Then ϕ∨(n − m − 3i)[2n − 2m − 6i]|k maps Z to Z via
multiplication by an odd number. By [4], Lemma 3.20 we can find a map
ρ : Q(−i)[−2i] → P , which, over k, will map Z to Z isomorhically. Hence,
for ε := ρ ◦ ϕ(−i)[−2i] : P → P we have ε0 = 1, and by [4], Lemma 3.26, P
and Q(−i)[−2i] have isomorphic direct summands, containing XP and XQi ,
respectively. That means that Q contains a direct summand starting from
XQi(i)[2i].

Proposition 1 is proven.

In connection with Proposition 1 it is natural to ask the following:

Question 1 .
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Are the following conditions equivalent?

(1) Q contains a direct summand with the lowest term (i).

(2) There exists quadric P/k, s.t. XP = XQi .

In a meantime, we can characterize those i, for which there exists a direct
summand N starting from (i), in the following way:

Proposition 2 .
Let Q be a quadric, and 0 6 i < n/2, where n = dim(Q). Then the

following conditions are equivalent:

1) There exists undecomposable direct summand N in Q, with the lowest
term (i).

2) The natural map αi : Q → Z(i)[2i] (corresponding to a plane section
of codimension i) is a composition Q

u→ XQi(i)[2i]→ Z(i)[2i], for some
u (XQi(i)[2i]→ Z(i)[2i] here is a natural projection).

3) The map αi : Q → Z(i)[2i] is a composition Q
v→ Qi(i)[2i] → Z(i)[2i],

for some v, where Qi(i)[2i]→ Z(i)[2i] is again a natural projection.

4) There exists a subvariety T of Q of codimension i and of degree not
divisible by 4, s.t. Qi has a rational point over k(T ).

Proof of the Proposition 2
(1→ 2) Follows from [4], Lemma 3.23.
(2→ 3) In DMeff (k) we have the following exact triangle: Qi → XQi →

Y → Qi[1], where Y is an “extension” of Qi×Qi[1], Qi×Qi×Qi[2], etc ... .
Since HomDMeff (Q,Qi × · · · ×Qi(i)[2i+ p]) = 0, for any positive p, we have
that any map u : Q→ XQi(i)[2i] can be lifted to the map v : Q→ Qi(i)[2i].

(3 → 4) The map v : Q → Qi(i)[2i] is given by some cycle V ⊂ Q × Qi

of dimension n − i, and the composition Q
v→ Qi(i)[2i] → Z(i)[2i] is given

by the cycle W = (π1)∗(V ) ⊂ Q, where π1 : Q × Qi → Q is the projection
on the first factor. Since the composition coincides with αi (given by plane
section of codimension i), we have that the degree of W is 1. Hence W
should contain irreducible component T of odd degree in odd multiplicity.
That means that over k(T ), Qi has a point of odd degree, and by Springer
theorem it has a rational point over that field.
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(4→ 1) The rational map T → Qi give us cycle V ⊂ Q×Qi of dimension
n − i, and so, a map v : Q → Qi(i)[2i]. Consider the standard map ϕ :
Qi(i)[2i] → Q (given by the cycle Φ ⊂ Qi × Q, Φ = {(l, x) : x ∈ l}). The

composition Qi(i)[2i]
ϕ→ Q

αi→ Z(i)[2i] coincides with the natural projection

Qi(i)[2i] → Z(i)[2i]. That means that the composition Q
v→ Qi(i)[2i]

ϕ→
Q

αi→ Z(i)[2i] is given by the cycle T ⊂ Q. Consider the map ρ := ϕ ◦ v :
Q→ Q. Since Hom(Z(j)[2j], Qi(i)[2i]) = 0 for any j < i, we have that over k,
ρ|k maps Z(j)[2j] to 0 for such j. On the other hand ρ|k : Z(i)[2i]→ Z(i)[2i]
is a multiplication by the degree of T divided by 2, which is odd. By [4],
Lemma 3.12 and Lemma 3.25, there is a direct summand of Q, starting from
(i).

The Proposition 2 permits us to clarify the picture in the Proposition 3.4
from [4].

We remind, that βi : Z(n− i)[2n− 2i]→ Q is a natural map given by the
plane section of codimension i in Q. Then we can define the natural map
⊕β′i : ⊕06i<n/2XQi(n− i)[2n− 2i]→ Q, where β′i is a composition of natural
projection XQi(n−i)[2n−2i]→ Z(n−i)[2n−2i] and βi. Let P ′ = Cone(⊕β′i).
By [4], Proposition 3.4, P ′ is an extension of XQi(i)[2i], 0 6 i < n/2, and

also k(
√
det(Q))×XQn/2(n/2)[n] (if n is even).

Corollary 4 .
Let Q be anisotropic quadric. The following conditions are equivalent:

(1) P ′ is isomorphic to a direct sum ⊕06i<n/2XQi(i)[2i] (⊕k(
√
det(Q)) ×

XQn/2(n/2)[n], if n is even).

(2) Q consists of “binary motives” (i.e., motives, consisting of just two
elementary pieces).

Proof (1→ 2) Since P ′ is a direct sum we have that the map αi : Q→
Z(i)[2i] can be lifted to the map α′

i : Q→ XQi(i)[2i]. By Proposition 2 , that
means that there is an undecomposable direct summand of Q, starting from
i. Since it is true for all 0 6 i 6 n/2, all undecomposable direct summands
of Q are binary (they contain only one “simple piece” from the lower half of
Q ⇒ only one from the upper half as well).

(2 → 1) The decomposition of Q into the binary motives gives the
decomposition of the map ⊕β′i : ⊕06i<n/2XQi(n − i)[2n − 2i] → Q, which
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gives a decomposition of P ′ into the direct sum of elementary components of
P ′ (i.e. XQ,XQ1(1)[2], etc. ...).

Remark (1) and (2) in the Corollary 4 should be equivalent to (3): Q
is Excellent quadric. In the one direction it is a result of M.Rost (see [2],
Proposition 4). In the other: we know only (from the proof of the Statement
6.1 from [4]) that Q should have excellent splitting pattern, and our binary
motives are “of the Rost-motive size”.
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