Direct summands in the motives of quadrics

Preliminary version.

A. Vishik

1 Introduction

In this paper we will investigate the structure of undecomposable direct summands in the motives of quadrics. We will work mostly in the category of Chow motives $\text{Chow}(k)$ (see, for example, [4], 2.2), but since we rely heavily on the results from [4], we will also be using bigger triangulated category of mixed motives $D^c_{\text{eff}}(k)$ of V.Voevodsky (see [5]) (though, in most cases it will be done just to make terminology compatible with that of [4]). By the latest reason our considerations are restricted to the case of characteristic 0.

Let Q be n-dimensional quadric over the field k. If Q is hyperbolic, then the Chow motive of Q is very simple - it is isomorphic to the direct sum of Tate motives $\oplus_{i=0}^{n} \mathbb{Z}(i)[2i]$ ($\oplus \mathbb{Z}(n/2)[n]$ if n is even), so, all undecomposable direct summands in this case are given by the Tate motives above. In particular, this happens if k is algebraically closed.

For arbitrary Q and k the situation is more delicate, but it follows from the Rost Nilpotence Theorem (see [3], Proposition 9) (see also [4], Lemma 3.10) that for any direct summand N in the motive of Q, N is defined up to isomorphism by it’s restriction to k (see [4], Lemma 3.21), and this restriction is isomorphic to $\oplus_{i \in I(N)} \mathbb{Z}(i)[2i]$, so N is defined up to isomorphism by the set $I(N)$ (plus the Q itself). The natural problem arises - to describe possible sets $I(N)$ for various direct summands N.

It appears that if N is undecomposable, then $I(N)$ has a symmetry, coming from the isomorphism $\text{Hom}(N, \mathbb{Z}(\dim(N))[2 \dim(N)]) \simeq N$ (see Corollary 1), and, consequently, consists of even number of elements (if Q is anisotropic). Moreover, there is interaction between the splitting pattern of Q (or, the set of higher Witt indices) and the possible decomposition of it’s motive - see the Statement . The Statement can be also used to answer the question: “When subform $p \subset q$ is isotropic over $k(Q)$?”; as one could expect, this happens iff $\text{codim}(p \subset q) < i_1(q)$, where i_1 is 1-st higher Witt index - see Corollary 3 . Another interesting question is - to describe minimal elements i of $I(N)$ for all possible N (ans so, describe the number of undecomposable direct summands in the motive of Q). Using Statement , we show in Proposition 1 that if there exists such quadric P, that p is isotropic.
if and only if \(q \) is \(i + 1 \) times isotropic, then \(i \) is minimal for some set \(I(N) \). We believe, that this condition should be also necessary - see Question 1. Finally, we improve Lemma 4.5 and Proposition 3.4 from [4] - see Corollary 2 and Corollary 4.

Acknowledgements:

This work was done during my stay at McMaster University. I would like to thank it for hospitality and excellent working conditions. During that time I was partially supported by NSERC grants OGP 0042510 and OGP 0042580 of Manfred Kolster and Victor Snaith. I’m very grateful for this support.

2

We need to make some brief introduction into the terminology of [4].

In the Voevodsky’s category \(DM_{eff}^-(k) \) we have not only the motives of all smooth projective varieties (as in \(Chow(k) \)), but also of all smooth simplicial schemes. If \(P/k \) is smooth variety (of finite type) over \(k \), then we denote as \(X_P \) the smooth simplicial scheme with \(X^n_P = P \times_k P \times_k \cdots \times_k P - n + 1 \)-times, where the maps of faces and degenerations are given by partial projections and partial diagonals. Also we will denote in the same way the image of \(X_P \) in \(DM_{eff}^-(\cdot) \) (actually, we will denote motives of all smooth varieties and simplicial schemes in the same way as objects themselves, so, omitting \(M(\cdot) \)). As soon as \(P \) has a rational point (or even the 0-cycle of degree 1), the motive \(X_P \) is isomorphic to the trivial Tate motive \(\mathbb{Z} \). In particular, over \(\overline{k} \), the motive \(X_P \) will be isomorphic to \(Z \), so we can say that \(X_P \) is a form of \(Z \). More generally, for two smooth (connected) varieties \(P \) and \(R \) we have: the motives \(X_P \) and \(X_R \) are isomorphic if and only if \(R \) has a 0-cycle of degree 1 over \(k(P) \) and \(P \) has a 0-cycle of degree 1 over \(k(R) \) (see [4], 2.3 for details). The last statement justifies the following notation: we will write \(X_P \cong X_R \) if \(R \) has a 0-cycle of degree 1 over \(k(P) \).

If we have triangulated category \(D \) and \(X,Y,Z \in D \), then we say that \(Z \) is an elementary extension of \(X \) and \(Y \) iff there exists an exact triangle either of the form \(X \rightarrow Z \rightarrow Y \rightarrow X[1] \), or of the form \(Y \rightarrow Z \rightarrow X \rightarrow Y[1] \). If we have objects \(X_1, \ldots, X_m, Z \in D \), then (inductively) \(Z \) is called an extension of \(\{X_j\}_{1 \leq j \leq m} \), if there exist \(1 \leq i \leq m \) and an exact triangle either of the form \(X_i \rightarrow Z \rightarrow Y \rightarrow X_i[1] \), or of the form \(Y \rightarrow Z \rightarrow X_i \rightarrow Y[1] \), s.t. \(Y \) is an extension of \(\{X_j\}_{j \neq i, 1 \leq j \leq m} \).
If Q is a quadric of dimension n, then we can consider the smooth projective varieties Q^i of i-dimensional projective planes on Q, $i = 0, \ldots, \lfloor n/2 \rfloor$. The Theorem 3.1 from [4] states that the motive of Q is an extension (in the sense specified above, with $\mathcal{D} = DM^{eff}(k)$) of the motives \mathcal{X}_Q, $\mathcal{X}_Q(1)[2][\ldots$, $\mathcal{X}_Q(n-1)[2][n-1/2]$, $\mathcal{X}_Q(n-1/2)(n-1)[2n-2][n-1/2]$, \ldots, $\mathcal{X}_Q(n-1)[2n-2]$, $\mathcal{X}_Q(n)[2n]$ (plus $k \sqrt{\text{det}(Q)} \times \mathcal{X}_Q(n/2)$, if n is even). Moreover, in the abovementioned Theorem 3.1 it is specified in which order the elementary pieces appear, so (the motive of) Q is a total object in some Postnikov system with graded parts as above. This Postnikov system appears to be compatible with the ring of endomorphisms of the motive Q, i.e. any endomorphism of Q extends uniquely to the endomorphism of the whole system (see [4], Theorem 3.7). This shows that for any direct summand N in Q, the corresponding projector p in $\text{End}_{DM^{eff}}(Q)$ gives us the decomposition of the Postnikov system into a direct sum of two, and provides us with the projectors Postnikov system corresponding projector (see [4], Theorem 3.7). This shows that for any direct summand N in Q, the corresponding projector p in $\text{End}_{DM^{eff}}(Q)$ gives us the decomposition of the Postnikov system into a direct sum of two, and provides us with the projectors Postnikov system with

Postnikov system corresponding projector (see [4], Theorem 3.7). This shows that $p_1 \in \text{End}_{DM^{eff}}(\mathcal{X}_Q(i)[2i])$ and $p_j' \in \text{End}_{DM^{eff}}(\mathcal{X}_Q(n-j)[2n-2j])$. But for arbitrary smooth P/k, we have $\text{End}_{DM^{eff}}(\mathcal{X}_P) = \mathbb{Z}$ (see [4], Theorem 2.3.2, Theorem 2.3.3 (1)). This shows that p_i and p_j' are either 0-Id, or 1-Id, and N is an extension of some number of “elementary pieces” from the same set: \mathcal{X}_Q, $\mathcal{X}_Q(1)[2][\ldots$, $\mathcal{X}_Q(n-1)[2n-2]$, $\mathcal{X}_Q(n)[2n]$ (namely, those ones, for which the corresponding projector (p_i or p_j') is identity). Over k, these “elementary pieces” are becoming Tate motives, and their weights give you the set $I(N)$, i.e.: $I(N) = (\cup_{p_i=1}) \cup (\cup_{p_j'=1} n-j) \cup (n/2)$, taken 0, 1 or 2 times, if n is even). This permits one to translate from Chow-motivic terminology to that of [4].

3

For a quadric Q over k we will define (following M.Knebusch, see [1], Definition 5.4) it’s higher Witt indices $i_0(q), \ldots, i_s(q)$ inductively in the following way: $q_0 := q$, $k_0 := k$, $i_0(q) := i_W(q_0)$, $k_{i+1} := k_i((q_t)^{\text{anis.}})$, and $q_{i+1} := ((q_t)^{\text{anis.}})_{k_{i+1}}$.

Let Q be a quadric of dimension n, which has higher Witt indices i_1, \ldots, i_s. Denote $\mathbf{i} := (i_1, \ldots, i_s)$. For $0 \leq i < n/2$, let $1 \leq j(i, \mathbf{i}) \leq s$ be such that $i_1 + \cdots + i_{j(i, \mathbf{i}) - 1} \leq i < i_1 + \cdots + i_{j(i, \mathbf{i})}$, and let $i_1^1 := 2(i_1 + \cdots + i_{j(i, \mathbf{i}) - 1}) + i_{j(i, \mathbf{i})} - i$. Clearly $j(i, \mathbf{i}) = j(i_1^1, \mathbf{i})$.

Let N be a direct summand in the motive of Q, and $0 \leq i < n/2$. We say that “N contains (i)” iff N contains $\mathcal{X}_Q(i)[2i]$ as an elementary piece in
the sense of [4], Lemma 3.23. Similarly, we say that “N contains $(i)'$” iff it contains $X_{Q'}(n-i)[2n-2i]$ as an elementary piece. Certainly, the above two conditions can be reformulated as: “$I(N)$ contains i” and “$I(N)$ contains $n-i'$”, respectively.

The main restriction on the structure of N, which we use in this paper, is provided by the following:

Statement. Suppose Q is anisotropic.

1. Let N be a direct summand in Q. Then N contains (i) iff it contains (i_1').

2. Suppose N is indecomposable. If N contains (i), but does not contain any (m), $0 \leq m < i$, then N contains (i') and does not contain any $(l)'$, $0 \leq l < i_1'$.

Proof of the Statement.

1. First of all, we can change k by $k(Q^{i_1+\cdots+i_{(i-1)-1}})$, and assume that $j(i,i') = 1$ (i.e., $X_{Qi} = X_Q$).

 By [4], Lemma 4.5, there are indecomposable direct summands $M(v)[2v]$, $0 \leq v < i_1 - 1$ of Q, s.t. $M(v)[2v]$ contains (v). It is enough to prove the statement for $N = M(i)[2i]$, or which is the same, for M and $i = 0$.

 It is clear, that M can’t contain $(m)'$, with $m < i_1 - 1$ (look on $M(i_1 - 1)[2i_1 - 2]$). So, if M does not contain $(i_1 - 1)'$, that means that it does not contain any $X_{Q_m}(n-m)[2n-2m]$ with $X_{Q_m} = X_Q$. Suppose it is the case.

 Let S be a plane section of Q of codimension $i_1 - 1$. Since $X_S = X_Q = X_{Q_1-1}$, we have a map $\varphi : S(i_1 - 1)[2i_1 - 2] \to Q$, s.t. over \overline{k}, $\varphi|_\overline{k}$ maps $(\mathbb{Z})(i_1 - 1)[2i_1 - 2]$ to $\mathbb{Z}(i_1 - 1)[2i_1 - 2]$ isomorphically. Let $\psi : Q \to S(i_1 - 1)[2i_1 - 2]$ is the map given by the cycle “S”, embedded “diagonally” to $Q \times S$ (the map, dual to the embedding). Clearly, $\psi|_\overline{k}$ maps $\mathbb{Z}(i_1 - 1)[2i_1 - 2]$ to $(\mathbb{Z})(i_1 - 1)[2i_1 - 2]$ isomorphically. By [4], Lemma 3.26, it follows that $S(i_1 - 1)[2i_1 - 2]$ contains a direct summand, isomorphic to $M(i_1 - 1)[2i_1 - 2]$, i.e., S contains one isomorphic to M. And, by our assumption, M does not contain any $X_{S_m}(n'-m)[2n'-2m]$ with $X_{S_m} = X_S$ ($n' = n-i_1 + 1$ is the dimension of S). Since, $\dim(S) < \dim(Q)$, repeating this procedure, if necessary, we get a quadric S', which contains a direct summand, isomorphic to M, and $i_1(S') = 1$ (in particular, M does not contain $(0)'$).

 So, finally, we can assume, that $i_1(Q) = 1$, M contains (0), but not $(0)'$.

Lemma 1.
Let N be a direct summand of Q. Then the natural map $Q \times N \to N$ has a splitting $N \to Q \times N$, i.e.: N is a direct summand of $Q \times N$.

Proof of the Lemma 1

We have an exact triangle in $DM^{eff}(k)$: $R^1 \to Q \to \mathcal{X}_Q \to R^1[1]$.

From this we get an exact triangle: $R^1 \times N \to Q \times N \to \mathcal{X}_Q \times N \to R^1[1] \times N$. We have: $\mathcal{X}_Q \times N = N$ (since $\mathcal{X}_Q \times Q = Q$, and N is a direct summand in Q).

$R^1[1] \times N$ is a direct summand in $R^1[1] \times Q$ and the later is the direct summand in $Q[1] \times Q$ (since the map $Q \times Q \to \mathcal{X}_Q \times Q = Q$ has a splitting - the diagonal).

So, $\text{Hom}(N, R^1[1] \times N)$ is a subgroup in $\text{Hom}(Q, Q[1] \times Q) = \text{Hom}(Q \times Q \times Q, \mathbb{Z}(2n)[4n+1]) = 0$, since $Q \times Q \times Q$ is a smooth projective variety and $4n+1 > 2(2n)$.

Lemma 1 is proven.

Let’s take $N = M^\vee$ - dual to M via duality $\text{Hom}(\cdot, \mathbb{Z}(n)[2n])$.

Since M does not contain $(0)^\vee$, but contains (0), we have that N does not contain (0), but contains $(0)^\vee$. In particular, N is a direct summand in R^1 (notations as above) (since for corresponding projector p_N we have $(p_N)_0 = 0$). But $Q \times R^1 = Q^1[1][2] \oplus Q(n)[2n]$ (since we have an exact triangle $R^1 \to Q^1[1][2] \to \mathcal{X}_Q(n)[2n+1] \to R^1[1]$, the composition $Q(n)[2n] = Q \times \mathcal{X}_Q(n)[2n] \to Q \times R^1 \to Q \times Q$ has a splitting - the map dual to the diagonal via duality $\text{Hom}(\cdot, \mathbb{Z}(2n)[4n])$, and $Q \times Q$ is isomorphic to Q^1 - see [4], Claim 3.2). So, by Lemma 1, N is a direct summand in $Q^1[1][2] \oplus Q(n)[2n]$. Let $\rho_1 : N \to Q^1[1][2]$, $\rho_2 : N \to Q(n)[2n]$, and $\pi_1 : Q^1[1][2] \to N$, $\pi_2 : Q(n)[2n] \to N$ be corresponding maps. So, $\pi_1 \circ \rho_1 + \pi_2 \circ \rho_2 = \text{id}_N$. As we know, N contains $\mathcal{X}_Q(n)[2n]$. Since Q is anisotropic, over \bar{k}, $\rho_2|_{\bar{k}}$ should send $\mathbb{Z}(n)[2n]$ to $\mathbb{Z}(n)[2n]$ via multiplication by an even number (otherwise, the composition $\mathbb{Z}(n)[2n] \to Q \xrightarrow{\text{proj.}} N \xrightarrow{\rho_2} Q(n)[2n]$ would give us a 0-cycle of odd degree on Q). So, over \bar{k}, $(\pi_1 \circ \rho_1)|_{\bar{k}}$ should act on $\mathbb{Z}(n)[2n]$ via multiplication by an odd number. Let $K = k(Q)$. Then over K, $q|_K = \mathbb{H} \perp p$, where \mathbb{H} is hyperbolic plane and p/K is anisotropic (since $i_1(Q) = 1$). Hence, $Q^1|_K = P \oplus P(1)[2] \oplus P(1)[2] \oplus P(1)[2] \oplus P(n-1)[2n-2] \oplus P(n)[2n]$. Also, $N_K = N' \oplus \mathbb{Z}(n)[2n]$, and we get the maps: $\alpha : \mathbb{Z}(n)[2n] \to P \oplus P(1)[2] \oplus P(1)[2] \oplus P(n-1)[2n-2] \oplus P(n)[2n]$ and $\beta : P \oplus P(1)[2] \oplus P(1)[2] \oplus P(n-1)[2n-2] \oplus P(n)[2n] \to \mathbb{Z}(n)[2n]$, s.t. $\beta \circ \alpha : \mathbb{Z}(n)[2n] \to \mathbb{Z}(n)[2n]$ is a multiplication by an odd number.
Lemma 2.

Let P/K be anisotropic quadric, and $0 \leq m \leq \dim(P)/2$. Suppose for some l we have maps: $\alpha : \mathbb{Z}(l)[2l] \to P^m$, $\beta : P^m \to \mathbb{Z}(l)[2l]$. Then the composition $\beta \circ \alpha : \mathbb{Z}(l)[2l] \to \mathbb{Z}(l)[2l]$ is a multiplication by an even number.

Proof of the Lemma 2.

We have the natural identification: $\text{Hom}(\mathbb{Z}(l)[2l], P^m) = CH_1(P^m)$, and $\text{Hom}(P^m, \mathbb{Z}(l)[l]) = CH^1(P^m)$, and if α is represented by a cycle A, and β by cycle B, then the composition $\beta \circ \alpha : \mathbb{Z}(l)[2l] \to \mathbb{Z}(l)[2l]$ is a multiplication by the degree of the intersection $A \cap B \in CH_0(P^m)$. If this number would be odd, then we would have a point of odd degree on P^m, and, because of the natural projection $P^m \to P$, also on P. By Springer’s theorem, we then would have a rational point on P - contradiction. So, the degree of $A \cap B$ is even.

Lemma 2 is proven. \hfill \Box

Using Lemma 2, we get a contradiction. So, (1) is proven.

(2) follows from (1) applied to N and N^\vee (the dual to N via duality $\text{Hom}(-, \mathbb{Z}(n)[2n])$, $n = \dim(Q)$). Really, clearly, by (1), N will contain $(i_1^\perp)'$.

Let N contains $l)'$, where $l < i_1^\perp$. Let $i_1 = l_1^\perp$. We have: $(i_1^\perp)^\perp = i$, and if $j(i, \vec{i}) = j(i_1^\perp, \vec{i}) > j(l, \vec{i})$, then $i > i_1$, and so, N^\vee, containing (l), by (1), should contain also $(i_1)^\perp$ (i.e., N contains (i_1)), which is not the case by the condition. So, $j(i, \vec{i}) = j(i_1^\perp, \vec{i}) = j(l, \vec{i})$. Now, we can change k by $K = k(Q^{h_1 + \cdots + h_d, 0, -1})$, and assume that $j(i, \vec{i}) = 1$. Then we have by [4], Lemma 4.5, that for each $0 \leq u \leq i_1 - 1$, (u) is contained in an undecomposable direct summand isomorphic to $N(u - i)[2u - 2i]$. Taking $u = i_1 - 1$, and applying (1), we get that l can’t be i.

Statement is proven. \hfill \Box

From the result above we immediately get that undecomposable direct summands should have some kind of symmetry (the simplest consequence of which is: if Q is anisotropic, and N undecomposable, then $N|_F$ consists of even number of Tate motives).

Corollary 1.

Let N be an undecomposable direct summand in the motive of anisotropic quadric Q. Let lowest term of N is (i), and highest - $(j)'$. Let $M = N(-i)[-2i]$. Define the dimension of M as $d = n - i - j$, where $n = \dim(Q)$. Then $\text{Hom}(M, \mathbb{Z}(d)[2d])$ is isomorphic to M.

6
Proof of Corollary 1

Clearly, to prove this statement for N is the same as to prove it for $N^\vee = \text{Hom}(N, \mathbb{Z}(n)[2n])$. Evidently, $j = i_{l,t}^+$, by Statement (2). Changing N by N^\vee, if necessary, we can assume that $i \leq i_{l,t}^+$. Take S to be a plane section of codimension $l = i_{l,t}^+ - i$. We have: $X_{Q^\vee} = X_{Q^\vee + l} = X_{Q^\vee l}$. By [4], Lemma 4.5, Q contains direct summand isomorphic to $N(l)[2l]$. Let $\varphi : S \to Q$ be map, given by the embedding $S \subset S \times Q$, and $\psi : Q \to S(l)[2l]$ be a map dual to it. By duality $\text{Hom}(\mathbb{Z}(n)[2n])$, let $\rho_N : N \to Q$, $\rho_{N(l)[2l]} : N(l)[2l] \to Q$, and $\pi_N : Q \to N$, $\pi_{N(l)[2l]} : Q \to N(l)[2l]$ be maps defining N and $N(l)[2l]$ as direct summands in Q. Consider $\varepsilon := \psi(-l)[-2l] \circ \rho_{N(l)[2l]}(-l)[-2l] \circ \pi_N : Q \to S$. It is easy to see, that over \mathbb{K}, $\varphi \circ \varepsilon : Q \to Q$ maps $Z(i)[2i]$ to itself isomorphically. Hence, by [4], Lemma 3.26, S contains a direct summand N_1 isomorphic to N. The lowest term of N_1 is $X_{S}(i)[2i]$, and the highest term should be $X_{S}(n_1 - i)[2n_1 - i]$, where $n_1 = n - l = \dim(S)$ (really, $i = i_{l,t}^+ - l$). Since N_1 contains (i) and $(i)'$, N_1^\vee (dual to N_1 via duality $\text{Hom}(\mathbb{Z}(n_1)[2n_1])$) should also contain (i) and $(i)'$. By [4], Lemma 3.21, that means that N_1^\vee is isomorphic to N_1, i.e.: $\text{Hom}(M, \mathbb{Z}(d)[2d])$ is isomorphic to M.

\[\square \]

Also, we can improve a bit the Lemma 4.5 from [4].

Corollary 2.

Let N be an undecomposable direct summand in Q, with the lowest term (i). Then for any m, s.t. $X_{Q^m} = X_{Q^r}$, there exist an undecomposable direct summand of Q, isomorphic to $N(m - i)[2m - 2i]$.

Proof of Corollary 2 By Statement (2), the highest term of N will be $(i_{l,t}^+)'. \text{X}_{Q^r} = X_{Q^r l}$, it is equivalent to prove the statement for N or for $N^\vee = \text{Hom}(N, \mathbb{Z}(n)[2n])$. Changing N by N^\vee, if necessary, we can assume that $i \leq i_{l,t}^+$. Then $Q(i)'$ contains N, and from [4], Lemma 4.5 follows the statement for required $m \geq i$. Moreover, if $r = i_1 + \cdots + i_{l(t, t) - 1}$, then $N(r - i)[2r - 2i]$ contains (r) and $(i_1 + \cdots + i_{l(t, t) - 1})'$. Again, applying [4], Lemma 4.5 to $(N(r - i)[2r - 2i])^\vee$ (and then, dualizing back), we get the statement for required $m < i$.

Corollary 2 is proven.

\[\square \]

One more application of the Statement explains, in which cases the sub-form of q will be isotropic over the generic point of Q, and computes the 1-st
higher Witt index for such subforms in terms of that for q.

Corollary 3.

(1) Let P and Q be such anisotropic quadrics that $X_P = X_Q$ (in other words, P has a rational point over $k(Q)$, and Q has a rational point over $k(P)$. Then $\dim(P) - i_1(P) = \dim(Q) - i_1(Q)$.

(2) Let Q be anisotropic quadric, and $P \subseteq Q$ - a subquadric of codimension i. Then the following conditions are equivalent:

(a) $X_P = X_Q$.
(b) $0 \leq i < i_1(Q)$.

Moreover, if these conditions are satisfied, then $i_1(P) = i_1(Q) - i$.

Proof of Corollary 3 (1) Since $X_P = X_Q$, we have direct summands N of Q, and M of P, s.t. N contains X_Q, M contains X_P, and $M \cong N$. To construct such summands, consider rational maps: $f : Q \to P$, $g : P \to Q$. Closure of their graphs in $Q \times P$ and $P \times Q$, respectively, gives us motivic maps $\phi : Q \to P$ and $\psi : P \to Q$, s.t. ϕ and ψ, restricted to \bar{k} map \mathbb{Z} to \mathbb{Z} isomorphically. By [4], Lemma 3.26, this implies the existence of specified motives M and N. From Statement it follows, that the dimension (see Corollary 1) of N is $\dim(Q) - i_1(Q) + 1$, and the dimension of M is $\dim(P) - i_1(Q) + 1$. The isomorphism $M \cong N$ completes the proof.

(2) Clearly, from the existence of rational point on P follows the existence of such on Q. Hence, $X_P \geq X_Q$. Also, from the existence of i-dimensional projective subspace on Q follows the existence of rational point on P. Hence, $X_Q \geq X_P \geq X_Q$.

If $0 \leq i < i_1(Q)$, then $X_{Q'} = X_Q$, and from the above inequality we get: $X_Q = X_P$. So, $(b) \Rightarrow (a)$.

In the other direction: if $X_Q = X_P$, then by (1), $\dim(P) - i_1(P) = \dim(Q) - i_1(Q)$. Since $i_1(P) \geq 1$, we get: $i \leq i_1(Q)$.

The last statement is evident in the light of (1).

The following interesting question in the study of direct summands of Q arises: for which i we have a direct summand N, “starting” from (i) (that is: $N|_\pi$ contains $\mathbb{Z}(i)[2i]$, but does not contain any $\mathbb{Z}(j)[2j]$ with $j < i$)? We can give here some sufficient condition (see Proposition 1 below), which, we
believe, should be also necessary one (see Question 1). Our Statement is very useful here.

Lemma 3.
Let Q/k be some quadric, and K/k be some field, such that K has a smooth point over $k(Q)$. Then $\mathcal{I}(Q/K) = \mathcal{I}(Q/k)$.

Proof of Lemma 3
We just need to check, that over $K(Q^{1+\cdots+t-1})$, $Q^{1+\cdots+t}$ has no smooth point for any $1 \leq t \leq s$. But Q has a smooth point over $k(Q^{1+\cdots+t-1})$, and K has a smooth point over $k(Q)$. By transitivity, from the existence of a $K(Q^{1+\cdots+t-1})$-point on $Q^{1+\cdots+t}$ would follow the existence of $k(Q^{1+\cdots+t-1})$-point there, which is not the case.

Lemma 3 is proven.

Lemma 4.
Let Q be a quadric, and i_1, \ldots, i_t be its higher Witt indices. Let $1 \leq t \leq s$, and S be a plane section of Q of codimension $i_t(Q) - 1$. Let $i = i_1 + \cdots + i_t - 1$. Then Q contains an undecomposable direct summand with “lowest” term (i) iff S does.

Proof of Lemma 4
Let $\dim(Q) = n$.

(\Rightarrow) If Q contains such a summand N, then by [4], Lemma 4.5, it contains also one isomorphic to $N(i_t(Q) - 1)[2i_t(Q) - 2]$, with lowest term $(i + i_t - 1)$ (since $\mathcal{X}_{Q^{1+\cdots+t-1}} \neq \mathcal{X}_{Q^{1+\cdots+t-1}} = \cdots = \mathcal{X}_{Q^{1+\cdots+t-1}}$). Let $\varphi : S \rightarrow Q$ be a map, corresponding to the inclusion $S \subset Q$, and $\varphi^\vee : Q(-i_t(Q) + 1)[2i_t(Q) + 2] \rightarrow S$ be the dual map via duality $\text{Hom}(-, \mathbb{Z}(n - i_t + 1)[2n - 2i_t + 2])$. Let $j_N : N \rightarrow Q$, $j_{N(i_t-1)[2i_t-2]} : N(i_t-1)[2i_t-2] \rightarrow Q$, and $\pi_N : Q \rightarrow N$, and $\pi_{N(i_t-1)[2i_t-2]} : Q \rightarrow N(i_t-1)[2i_t-2]$ be maps, realizing N and $N(i_t-1)[2i_t-2]$ as direct summands in Q. Then we have the pair of maps: $\varphi : S \rightarrow Q$, and $\psi := \varphi^\vee \circ j_{N(i_t-1)[2i_t-2]}(1 - i_t)[2 - 2i_t] \circ \pi_N : Q \rightarrow S$. It is easy to see, that for $\psi \circ \varphi : S \rightarrow S$ we have: $(\psi \circ \varphi)_i = 1$ (see [4], Theorem 3.7 for notations). That means (see [4], Lemma 3.26) that Q and S contain isomorphic direct summands, containing (i). Such summands should be isomorphic to N, so the (i) is the “lowest” term in them.

(\Leftarrow) If S contains such a summand M, then $M(-i)[-2i]$ is a direct summand in S' (see [4], Claim 3.2 and Lemma 4.6). Really, we need only to check, that M “is contained” in $S(i)'$, i.e.: $i \leq i_1(i_S)$ (by the Statement). Let
$K = k(Q^{i-1})$. Suppose M is not contained in $S(i)'$, then $i > i^\perp_{(1)(S)}$, and by Lemma 3, $i > i^\perp_{(1)(S)}$.

But over K, $Q|_K$ is $(i-1)$-times isotropic. Then Q contains undecomposable direct summand N, whose “lowest” term is (i), then, by the Statement (2), the “highest” term of N will be $(i+i_i-1)'$. By (\rightarrow), $S|_K$ also contains direct summand M' isomorphic to N, and M' contains (i) and $(i)'$ as it’s “lowest” and “highest” terms. By the statement, we get contradiction with the assumption that $i > i^\perp_{(1)(S)}$. So, $M(−i)[−2i]$ is a direct summand in S_i.

Since $\mathcal{X}_{Z^i} = \mathcal{X}_{S_i} = \mathcal{X}_{Q^i} = \mathcal{X}_{Q^i+i_i-1}$, we have the map $\varepsilon': S^i(i+2i_i-1)[2i + 2i_i - 2] \rightarrow Q$, which over \mathbb{F} maps $(\mathbb{Z})(i + i_i - 1)[2i + 2i_i - 2]$ to $\mathbb{Z}(i + i_i - 1)[2i + 2i_i - 2]$ isomorphically. Since $M(−i)[−2i]$ is a direct summand in S_i, we get a map $\varepsilon'': M(i_i - 1)[2i_i - 2] \rightarrow Q$ with the same property. Let $\varepsilon := \varepsilon'' \circ \pi_M(i_i - 1)[2i_i - 2] : S(i_i - 1)[2i_i - 2] \rightarrow Q$, where $\pi_M : S \rightarrow M$ is the natural projection. We can see, that $\varepsilon|_\mathbb{F}$ still maps $(\mathbb{Z})(i + i_i - 1)[2i + 2i_i - 2]$ to $\mathbb{Z}(i + i_i - 1)[2i + 2i_i - 2]$ isomorphically.

Let $\varphi : S \rightarrow Q$ be natural map (corresponding to the embedding $S \subset Q$), and $\varphi' : Q(1 - i_i)[2 - 2i_i] \rightarrow S$ be map dual to φ via duality $\text{Hom}(−, \mathbb{Z}(n - i_i + 1)[2n - 2i_i + 2])$. Then $\varphi' \circ \varepsilon(1 - i_i)[2 - 2i_i] : S \rightarrow S$ over \mathbb{F} maps $\mathbb{Z}(i)[2i]$ to $\mathbb{Z}(i)[2i]$ isomorphically. By [4], Lemma 3.26 that means that $Q(1 - i_i)[2 - 2i_i]$ and S contain isomorphic undecomposable direct summands N_1 and N_2, containing $\mathcal{X}_{Q^{i_i-1}}(i)[2i]$ and \mathcal{X}_{S_i}, respectively. So, they should be isomorphic to M (see [4], Lemma 3.21). In particular, $\mathcal{X}_{Q^{i_i-1}}(i)[2i]$ is the “lowest” term in N_1, and $\mathcal{X}_{Q^{i_i-1}}(i_i - 1)[2i + 2i_i - 2]$ is the “lowest” term in $N_1(i_i - 1)[2i_i - 2]$. By the Statement (2), $\mathcal{X}_{Q^n}(n - i)[2n - 2i]$ is the “highest” term in it. If $(N_1(i_i - 1)[2i_i - 2])'$ is the summand dual to $N_1(i_i - 1)[2i_i - 2]$ via duality $\text{Hom}(−, \mathbb{Z}(n)[2n])$, then it is evidently undecomposable and it’s “lowest” term is (i).

Lemma 4 is proven.

\[\square\]

Proposition 1.

Let Q and P be such quadrics, that for some i, $\mathcal{X}_{Q^i} = \mathcal{X}_{P^i}$. Then there exists a direct summand N in Q, starting from $\mathcal{X}_{Q^i}(i)[2i]$ (i.e. N contains no $\mathcal{X}_{Q^i}(l)[2i]$ with $l < i$, but contains $\mathcal{X}_{Q^i}(i)[2i]$).

Proof

Changing P, if necessary, by it’s plane section, we can assume, that $i_1(P) = 1$. By Lemma 4, we can also assume, that $i_{j_1(i)(Q^i)} = 1$, i.e.
$X_{Q^i-1} \neq X_{Q^i} \neq X_{Q^{i+1}}$. Really, first of all we can assume, by [4], Lemma 4.5 and our Statement, that $i = i_1 + \cdots + i_{t-1}$ for some t. If the corresponding higher Witt index $i_t(Q)$ is > 1, change Q by its plane section S of codimension $i_t - 1$. Since $\dim(S) < \dim(Q)$, after few such steps we should get the quadric S' with $i_j(Q_{S'}) = 1$. And the existence of the required direct summand for Q follows from that for S' (by Lemma 4).

Let $\dim(Q) = n$, $\dim(P) = m$.

Since $X_{Q^i} = X_{P^i}$, we have a motivic map $\varphi : P(i)[2i] \to Q$, s.t. $\varphi|_{\overline{k}}$ sends $(\mathbb{Z})(i)[2i]$ to $\mathbb{Z}(i)[2i]$ isomorphically. Let $\varphi' : Q(m + 2i - n)[2(m + 2i - n)] \to P(i)[2i]$ will be map dual to φ with respect to duality $\text{Hom}(\cdot, \mathbb{Z}(m + 2i)[2m + 4i])$.

Let $K = k(Q^{i-1})$. Then over K, q is (precisely) i-times isotropic (since $X_{Q^{i-1}} \neq X_{Q^i}$); let R/K be anisotropic part of $Q|_K$.

Then $Q_K = \oplus_{l=0,\ldots,i-1} (\mathbb{Z}(l)[2i] \oplus \mathbb{Z}(n-l)[2n-2l]) \oplus R(i)[2i]$, and $\varphi|_K(-i)[-2i]$ gives a map $\psi : P|_K \to R$.

But $X_{P/K} = X_{Q'K} = X_{P/K}$, that means that there exist a map: $\rho : R \to P$, s.t. for the composition $\alpha = \rho \circ \psi : P \to P$, we have $\alpha_0 = 1$ (in the sense of [4], Theorem 3.7, and the text after the Corollary 3.9)(i.e., $\alpha|_{\overline{k}}$ sends \mathbb{Z} to \mathbb{Z} isomorphically). By [4], Lemma 3.26, that means, that R and $P|_K$ contain isomorphic direct summands N and M, containing (0) and (0), respectively. But by the Statement, M should contain $(0)'$ (since, by the Lemma 3, $i_1(P/K) = i_1(P) = 1$), and it will be the “highest” elementary piece of M, and in the same way, the “highest” elementary piece of N will be $(0)'$ (again, by the Lemma 3, $i_1(R) = i_1(Q) = 1$). Since M is isomorphic to N, and $\dim(R) = n - 2i$, $\dim(P) = m$, we get that: $m = n - 2i$, and $\psi|_{\overline{k}}$ sends $\mathbb{Z}(m)[2m]$ to itself via multiplication by an odd number (hence, $\varphi(-i)[-2i]$ does the same). Then $\varphi'(n - m - 3i)[2n - 2m - 6i]|_{\overline{k}}$ maps \mathbb{Z} to \mathbb{Z} via multiplication by an odd number. By [4], Lemma 3.20 we can find a map $\rho : Q(-i)[-2i] \to P$, which, over \overline{k}, will map \mathbb{Z} to \mathbb{Z} isomorphically. Hence, for $\varepsilon := \rho \circ \varphi(-i)[-2i] : P \to P$ we have $\varepsilon_0 = 1$, and by [4], Lemma 3.26, P and $Q(-i)[-2i]$ have isomorphic direct summands, containing X_P and X_{Q^i}, respectively. That means that Q contains a direct summand starting from $X_{Q^i}(i)[2i]$.

Proposition 1 is proven.

In connection with Proposition 1 it is natural to ask the following:

Question 1.
Are the following conditions equivalent?

1) \(Q \) contains a direct summand with the lowest term \((i)\).

2) There exists quadric \(P/k \), s.t. \(X_P = X_Q \).

In a meantime, we can characterize those \(i \), for which there exists a direct summand \(N \) starting from \((i)\), in the following way:

Proposition 2 .

Let \(Q \) be a quadric, and \(0 \leq i < n/2 \), where \(n = \dim(Q) \). Then the following conditions are equivalent:

1) There exists undecomposable direct summand \(N \) in \(Q \), with the lowest term \((i)\).

2) The natural map \(\alpha_i : Q \to \mathbb{Z}(i)[2i] \) (corresponding to a plane section of codimension \(i \)) is a composition \(Q \overset{u}{\to} X_Q(i)[2i] \to \mathbb{Z}(i)[2i] \), for some \(u (X_Q(i)[2i] \to \mathbb{Z}(i)[2i] \) here is a natural projection).

3) The map \(\alpha_i : Q \to \mathbb{Z}(i)[2i] \) is a composition \(Q \overset{v}{\to} Q(i)[2i] \to \mathbb{Z}(i)[2i] \), for some \(v \), where \(Q(i)[2i] \to \mathbb{Z}(i)[2i] \) is again a natural projection.

4) There exists a subvariety \(T \) of \(Q \) of codimension \(i \) and of degree not divisible by \(4 \), s.t. \(Q^i \) has a rational point over \(k(T) \).

Proof of the Proposition 2

(1 \(\to \) 2) Follows from [4], Lemma 3.23.

(2 \(\to \) 3) In DMeff(\(k \)) we have the following exact triangle: \(Q^i \to X_Q \to Y \to Q^i[1] \), where \(Y \) is an “extension” of \(Q^i \times Q^i[1] \), \(Q^i \times Q^i \times Q^i[2] \), etc ...

Since \(\text{Hom}_{\text{DM}eff}(Q, Q^i \times \cdots \times Q^i(i)[2i + p]) = 0 \), for any positive \(p \), we have that any map \(u : Q \to X_Q(i)[2i] \) can be lifted to the map \(v : Q \to Q^i(i)[2i] \).

(3 \(\to \) 4) The map \(v : Q \to Q^i(i)[2i] \) is given by some cycle \(V \subset Q \times Q^i \) of dimension \(n - i \), and the composition \(Q \overset{v}{\to} Q^i(i)[2i] \to \mathbb{Z}(i)[2i] \) is given by the cycle \(W = (\pi_1)_*(V) \subset Q \), where \(\pi_1 : Q \times Q^i \to Q \) is the projection on the first factor. Since the composition coincides with \(\alpha_i \) (given by plane section of codimension \(i \)), we have that the degree of \(W \) is 1. Hence \(W \) should contain irreducible component \(T \) of odd degree in odd multiplicity. That means that over \(k(T) \), \(Q^i \) has a point of odd degree, and by Springer theorem it has a rational point over that field.
(4 → 1) The rational map \(T \rightarrow Q^i \) give us cycle \(V \subset Q \times Q^i \) of dimension \(n - i \), and so, a map \(v : Q \rightarrow Q^i(2i) \). Consider the standard map \(\varphi : Q^i(2i) \rightarrow Q \) (given by the cycle \(\Phi \subset Q^i \times Q, \Phi = \{(l, x) : x \in l\} \)). The composition \(Q^i(2i) \xrightarrow{v} Q \xrightarrow{\rho} Z(i)[2i] \) coincides with the natural projection \(Q^i(2i) \rightarrow Z(i)[2i] \). That means that the composition \(Q \rightarrow Q^i(2i) \xrightarrow{v} Q \xrightarrow{\rho} Z(i)[2i] \) is given by the cycle \(T \subset Q \). Consider the map \(\rho := \varphi \circ v : Q \rightarrow Q \). Since \(\text{Hom}(Z(j)[2j], Q^i(2i)) = 0 \) for any \(j < i \), we have that over \(\overline{k} \), \(\rho|_\overline{k} \) maps \(Z(j)[2j] \) to 0 for such \(j \). On the other hand \(\rho|_\overline{k} : Z(i)[2i] \rightarrow Z(i)[2i] \) is a multiplication by the degree of \(T \) divided by 2, which is odd. By [4], Lemma 3.12 and Lemma 3.25, there is a direct summand of \(Q \), starting from \(i \).

The Proposition 2 permits us to clarify the picture in the Proposition 3.4 from [4].

We remind, that \(\beta_i : Z(n - i)[2n - 2i] \rightarrow Q \) is a natural map given by the plane section of codimension \(i \) in \(Q \). Then we can define the natural map \(\oplus \beta'_i : \oplus_{0 \leq i < n/2} \mathcal{X}_{Q^i}(n - i)[2n - 2i] \rightarrow Q \), where \(\beta'_i \) is a composition of natural projection \(\mathcal{X}_{Q^i}(n - i)[2n - 2i] \rightarrow Z(n - i)[2n - 2i] \) and \(\beta_i \). Let \(P' = \text{Cone}(\oplus \beta'_i) \).

By [4], Proposition 3.4, \(P' \) is an extension of \(\mathcal{X}_{Q^i}(i)[2i], 0 \leq i < n/2 \), and also \(k(\sqrt{\text{det}(Q)}) \times \mathcal{X}_{Q^{n/2}}(n/2)[n] \) (if \(n \) is even).

Corollary 4.

Let \(Q \) be anisotropic quadric. The following conditions are equivalent:

1. \(P' \) is isomorphic to a direct sum \(\oplus_{0 \leq i < n/2} \mathcal{X}_{Q^i}(i)[2i] \) \((\oplus k(\sqrt{\text{det}(Q)}) \times \mathcal{X}_{Q^{n/2}}(n/2)[n], \text{if } n \text{ is even}). \)

2. \(Q \) consists of “binary motives” (i.e., motives, consisting of just two elementary pieces).

Proof (1 → 2) Since \(P' \) is a direct sum we have that the map \(\alpha_i : Q \rightarrow Z(i)[2i] \) can be lifted to the map \(\alpha'_i : Q \rightarrow \mathcal{X}_{Q^i}(i)[2i] \). By Proposition 2, that means that there is an undecomposable direct summand of \(Q \), starting from \(i \). Since it is true for all \(0 \leq i \leq n/2 \), all undecomposable direct summands of \(Q \) are binary (they contain only one “simple piece” from the lower half of \(Q \) ⇒ only one from the upper half as well).

(2 → 1) The decomposition of \(Q \) into the binary motives gives the decomposition of the map \(\oplus \beta'_i : \oplus_{0 \leq i < n/2} \mathcal{X}_{Q^i}(n - i)[2n - 2i] \rightarrow Q \), which
gives a decomposition of P' into the direct sum of elementary components of P' (i.e. $X_Q, X_{Q^2}(1)[2]$, etc. ...).

Remark (1) and (2) in the Corollary 4 should be equivalent to (3): Q is *Excellent* quadric. In the one direction it is a result of M.Rost (see [2], Proposition 4). In the other: we know only (from the proof of the Statement 6.1 from [4]) that Q should have *excellent splitting pattern*, and our binary motives are “of the Rost-motive size”.

References

