ON TORSION ELEMENTS IN THE CHOW-GROUPS OF QUADRICS

A. VISHIK

0. Introduction

In this paper we present some new example of torsion elements in the Chow-groups of projective quadric. For hyperbolic projective quadric X and any $0 \leq p < \dim(X)/2$, the Chow-group of cycles of codimension p (modulo rational equivalence) is a free abelian group generated by the class h^p of plane section of codimension p. By transfer arguments it follows, that for arbitrary (smooth) projective quadric, $CH^p(X) = \mathbb{Z} \cdot h^p \oplus \text{Tors}(CH^p(X))$.

On the other hand, for any projective quadric X of dimension more than 2, the Picard group $CH^1(X)$ is isomorphic to $\mathbb{Z} \cdot h$, in other words, there is no torsion. The natural question arises: can we extend this result to higher Chow-groups.

Basic here is the following conjecture due to N. Karpenko:

Let X_φ be a projective quadric, defined by quadratic form ϕ of dimension n over a field of characteristic not 2.

Conjecture 1 ([7], Conjecture 0.1).
For any p, if n is sufficiently large, then $CH^p(X_\varphi) = \mathbb{Z} \cdot h^p$.

This conjecture was supported by the following computations:

Theorem ([6], Theorem 6.1; [8], Theorem 6.1, Theorem 8.5).
Under above notations,

(a) $CH^2(X_\varphi) = \mathbb{Z}$, for $n > 8$;
(b) $CH^3(X_\varphi) = \mathbb{Z}$, for $n > 12$;
(c) $CH^4(X_\varphi) = \mathbb{Z}$, for $n > 24$;

Moreover, the boundaries in (a) and (b) are exact ones, and more generally:

Theorem ([7], Theorem 2.4).
For any $p > 1$ there exist a $4p$-dimensional quadratic form φ (over a suitable field F), such that $\text{Tors}(CH^p(X_\varphi)) \neq 0$.

In [7] an attempt was made to make Conjecture 1 more precise:

Conjecture 2 ([7], Conjecture 0.2).
If $n > 4p$ for some p, then $CH^p(X_\varphi) = \mathbb{Z} \cdot h$.

1
The principal aim of this note is to disprove this stronger version of the Conjecture - see Corollary 2.1. For any $r \geq 2$ we will construct the quadratic form φ of dimension $6 \cdot 2^r$ (over suitable field), such that $\text{Tors.(CH}^{2^r+1}(X_\varphi)) \neq 0$. This clearly will disprove the Conjecture 2.

The main ingredients of the construction are: the special pair of O.Izhboldin (see [3], Section 9), the computations of unramified cohomology by B.Kahn-M.Rost-R.J.Sujatha (including the motivic interpretation of the later)(see [5], and [4], Appendix), and the motivic cohomological operations of V.Voevodsky (see [17]). Although, the original problem is formulated in the classical Chow-motivic language, we have to work in the bigger triangulated category of mixed motives of V.Voevodsky (see [16]). In this category we can use the operations and the decomposition of the motive of a quadric from [14], Theorem 3.1.

Acknowledgements: First of all, I wanted to thank Vladimir Voevodsky, with whom we discussed the Conjecture above extensively few years ago, and whose insight into the problem proved to be extremely useful. Also, I wanted to thank Oleg Izhboldin, for the very fruitful discussions and the fact that his construction of the field with u-invariant 9 (see [3]) inspired the current article. Finally, I want to thank Nikita Karpenko for useful comments. This work was done during my stay at the Max-Plank Institut für Mathematik, and I’d like to express my gratitude to the MPIM for the support and excellent working conditions.

1. Some preliminary computations

Under generalized Albert form we will understand the anisotropic part of the difference of two n-fold Pfister forms:

$$(\langle a_1, \ldots, a_n \rangle - \langle b_1, \ldots, b_n \rangle)_{\text{an}}.$$

Such forms were studied extensively in [1].

Proposition 1.1

For any r, over some field of given characteristic $\neq 2$ there exists anisotropic generalized Albert form of dimension $6 \cdot 2^r$.

Proof of Proposition 1.1

Lemma 1.2

Let F be a field of characteristic not 2, and q/F be an anisotropic quadratic form. Let $K := F(x_1, \ldots, x_r)$ be a purely transcendental extension, and $p := q \times \langle x_1, \ldots, x_r \rangle$ be a quadratic form over K. Then p is anisotropic.

Proof
It is evidently sufficient to consider the case $r = 1$.

Suppose that $p := q \times \langle 1, -x \rangle$ is isotropic over $F(x)$. Restricting to $F((x))$, we get a contradiction with the Theorem of Springer (see [10], VI, Proposition 1.9). So, p is anisotropic.

Lemma 1.3.

Suppose the Pfister form $\langle a, b \rangle$ over the field F is anisotropic. Then the Albert form $\langle a, b, -ab, yz, -y, -z \rangle$ is anisotropic over the field $L := F(y, z)$.

Proof

If our Albert form is isotropic over L, then it is isotropic over $F((y))((z))$, and by [10], VI, Proposition 1.9, we have that $\langle a, b, -ab, -y \rangle$ is isotropic over $F((y))$ (since $\langle y, -1 \rangle$ is evidently anisotropic over the last field). Again by the Theorem of Springer we get a contradiction.

Suppose $K = k(a, b, c, d, x_1, \ldots, x_r)$ be purely transcendental extension, generated by specified variables. Consider quadratic form $\varphi := \rho \times \langle x_1, \ldots, x_r \rangle$, where $\rho := \langle a, b, -ab, cd, -c, -d \rangle$.

Lemma 1.4.

The form φ is anisotropic.

Proof

By Lemma 1.2, it is sufficient to prove that $\langle a, b, -ab, cd, -c, -d \rangle$ is anisotropic over $L := k(a, b, c, d)$. Take $F := k(a, b)$. Then evidently $\langle a, b \rangle$ is anisotropic over F. By Lemma 1.3 we get what we need.

Proposition 1.1 is proven.

2. The Main Theorem

Main Theorem.

Let φ is anisotropic generalized Albert form of dimension $6 \cdot 2^r$ over the field k of characteristic 0. Then $\text{Tors. CH}^{2^r+1}(X_{\varphi}) \neq 0$.

Combining the Main Theorem with Proposition 1.1, we get:

Corollary 2.1.

Conjecture 2 is wrong.

Proof of the Main Theorem

Since φ is anisotropic generalized Albert form of dimension $6 \cdot 2^r$, we have: $\varphi = \rho \times \langle x_1, \ldots, x_r \rangle$, where $\rho = \langle a, b, -ab, -c, -d, cd \rangle$ is
6-dimensional Albert form, and \(\langle x_1, \ldots, x_r \rangle \) is some Pfister form (see [1]).

Denote \(\psi := \langle a, b, -ab, -c, -d \rangle \times \langle x_1, \ldots, x_r \rangle \). Then \((\varphi, \psi)\) is a special pair of Izhboldin (see [3], Section 9), and by condition, it is an anisotropic special pair.

By [3], Theorem 9.4 (3), we have that \(\psi|_{k(\varphi)} \) is anisotropic Pfister neighbor, i.e., it is proportional to a subform (of dimension more than half) of anisotropic Pfister form \(\pi \). This Pfister form corresponds to a nontrivial pure symbol \(\alpha \) in \(K_{r+3}^M(k(\varphi))/2 \). Under the natural map \(K_{r+3}^M(k(\varphi))/2 \to H^*_e(k(\varphi), \mathbb{Z}/2) \) (which is an isomorphism by “Milnor’s conjecture” - see [17]), \(\alpha \) goes to the nontrivial element \(e^{r+3}(\text{Pf}(\psi|_{k(\varphi)})) \) of \(H^{r+3}_e(k(\varphi), \mathbb{Z}/2) \) (we are following the notations of [3], Lemma 7.4). By [3], Corollary 7.3, \(e^{r+3}(\text{Pf}(\psi|_{k(\varphi)})) \) actually belongs to the unramified part: \(H^{r+3}_{nr}(k(\varphi))/k, \mathbb{Z}/2 \) of \(H^{r+3}_e(k(\varphi), \mathbb{Z}/2) \).

We have natural map: \(\eta_2^* : H^*_e(k, \mathbb{Z}/2) \to H^*_e(k(\varphi), \mathbb{Z}/2) \). Let us denote \(\bar{H}^{r+3}_{nr}(k(\varphi))/k, \mathbb{Z}/2) = H^*_e(k(\varphi), \mathbb{Z}/2)/\text{image}(\eta_2^*). \) For arbitrary element \(x \) from \(H^*_e(k(\varphi), \mathbb{Z}/2) \), we denote it’s image in \(\bar{H}^{r+3}_{nr}(k(\varphi))/k, \mathbb{Z}/2) \) as \(\bar{x} \).

Proposition 2.2 (cf. [3], Lemma 10.5, Lemma 7.4).

Under the above notations, \(e^{r+3}(\text{Pf}(\psi|_{k(\varphi)})) \) is nonzero.

Proof

Suppose, \(\bar{e}^{r+3}(\text{Pf}(\psi|_{k(\varphi)})) = 0 \). That means that \(e^{r+3}(\text{Pf}(\psi|_{k(\varphi)})) = \eta_2^{r+3}(\lambda) \) for some \(\lambda \in H^{r+3}_e(k, \mathbb{Z}/2). \) By the results of V.Voevodsky, we have the natural identification:

\[
K_{r+3}^M(k)/2 = H^{r+3}_e(k, \mathbb{Z}/2) = I^{r+3}(W(k))/I^{r+4}(W(k)),
\]

where \(I \subseteq W(k) \) is the ideal of even-dimensional form in the Witt-ring \(W(k) \) (see [17] and [11], Section 3.1). So, there exists quadratic form \(q \subseteq I^{r+3}(W(k))/I^{r+4}(W(k)) \), s.t. \(\mathfrak{q} \in I^{r+3}(W(k))/I^{r+4}(W(k)) \) corresponds to \(\lambda \) under the identifications above. By “J-filtration Conjecture” we have \(I^{r+3}(W(k)) = J^{r+3}(W(k)) \) (see [11], Section 3.3, Statement 2). That means that the degree (see [9]) of \(q \) is \(r + 3 \), and there exists a Generalized Splitting Tower of Manfred Knebusch (see [9]) \(k = k_0 \subset k_1 \subset \cdots \subset k_{s-2} \subset k_s \), s.t. for all \(0 \leq l \leq s-2, k_{l+1} = k_l(Q_l) \), where \(Q_l \) is quadric (over \(k_l \)) of dimension greater than \(2^{r+3} - 2 \), and \((q|_{k_{s-1}})_{\text{anis.}} \) is proportional to anisotropic \(r + 3 \)-fold Pfister form over \(k_{s-1} \). That means that \(\mathfrak{q}|_{k_{s-1}} = \lambda|_{k_{s-1}} \in K_{r+3}^M(k_{s-1})/2 \) is a nonzero pure symbol.

Since \(\dim(q_l) > 2^{r+3} > 6 \cdot 2^r = \dim(\varphi) \), by the result of Detlew Hoffmann (see [2], Theorem 1), we have that \(\varphi|_{k_{s-1}} \) is anisotropic.
Let us denote $F := k_{s-1}$. We have: $\varphi|_F$ is anisotropic, and (if you want, again by [3], Theorem 9.4 (3)) $\psi|_{F(X_\varphi)}$ is a neighbor of anisotropic Pfister form $\langle \lambda|_F \rangle|_{F(X_\varphi)}$ (notice that $\lambda|_F$ is a pure symbol). In particular, $\lambda|_{F(X_\varphi)} = 0$. Since $\psi \subset \varphi$, we have $\lambda|_{F(X_\varphi)} = 0$. That means that $\psi|_F$ is a Pfister neighbour of $\langle \lambda|_F \rangle$ By [3], Lemma 9.4 (2), we get: $\varphi|_F$ is isotropic - a contradiction. So, $\hat{\varphi}^{r+3}(\Pf(\psi|_{k(X_\varphi)})) \neq 0$

Let $\gamma := \hat{\varphi}^{r+3}(\Pf(\psi|_{k(X_\varphi)})) \in \text{He}_{nr}^{r+3}(k(X_\varphi)/k; \mathbb{Z}/2)$. By Proposition 2.2 , $\gamma \neq 0$.

Together with the map $\eta^m_2 : H_{et.}^m(k, \mathbb{Z}/2) \rightarrow H_{nr}^m(k(X_\varphi)/k, \mathbb{Z}/2)$ we can consider the map: $\eta^m : H_{et.}^m(k, \mathbb{Q}/\mathbb{Z}(m-1)) \rightarrow H_{nr}^m(k(X_\varphi)/k, \mathbb{Q}/\mathbb{Z}(m-1))$.

From [5], Theorem 7.4 and Remark after it (and from “Milnor’s conjecture”, see [17]), we have an exact sequence:

$$0 \rightarrow (\text{Ker}(\eta^m_2))_0 \rightarrow \text{coker}(\eta^m_2) \rightarrow \text{coker}(\eta^m),$$

where $(\text{Ker}(\eta^m_2))_0 = \{ y \in \text{Ker}(\eta^m_2) \mid \{-1\} \cdot y = 0 \}$.

Lemma 2.3 .

The group $\text{Ker}(\eta^{r+3}_2) : H_{et.}^{r+3}(k, \mathbb{Z}/2) \rightarrow H_{nr.}^{r+3}(k(X_\varphi)/k, \mathbb{Z}/2)$ is zero. Consequently, $(\text{Ker}(\eta^{r+3}_2))_0 = 0$.

Proof

Suppose, our Ker is nontrivial. Since $H_{nr}^{r+3}(k(X_\varphi)/k, \mathbb{Z}/2)$ is a subgroup in $H_{et.}^{r+3}(k(X_\varphi), \mathbb{Z}/2)$, in this case we get a nontrivial element $h \in \text{Ker}(H_{et.}^{r+3}(k, \mathbb{Z}/2) \rightarrow H_{et.}^{r+3}(k(X_\varphi), \mathbb{Z}/2)$.

By [11], Lemma from Section 3, there exists field extension L/k, s.t. $h|_L$ is nonzero pure symbol $\{a_1, \ldots, a_{r+3}\}$ for some $a_i \in L$. Then $\varphi|_L$ (up to coefficient) is a subform in the anisotropic Pfister form $\langle a_1, \ldots, a_{r+3} \rangle$. Suppose ρ is a complementary form, i.e.: $\varphi|_L \perp \rho = \langle a_1, \ldots, a_{r+3} \rangle$.

Since $\varphi|_L \in I^{r+2}(W(L))$ and $\langle a_1, \ldots, a_{r+3} \rangle \in I^{r+3}(W(L))$, we have that $\rho \in I^{r+2}(W(L))$. But, the dim(ρ) = $2^{r+3} - 6 \cdot 2^r = 2^{r+1} < 2^{r+2}$ - contradiction.

So, we have an exact sequence:

$$0 \rightarrow \text{coker}(\eta^{r+3}_2) \rightarrow \text{coker}(\eta^{r+3}).$$

Lemma 2.4 .

Let X be arbitrary quadric, then $\text{coker}(\eta^m_{Q(p)/Z(p)}) : H_{et.}^m(k, \mathbb{Q}(p)/\mathbb{Z}(p)) \rightarrow H_{nr.}^m(k(X), \mathbb{Q}(p)/\mathbb{Z}(p))) = 0$ for any $p \neq 2$ and any m.

Proof
Let Spec$(L) \subset X$ be arbitrary point on our quadric. Since $X_{\varphi}|L$ is isotropic, it is birationally equivalent to projective space, and hence, $\text{coker}(\eta^m_A : H^m_{\text{et}}(L, A) \to H^m_{\text{nr}}(L(X), A)) = 0$ for any group of coefficients A (see [12], 12.10, 7.3). Since Q_r/F is uniquely 2-divisible, by transfer arguments, we have that $\text{coker}(\eta^m_{Q_r/F} : H^m_{\text{et}}(k, Q_r/F) \to H^m_{\text{nr}}(k(X), Q_r/F)) = 0$.

The above Lemma shows:

\[\text{coker}(\eta^{r+3}) = \text{coker}(\eta^{r+3}_{Q(2)/Z(2)} : H^{r+3}_{\text{et}}(k, Q(2)/Z(2)) \to H^{r+3}_{\text{nr}}(k(X), Q(2)/Z(2))). \]

In this light, we will denote $\eta^{r+3}_{Q(2)/Z(2)}$ simply as η^{r+3}.

In [4] B.Kahn interpreted $\text{coker}(\eta^{r+3})$ in terms of motivic cohomology, see [4], Theorem A.1: there is an exact sequence:

\[0 \to \text{coker}(\eta^{r+3}) \to H^{r+5}_{B}(X_{\varphi}, Z(2)(r + 2)), \]

where X_{φ} is a standard simplicial scheme, corresponding to the morphism $X_{\varphi} \to \text{Spec}(k)$ (see, for example, [14], Definition 2.3.1), and $H^{r+5}_{B}(X_{\varphi}, Z(2)(r + 2)) = \text{Hom}_{DM_{\text{eff}}}(M(X_{\varphi}), Z(2)(r + 2)[r + 5])$ - the Hom-group in the triangulated category of mixed motives of V.Voevodsky, where Z by definition is the motive of a point ($M(\text{Spec}(k))$).

Remark Notice the discrepancy in the notations for η^{m} in [4] in comparison to [5] (where it coincides with our notation). η^{m} in [4] corresponds to η^{m+1} in [5].

This shows, that we have an exact sequence:

\[0 \to \text{coker}(\eta^{r+3}) \to \text{Hom}_{DM_{\text{eff}}}(M(X_{\varphi}), Z(2)(r + 2)[r + 5]). \]

Since we have a nontrivial element γ in $\text{coker}(\eta^{r+3})$, its image $\gamma' \in \text{Hom}_{DM_{\text{eff}}}(M(X_{\varphi}), Z(2)(r + 2)[r + 5])$ will also be nontrivial.

Using the fact that $\text{Hom}_{DM_{\text{eff}}}(M(\text{Spec}(L)), Z(i)[j]) = 0$ for $j > i$, where L is a field (see [17], Corollary 2.3), and the fact that $M(X_{\varphi})|L = M(\text{Spec}(L))$ for any point $\text{Spec}(L) \subset X_{\varphi}$ on a quadric (see [17], Lemma 3.8, or [14], Theorem 2.3.4), by usual transfer arguments we have that the groups $\text{Hom}_{DM_{\text{eff}}}(M(X_{\varphi}), Z(2)(i)[j])$ have exponent 2 for $j > i$. That means, that we have an embedding: $\text{Hom}_{DM_{\text{eff}}}(M(X_{\varphi}), Z(2)(r + 2)[r + 5]) \to \text{Hom}_{DM_{\text{eff}}}(M(X_{\varphi}), Z/2(r + 2)[r + 5])$. Let γ'' be the image of γ' under this map. We have: $\gamma'' \neq 0$.

From this point we will drop subscript DM_{eff} from Hom, and $M(-)$.

Together with X_{φ} we can consider $\tilde{X}_{\varphi} := \text{Cone}[1](pr : X_{\varphi} \to Z)$, where pr is induced by the natural projection $X_{\varphi} \to \text{Spec}(k)$.
Now, we can use Voevodsky’s cohomological operations.

We have cohomological operations Q_i of bidegree $(2^i - 1)[2^{i+1} - 1]$, s.t. Q_i is a differential (it’s square is zero), and for quadric X of dimension greater or equal $2^m - 1$, Q_m acts without cohomology on $\text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(*)[*]))$ (see [17], Theorem 3.17, Theorem 3.25 and Lemma 4.11 (notice that in the proof of the later no specific of Pfister case is used))

In particular, in our case, Q_1, \ldots, Q_{r+2} will act without cohomology on $\text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(*)[*]))$.

Since $\text{Hom}(\mathbb{Z}, \mathbb{Z}/(2(i)[j]) = 0$ for $j > i$ (see [17], Corollary 2.3), we can identify $\text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(i)[j])$ with $\text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(i)[j])$ if $j > i$.

Below we will deal only with such cohomology ($j > i$), so, we will use \mathcal{X}_X, instead of \mathcal{X}_X.

Let us consider $Q_{r-1} \circ Q_{r-2} \circ \cdots \circ Q_1(\gamma'')$.

Lemma 2.5.

$Q_{r-1} \circ Q_{r-2} \circ \cdots \circ Q_1(\gamma'') \neq 0$.

Proof

Suppose that $Q_{r-1} \circ Q_{r-2} \circ \cdots \circ Q_1(\gamma'') = 0$. Then there exists such $0 \leq i \leq r - 2$, that $Q_i \circ \ldots \circ Q_1(\gamma'') = 0$, but $Q_{i+1} \circ \ldots \circ Q_1(\gamma'') = 0$.

Since Q_j has bidegree $(2^j - 1)[2^{j+1} - 1]$ (see [17], Theorem 3.17), we have: $y := Q_i \circ \ldots \circ Q_1(\gamma'') \in \text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(r - i + 2^{i+1})[r - i + 2^{i+2} + 1])$. Since $Q_{i+1}(y) = 0$ and Q_{i+1} acts without cohomology on $\text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(*)[*]))$, we have that there exists $z \in \text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(r - i + 1)[r - i + 2]))$, s.t. $y = Q_{i+1}(z)$.

By [16], Lemma 6.4, [17], Theorem 4.1 (see also [4], Theorem A.1), we have an identification of $\text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(r - i + 1)[r - i + 2])$ with the $\text{Ker}(\mathbb{K}_r \rightarrow \mathbb{K}_r)$.

Since $\dim(\mathcal{X}_X) = 6 \cdot 2^r > 2^{r+2}$ we have by “Kahn-Rost-Sujatha Conjecture” (see [11], Statement 1 from Section 3.2) that $\text{Ker}(\mathbb{K}_r \rightarrow \mathbb{K}_r(k(\mathcal{X}_X))/2) = 0$. We get a contradiction. So, $Q_{r-1} \circ Q_{r-2} \circ \cdots \circ Q_1(\gamma'') \neq 0$.

So, we get a nontrivial element $u := Q_{r-1} \circ Q_{r-2} \circ \cdots \circ Q_1(\gamma'') \in \text{Hom}(\mathcal{X}_X, \mathbb{Z}/(2(r + 1)[r + 2])$.

Since γ'' came from cohomology group with \mathbb{Z}_2 coefficients, and $Q_i = [\beta, q_i]$ for some operation q_i (β here is a Bockstein morphism) (see [17], Theorem 3.17(3)), we have that there exists $v \in \text{Hom}(\mathcal{X}_X, \mathbb{Z}(2^r + 1)[2^{r+1} + 2])$ s.t. $v = u$.

The main conclusion is:

Lemma 2.6.
The group $\text{Hom}(\mathcal{X}_{X_\varphi}, \mathbb{Z}(2^r + 1)[2^{r+1} + 2])$ is nontrivial.

Now, we need to relate the motivic cohomology of \mathcal{X}_{X_φ} and those of X_φ. Let X_φ^j be (as usually) the variety of j-dimensional projective spaces on X_φ. By [14], Theorem 4.1, the motive $M(X_\varphi)$ of X_φ decomposes as: $M(X_\varphi) = \bigoplus_{i=0, \ldots, 2^r + 1} F_\alpha(X_\varphi)(i)[2i]$, where $\alpha := \{x_1, \ldots, x_r\} \in K^M_r(k)/2$, and $F_\alpha(X_\varphi)$ is so-called higher form of 4-dimensional quadric X_φ, and $F_\alpha(X_\varphi)$ is an extension (in $\text{DM}^{-}_{\text{eff}}(k)$) of $M(X_\varphi)$, $M(\mathcal{X}_{X_\varphi}^r)(2^r)[2^{r+1}]$, $M(\mathcal{X}_{X_\varphi}^{r+1})(2^r)[2^{r+1}]$, $M(\mathcal{X}_{X_\varphi}^r)(3 \cdot 2^r - 1)[3 \cdot 2^{r+1} - 2]$, $M(\mathcal{X}_{X_\varphi}^r)(4 \cdot 2^r - 1)[4 \cdot 2^{r+1} - 2]$ and $M(\mathcal{X}_{X_\varphi}^r)(5 \cdot 2^r - 1)[5 \cdot 2^{r+1} - 2]$.

More precisely, there exists the following diagram in $\text{DM}^{-}_{\text{eff}}(k)$ (we drop $M(\cdot)$ from the notations):

\[
\begin{array}{ccc}
\mathcal{X}_{X_\varphi} & \mathcal{X}_{X_\varphi}^r(2^r)[2^{r+1}] & \mathcal{X}_{X_\varphi}(5 \cdot 2^r - 1)[5 \cdot 2^{r+1} - 2] \\
\nearrow \bullet[1] & \nearrow \star[1] \\
Y_1 & Y_2 & \ldots & Y_5 & 0 \\
F_\alpha(X_\varphi) & Y_1 & Y_2 & \ldots & Y_5 & Z_1 & \ldots & Z_5
\end{array}
\]

(see [14], Lemma 3.23, Theorem 3.1, and use octahedron axiom).

In particular, we have an exact sequences:

$$
\text{Hom}(F_\alpha(X_\varphi), \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow \text{Hom}(\mathcal{X}_{X_\varphi}, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow \text{Hom}(Y_1, \mathbb{Z}(2^r + 1)[2^{r+1} + 1]).
$$

and

$$
\text{Hom}(Y_2, \mathbb{Z}(2^r + 1)[2^{r+1} + 1]) \leftarrow \text{Hom}(Y_1, \mathbb{Z}(2^r + 1)[2^{r+1} + 1]) \leftarrow \text{Hom}(\mathcal{X}_{X_\varphi}^r(2^r)[2^{r+1}], \mathbb{Z}(2^r + 1)[2^{r+1} + 1]) \leftarrow \text{Hom}(Y_2, \mathbb{Z}(2^r + 1)[2^{r+1} + 1]).
$$

Notice, that Y_2 is an extension of some $\mathcal{X}_P(j)[2j]$, where P are smooth projective varieties and $j \geq 2^{r+1} > 2^r + 1$. By [17], Corollary 2.2(1), we have: $\text{Hom}(Y_2, \mathbb{Z}(2^r + 1)[*]) = 0$ and, consequently, $\text{Hom}(Y_1, \mathbb{Z}(2^r + 1)[2^{r+1} + 1]) = \text{Hom}(\mathcal{X}_{X_\varphi}^r(2^r)[2^{r+1}], \mathbb{Z}(2^r + 1)[2^{r+1} + 1])$, and the later group is equal to: $\text{Hom}(\mathcal{X}_{X_\varphi}^r, \mathbb{Z}(1)[1])$.

So, we have an exact sequence:

$$
\text{Hom}(F_\alpha(X_\varphi), \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow \text{Hom}(\mathcal{X}_{X_\varphi}, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow \text{Hom}(\mathcal{X}_{X_\varphi}^r, \mathbb{Z}(1)[1]),
$$

where the last map is induced by the map $f : \mathcal{X}_{X_\varphi} \to \mathcal{X}_{X_\varphi}^r(2^r)[2^{r+1} + 1]$, which is the composition: $\mathcal{X}_{X_\varphi} \to Y_1[1] \to \mathcal{X}_{X_\varphi}^r(2^r)[2^{r+1} + 1]$ in the diagram above.
By [13], Corollary 3.2.1, Hom($\mathcal{X}_{\mathcal{X}_X^{2r}}$, $Z(1)[1]$) = $H^0(\mathcal{X}_{\mathcal{X}_X^{2r}}, \mathcal{O}^*) = H^0(\text{Spec}(k), \mathcal{O}^*) = \text{Hom}(\mathbb{Z}, \mathbb{Z}(1)[1])$, and this isomorphism is induced by projection $pr: \mathcal{X}_{\mathcal{X}_X^{2r}} \rightarrow \mathbb{Z}$ (as usually, I'm dropping $M(-)$).

So, we get an exact sequence:

$$\text{Hom}(F_\alpha(X_\rho), \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow \text{Hom}(\mathcal{X}_{\mathcal{X}_X^{2r}}, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow \text{Hom}(\mathbb{Z}, \mathbb{Z}(1)[1]),$$

where the last map is induced by the composition

$$g: \mathcal{X}_{\mathcal{X}_X^{2r}} \rightarrow \mathcal{X}_{\mathcal{X}_X^{2r}}(2^r)[2^{r+1} + 1] \xrightarrow{pr(2^r)[2^{r+1} + 1]} \mathbb{Z}(2^r + 1)[2^{r+1} + 1].$$

Lemma 2.7.

\[g = 0 \]

\[\text{Proof} \]

By the very construction of the diagram above - see [14], the proof of Theorem 3.1, the composition $Y_1[1] \rightarrow \mathcal{X}_{\mathcal{X}_X^{2r}}(2^r)[2^{r+1} + 1] \rightarrow \mathbb{Z}(2^r)[2^{r+1} + 1]$ equals the composition: $Y_1[1] \rightarrow F_\alpha(X_\rho)[1] \rightarrow X_\varphi[1] \xrightarrow{\alpha_{2r}[1]} \mathbb{Z}(2^r)[2^{r+1} + 1]$, where $\alpha_{2r} \in \text{Hom}(X_\varphi, \mathbb{Z}(2^r)[2^{r+1}]) = CH^{2^r}(X_\varphi)$ is given by the class of a plane section of codimension 2^r. Hence, $g = 0$.

Now, we can finish the proof of the Main Theorem.

From Lemma 2.7 it follows that the map: Hom($\mathcal{X}_{\mathcal{X}_X^{2r}}, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]$) \leftarrow Hom($\mathbb{Z}, \mathbb{Z}(1)[1]$) is trivial. And we have an exact sequence:

$$\text{Hom}(F_\alpha(X_\rho), \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow \text{Hom}(\mathcal{X}_{\mathcal{X}_X^{2r}}, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow 0$$

Since $F_\alpha(X_\rho)$ is a direct summand in the motive of X_φ, we have (by above) an exact sequence:

$$\text{Hom}(X_\varphi, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow \text{Hom}(\mathcal{X}_{\mathcal{X}_X^{2r}}, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]) \leftarrow 0$$

By Lemma 2.6, the group Hom($\mathcal{X}_{\mathcal{X}_X^{2r}}, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]$) is nontrivial, on the other hand it has exponent 2 (since $2^{r+1} + 2 > 2^r + 1$). That means that the group Hom($X_\varphi, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]$) contains a torsion element of exponent 2.

By [15], Theorem 4.2.9, we have: Hom($X_\varphi, \mathbb{Z}(2^r + 1)[2^{r+1} + 2]$) = $CH^{2^r+1}(X_\varphi)$. The Main Theorem is proven.
References