On the kernels in Milnor's K-theory under function field extensions

A. Vishik

March 30, 1998

Contents

0	Introduction	1
1	Universal symbol	2
2	Pure part of the kernel	4

0 Introduction

In this paper we will consider the following question:

Question 1.

Let k be a field of characteristic different from 2, and Q/k be some quadric.

Is it true, that the ideal $\operatorname{Ker}_Q := \operatorname{Ker}(\operatorname{K}^M_*(k)/2 \to \operatorname{K}^M_*(k(Q))/2)$ in $\operatorname{K}^M_*(k)/2$ is generated by pure symbols ?

The answer to our question is known to be positive in the case Q - *Pfister* neighbour (i.e.: a subquadric of dimension more or equal than half in a big *Pfister quadric*) by [6], and for 2-dimensional non-Pfister quadric by [8].

The positive answer to our question would imply the following:

1) Conjecture of B.Kahn, M.Rost and R.J.Sujatha (see Conjecture 1 of the original version of [3], where authors asked basically the same question about the low degree part of the kernel).

2) The fact that any *conservative* quadric (i.e. such quadric, for which the

kernel above is nontrivial) is a subquadric in a big Pfister quadric. 3) The fact, that if some quadric Q is a normvariety for some $h \in K_m^M(k)/2$, then h is a pure symbol. From this, on it's part, follows nice motivic description of excellent quadrics.

We will show, that our question is equivalent to the fact that Ker_Q , considered as a *cyclic module* of M.Rost (see [7]) is generated by one precisely described *pure* symbol. So, in the case of positive answer to the question we would have explicit description of the Ker_Q ; and we have such a description for the *pure* part of the kernel unconditionally.

I would like to thank Yuri Ivanovich Manin for helpful remarks to the original version of the paper. Also I'm grateful to Max-Planck Institut für Mathematik for supporting me during the writing of this work.

1 Universal symbol

In this section we will show, that for arbitrary quadric Q/k there exists some purely transcendental extension $k(A_Q)/k$, and some *pure* symbol $\alpha_Q \in K^M_*(k(A_Q))/2$, s.t. for arbitrary field extension E/k, our quadric Q has Epoint if and only if $\alpha_Q|_{E(A_Q)} = 0$.

Statement 2.

Suppose we have complete flag F of quadrics $Q_0 \subset Q_1 \subset \cdots \subset Q_n = Q$, where $n = \dim(Q)$.

Then there exists purely transcendental field extension $k(A_F)/k$, and a pure symbol $\{y_0, \ldots, y_n\} \in \mathcal{K}_{n+1}^M(k(A_F))/2$, s.t. for arbitrary field extension E/k, Q_i has E-point if and only if $\{y_0, \ldots, y_i\}|_{E(A_F)} = 0$.

Proof

Induction on the dimension of Q.

1) $q = \langle 1, -a_0 \rangle$. Evidently, $\alpha_{k\sqrt{a_0}} = \{a_0\} \in \mathrm{K}_1^M(k)/2$ will have desired property.

2) Let now $q_i = \langle 1, -a_0, \ldots, -a_i \rangle$, and F' is a flag: $Q_0 \subset \cdots \subset Q_{n-1}$. By inductive assumption: we have $\alpha_{F'} = \{y_0, \ldots, y_{n-1}\} \in \mathcal{K}_n^M(k(A_{F'}))/2$, which has desired property with respect to F'.

In particular $\alpha_{F'}|_{k(Q_{n-1})(A_{F'})} = 0$ (Since over $k(Q_{n-1})$ Q_{n-1} has a point). By the "Third representation theorem" (see [5], IX, Theorem 2.8) this means, that $q_{n-1}|_{k(A_{F'})}$ is similar to a subform of $\langle \langle y_0, \ldots, y_{n-1} \rangle \rangle$, and since q_{n-1} represents 1, it is a subform itself. We have: $q_{n-1}|_{k(A_{F'})} \perp q'' = \langle \langle y_0, \ldots, y_{n-1} \rangle \rangle$, where q'' is some form, defined over $k(A_{F'})$.

From this: if for some field extension E/k, $\{y_0, \ldots, y_{n-1}\} \neq 0$ (as an element of $K_n^M(E(A_{F'}))/2$), then the following four conditions are equivalent: a) $q|_E$ - is isotropic.

b) $q|_{E(A_{F'})}$ - is isotropic.

c) $(\langle\!\langle y_0, \ldots, y_{n-1}\rangle\!\rangle \perp -(q'' \perp \langle a_n \rangle))|_{E(A_{F'})}$ is dim(q'') + 1-times isotropic. d) $(q'' \perp \langle a_n \rangle)|_{E(A_{F'})}$ - is a subform in $\langle\!\langle y_0, \ldots, y_{n-1}\rangle\!\rangle|_{E(A_{Q'})}$.

By the "Third representation theorem" (see [5], IX, Theorem 2.8) the last condition is equivalent to the fact: $\langle \langle y_0, \ldots, y_{n-1} \rangle \rangle |_{E(A_{F'})(V_{q'' \perp \langle a_n \rangle})}$ represents the "generic value" $(q'' \perp \langle a_n \rangle)(\mathfrak{v})$, where $V_{q'' \perp \langle a_n \rangle}$ is the underlying $k(A_{F'})$ vector space of quadratic form $q'' \perp \langle a_n \rangle$ (defined over that field), and \mathfrak{v} - coordinates in $V_{q'' \perp \langle a_n \rangle}$. And this is equivalent to: $\{y_0, \ldots, y_{n-1}, (q'' \perp \langle a_n \rangle)(\mathfrak{v})\} = 0 \in K_n^M(E(A_{F'})(V_{q'' \perp \langle a_n \rangle}))/2.$

Put: $\alpha_F = \{y_0, \ldots, y_{n-1}, (q'' \perp \langle a_n \rangle)(\mathfrak{v})\}, \text{ and } k(A_F) = k(A_{F'})(V_{q'' \perp \langle a_n \rangle}).$

If $\{y_0, \ldots, y_{n-1}\}|_{E(A_{F'})} \neq 0$, then we already proved that Q_E has a point if and only if $\alpha_F|_{E(A_F)} = 0$.

If $\{y_0, \ldots, y_{n-1}\}|_{E(A_{F'})} = 0$, then $Q_{n-1} \subset Q$ has a rational point over E, and, on the other hand, trivially, $\alpha_F|_{E(A_F)} = 0$.

Corollary 3. All anisotropic quadrics are stably embedable, i.e., for each such quadric Q/k there exists purely transcendental extension $k(A_Q)$, s.t. $Q|_{k(A_Q)} \subset Q_{\alpha}$, where $Q_{\alpha}/k(A_Q)$ is Pfister quadric.

Proof

In the previous statement take: E = k(Q), $k(A_Q) = k(A_F)$ and $\alpha = \alpha_F$ for some full flag F of subquadrics in Q. Then since $Q|_{k(Q)}$ is isotropic, we have: $\alpha_Q|_{k(A_Q)(Q)} = 0$. So, $\alpha \in K_{n+1}^M(k(A_Q))$ is a nontrivial representative of the kernel. And $Q|_{k(A_Q)}$ is a subquadric in Q_{α_Q} .

Corollary 4.

For anisotropic quadric Q, and some quadric R we have, that $Q|_{k(R)}$ is isotropic if and only if $R|_{k(A_Q)}$ is a subquadric in a Pfister quadric Q_{α_Q} .

Remark By the result of D.W.Hoffmann, $Q|_{k(R)}$ is anisotropic if dim $(R) \ge 2^k - 1 > \dim(Q)$ (for some k) (see [2], Theorem 1).

This shows, that Q_{α_Q} does not contain subquadrics of big dimension defined over k.

Corollary 5.

Let Q, R be quadrics over k, and $\dim(Q) = \dim(R) = n$. Let Q^i (resp. R^i) be variety of *i*-dimensional projective planes on Q (resp R).

Then the following is equivalent:

(1) M(Q) = M(R), where M(X) is a Chow motive of X.

(2) $\forall 0 \leq i \leq [n/2], \forall E/k \text{ - field extension, } \operatorname{Ker}(\operatorname{K}^{M}_{*}(E)/2 \to \operatorname{K}^{M}_{*}(E(Q^{i}))/2) = \operatorname{Ker}(\operatorname{K}^{M}_{*}(E)/2 \to \operatorname{K}^{M}_{*}(E(R^{i}))/2).$

Proof

By [8], Proposition 5.1 we have: (1) \Leftrightarrow Universal splitting towers of M.Knebusch for Q and R are equivalent (see [4], or [8], Definition 2.4.19).

That is: $M(Q) = M(R) \Leftrightarrow \forall 0 \le i \le [n/2], Q^i$ has a rational point over $k(R^i)$, and R^i has a rational point over $k(Q^i)$.

So, evidently, $(1) \Rightarrow (2)$. And to prove the opposite conclusion, it is enough to show, that if $\operatorname{Ker}(\operatorname{K}^{M}_{*}(E)/2 \to \operatorname{K}^{M}_{*}(E(Q))/2) = \operatorname{Ker}(\operatorname{K}^{M}_{*}(E)/2 \to \operatorname{K}^{M}_{*}(E(R))/2), \forall E/k$, then Q has a rational point over k(R) and R has a rational point over k(Q) (the case of arbitrary $0 \leq i \leq \lfloor n/2 \rfloor$ can be easily obtained from this).

Take $E = k(Q)(A_R)$ (notations as above).

Then $\operatorname{Ker}(\operatorname{K}^{M}_{*}(E)/2 \to \operatorname{K}^{M}_{*}(E(Q))/2) = 0$. Hence the second kernel is zero as well, and so, $\alpha_{R}|_{k(Q)(A_{R})} = 0 \in \operatorname{K}^{M}_{*}(E)/2$. By Statement 2, R has a rational point over k(Q). Similarly, Q has a rational point over k(R).

Remark If M(Q) or M(R) is undecomposable, then in (2) it is enough to consider only i = 0 (see [8], Corollary 3.15).

2 Pure part of the kernel

In this section we will show that for arbitrary quadric Q/k the set of *pure* symbols in Ker($K^M_*(k)/2 \to K^M_*(k(Q))/2$) is generated (under the action of the semigroup of *pure* symbols from $K^M_*(k)/2$) by the *specializations* of one element $\alpha_Q \in K^M_{n+1}(k(A_Q))$, where α_Q can be taken as α_F for some flag F (and $k(A_Q)$ as $k(A_F)$).

Let me remind (see [7]), that the *cyclic module* over k is a collection of \mathbb{Z} -graded abelian groups M(E), where E runs through all finitely generated field extensions E/k, which are connected by the following operations:

(1) For any φ : Spec $(E) \to$ Spec(F) over k, the homomorphism $\varphi^* : M(F) \to M(E)$ of degree 0 ("pull-back").

(2) For any finite morphism $\varphi : \operatorname{Spec}(E) \to \operatorname{Spec}(F)$ over k, the homomorphism $\varphi_* : M(E) \to M(F)$ of degree 0 ("push-forward").

(3) For any F/k, M(F) has a structure of $K^M_*(F)$ -module, which respects grading on both objects.

(4) For a discrete valuation \mathfrak{v} on F/k, there is the homomorphism $\partial_{\mathfrak{v}}$: $M(F) \to M(k(\mathfrak{v}))$ of degree -1 ("derivation").

All this data should satisfy natural compatibility rules (see [7], notice, that our notations are a bit different). Typical example is $M(E) = K_*^M(E)$.

It is not difficult to see, that $M(E) = \operatorname{Ker}_{Q|_E}$ will also be one (really, any submodule of *cyclic module*, closed under operations is a cyclic module; and for a cyclic module M, M' := M/r, where r is some fixed integer, is also a cyclic module).

Together with a derivation we can consider "specialization" map. Namely, if π is uniformizing parameter for \mathfrak{v} , then we have: $S_{\mathfrak{v}}^{\pi}: M(F) \to M(k(\mathfrak{v}))$ of degree 0, where $S_{\mathfrak{v}}^{\pi}(x) := \partial_{\mathfrak{v}}(\{-\pi\} \cdot x)$. If $\partial_{\mathfrak{v}}(x) = 0$, then $S_{\mathfrak{v}}^{\pi}(x)$ does not depend on the choice of π . If X is a smooth variety, and Spec(E) is a point on it, given by some \mathbb{Z}^r - valuation, then the composition $S_{\mathfrak{v}_r}^{\pi_r} \circ \cdots \circ S_{\mathfrak{v}_1}^{\pi_1}$ defines a specialization map from $M_{0,E}(k(X))$ to M(E), where $M_{0,E}(k(X)) :=$ $\operatorname{Ker}(M(k(X)) \xrightarrow{\partial_D} \bigoplus_{\operatorname{Spec}(E) \in D-div.of X} M(k(D)))$. This map does not depend on the choice of \mathbb{Z}^r - valuation, or on the uniformizers (see [7]). Notice, that the specialization map is a composition of maps of type (3) and (4).

Suppose we have a cyclic module M, some (finitely generated) field extension E/k, and some element $x \in M(E)$. Then it is natural to say, that cyclic submodule generated by x is the minimal cyclic submodule M_x of M, containing x. Since we know, that cyclic submodules are precisely submodules, closed under operations, we have $M_x(F)$ consists of those $y \in M(F)$, that y can be obtained from x using operations (1), (2), (3), (4). Similarly, we say, that submodule weakly generated by x is the minimal submodule (not nesessarily cyclic) M_x^w of M, closed under (1), (3) and (4).

Denote by PKer_Q the ideal in $\operatorname{K}^M_*(k)/2$, generated by *pure* symbols from Ker_Q . Also, we will denote the same way the corresponding submodule in $\operatorname{K}^M_*/2$: $\operatorname{PKer}_Q(E) := \operatorname{PKer}_{Q|_E}$.

Proposition 6.

PKer_Q coinsides with a submodule of $K_*^M/2$ weakly generated by α_Q . Proof As we know from Statement 2, $\alpha_Q \in \operatorname{PKer}_Q(k(A_Q))$. Also, it is clear, that operations (1) and (3) preserve PKer_Q .

Lemma 7.

Operation (4) (acting on K_*^M) maps pure symbols to pure ones. Proof

Really, for a valuation \boldsymbol{v} on a filed F, any *pure* symbol in F can be written as $\beta = \{\pi^{k_1} \cdot b_1, \ldots, \pi^{k_n} \cdot b_n\}$, where π is uniformizing parameter, and b_j 's are units for \boldsymbol{v} .

Applying the fact, that $\{\pi^k \cdot a, \pi^l \cdot b\} = \{\pi^k \cdot a, -\pi^{l-k} \cdot b/a\}$, we get, that $\beta = \{\pi^d \cdot c_1, c_2, \ldots, c_n\}$, where $d = g.c.d.(k_j; j = 1, \ldots, n)$, and c_m 's are units. Then $\partial_{\mathfrak{v}}(\beta) = \{c_2^d, c_3, \ldots, c_n\}$ is *pure*.

So, we have, that $(K^M_*/2)^w_{\alpha_Q} \subset PKer_Q$.

Before we prove the opposite inclusion, let us generalize a bit the construction of *Universal symbol*.

Suppose we have two quadratic forms $p' \subset p''$, full flag G of forms "between them": $p' = p_0 \subset p_1 \subset \cdots \subset p_s = p''$, where $\dim(p_{t+1}) - \dim(p_t) =$ 1, and an inclusion of p' into some Pfister form $\langle\!\langle \gamma \rangle\!\rangle$. Let $p_j = p_0 \perp$ $\langle -c_1, \ldots, -c_j \rangle$. For any $0 \leq j \leq t \leq s$, we will denote as $G^{[j,t]}$ the subflag $p_j \subset \cdots \subset p_t$.

Then we can construct some purely transcendental field extension $k(A_{G,\gamma})$, and some pure symbol $\alpha_{G,\gamma}$ in the following way.

Let $\langle\!\langle \gamma \rangle\!\rangle = p_0 \perp q_{G^{[0,0]},\gamma}$, then take: $k(A_{G^{[0,1]},\gamma}) := k(V_{q_{G^{[0,0]},\gamma} \perp \langle c_1 \rangle})$, and take $\alpha_{G^{[0,1]},\gamma} := \gamma \cdot \{q_{G^{[0,0]},\gamma} \perp \langle c_1 \rangle(\mathfrak{v})\}$, where $q_{G^{[0,0]},\gamma} \perp \langle c_1 \rangle(\mathfrak{v})$ is the generic value of $q_{G^{[0,0]},\gamma} \perp \langle c_1 \rangle$. We have: $p_1|_{k(A_{G^{[0,1]},\gamma})} \subset \langle\!\langle \alpha_{G^{[0,1]},\gamma} \rangle\!\rangle$.

Now, by definition, $k(A_{G^{[0,i+1]},\gamma}) := k(A_{G^{[0,i]},\gamma})(A_{G^{[i,i+1]},\alpha_{G^{[0,i]},\gamma}})$, and $\alpha_{G^{[0,i+1]},\gamma} := \alpha_{G^{[i,i+1]},\alpha_{G^{[0,i]},\gamma}}$. Also, by definition: $\langle\!\langle \alpha_{G^{[0,l]},\gamma} \rangle\!\rangle = p_l|_{k(A_{G^{[0,l]},\gamma})} \perp q_{G^{[0,l]},\gamma}$.

Let us return now to the proof of Proposition 6.

Suppose we have some *pure* symbol β in $\operatorname{Ker}(\operatorname{K}^{M}_{*}(k)/2 \to \operatorname{K}^{M}_{*}(k(Q))/2)$.

Let F be full flag of quadrics: $Q_0 \subset Q_1 \subset \cdots \subset Q_n = Q$, $q_i = \langle 1, -a_0, \ldots, -a_i \rangle$, which we used in the construction of $\alpha_Q = \alpha_F$. Notice, that $q_0 = \langle \langle a_0 \rangle \rangle$. Then it is easy to see, that $k(A_F) = k(A_{F,\{a_0\}})$, and $\alpha_F = \alpha_{F,\{a_0\}}$. We have $q_n = q \subset \langle \langle \beta \rangle \rangle$ for some $\beta \in K^M_*(k)/2$ (since q represents 1).

Take $\beta_{Q_0} := \{a_0\}$. We have: $q_0 \subset \langle\langle \beta_{Q_0} \rangle\rangle \subset \langle\langle \beta \rangle\rangle$.

Suppose $q_i \subset \langle\!\langle \beta_{Q_i} \rangle\!\rangle \subset \langle\!\langle \beta \rangle\!\rangle$, $deg(\beta_{Q_i}) = j$, then $deg(\alpha_{F^{[i,n]},\beta_{Q_i}}) = j + n - i$.

We have: $\alpha_{F^{[i,n]},\beta_{Q_i}} = \beta_{Q_i} \cdot \{y_{i+1},\ldots,y_n\}$, where y_l is a pull-back of $(q_{F^{[i,l-1]},\beta_{Q_i}} \perp \langle a_l \rangle)(\mathfrak{v}_l)$ to $k(A_{F^{[i,n]},\beta_{Q_i}})$.

Let $q_i \subset \langle\!\langle \beta_{Q_i} \rangle\!\rangle$, and $\langle\!\langle \beta_{Q_i} \rangle\!\rangle = q_i \perp q_{F^{[i,i]},\beta_{Q_i}}$. We have two possibilities: $1)q_{F^{[i,i]},\beta_{Q_i}} \perp \langle a_{i+1} \rangle$ is isotropic, i.e. there are t_0, z_0 , that $q_{F^{[i,i]},\beta_{Q_i}}(t_0) + a_{i+1}z_0^2 = 0$.

2) $q_{F^{[i,i]},\beta_{Q_i}} \perp \langle a_{i+1} \rangle$ is anisotropic.

1) In this case we have: divisor $y_{i+1} = 0$ on $A_{F^{[i,i+1]},\beta_{Q_i}} = V_{q_{F^{[i,i]},\beta_{Q_i}}} \bot \langle a_{i+1} \rangle$ has rational point (t_0, z_0) , and $q_{i+1} \subset \langle \langle \beta_{Q_i} \rangle \rangle$. So, we can construct $k(A_{F^{[i+1,n]},\beta_{Q_i}})$, and $\alpha_{F^{[i+1,n]},\beta_{Q_i}}$. Let $Y_{i+1} = 0$ be the preimage of the divisor $y_{i+1} = 0$ under the natural projection $A_{F^{[i,n]},\beta_{Q_i}} \to V_{q_{F^{[i,i]},\beta_{Q_i}}} \bot \langle a_{i+1} \rangle$.

Let p'_l be the specialization of $q_{F^{[i,l]},\beta_{Q_i}}$ over $k(A_{F^{[i,l]},\beta_{Q_i}})$ at the generic point E_l of the fiber of $A_{F^{[i,l]},\beta_{Q_i}}$ over the rational point (t_0, z_0) of $V_{q_{F^{[i,l]},\beta_{Q_i}} \perp \langle a_{i+1} \rangle}$.

Then E_l is naturally a purely transcendental extension of $k(A_{F^{[i+1,l]},\beta_{Q_i}})$, and if $j : \operatorname{Spec}(E_l) \to \operatorname{Spec}(k(A_{F^{[i+1,l]},\beta_{Q_i}}))$ is corresponding morphism, then we have: $j^*(q_{F^{[i+1,l]},\beta_{Q_i}})$ is a nondegenerate part of p'_l (it can be easily proved by induction on l).

Hence, $\alpha_{F^{[i+1,n]},\beta_{Q_i}} \in \mathcal{K}^M_{j+n-i-1}(k(A_{F^{[i+1,n]},\beta_{Q_i}}))/2$ is a specialization of the derivative $\partial_{Y_{i+1}=0}(\alpha_{F^{[i,n]},\beta_{Q_i}})$.

We can take $\beta_{Q_{i+1}} = \beta_{Q_i}$. Then $q_{i+1} \subset \langle\!\langle \beta_{Q_{i+1}} \rangle\!\rangle \subset \langle\!\langle \beta \rangle\!\rangle$.

2) We have: $q_i \subset \langle\!\langle \beta_{Q_i} \rangle\!\rangle \subset \langle\!\langle \beta \rangle\!\rangle$, and $q_i \subset q_{i+1} \subset \langle\!\langle \beta \rangle\!\rangle$. Since $q_{F^{[i,i]},\beta_{Q_i}} \perp \langle a_{i+1} \rangle$ is anisotropic, there exist some subform p of $\langle\!\langle \beta \rangle\!\rangle$ of dimension = $\dim(\langle\!\langle \beta_{Q_i} \rangle\!\rangle) + 1$, which contains both $\langle\!\langle \beta_{Q_i} \rangle\!\rangle$ and q_{i+1} . That means, that there exist (t_0, z_0) , s.t. $p = \langle\!\langle \beta_{Q_i} \rangle\!\rangle \perp \langle q_{F^{[i,i]},\beta_{Q_i}}(t_0) + a_{i+1}z_0^2 \rangle$.

Take: $\beta_{Q_{i+1}} := \beta_{Q_i} \cdot \{q_{F^{[i,i]},\beta_{Q_i}}(t_0) + a_{i+1}z_0^2\} \in \mathcal{K}_{j+1}^M(k)/2$. Then $q_{i+1} \subset \langle\!\langle \beta_{Q_{i+1}} \rangle\!\rangle \subset \langle\!\langle \beta \rangle\!\rangle$.

Evidently, $\beta_{Q_{i+1}}$ is a specialization of $\alpha_{F^{[i,i+1]},\beta_{Q_i}} \in \mathcal{K}^M_{j+1}(k(V_{q_{F^{[i,i]},\beta_{Q_i}} \perp \langle a_{i+1} \rangle}))/2$ at the rational point (t_0, z_0) .

Also, we have natural identification: $k(A_{F^{[i+1,l]},\beta_{Q_{i+1}}})$ with E_l , where E_l is defined precisely as in the case (1). Under this identification, $q_{F^{[i+1,l]},\beta_{Q_{i+1}}}$ is isomorphic to the specialization of $q_{F^{[i,l]},\beta_{Q_i}}$ at the generic point (E_l) of the fiber of the natural projection $A_{F^{[i,l]},\beta_{Q_i}} \to V_{q_{F^{[i,i]},\beta_{Q_i}} \perp \langle a_{i+1} \rangle}$ over the point (t_0, z_0) .

Hence, $\alpha_{F^{[i+1,n]},\beta_{Q_{i+1}}} \in K^{M}_{j+n-i}(k(A_{F^{[i+1,n]},\beta_{Q_{i+1}}}))/2$ is a specialization of $\alpha_{F^{[i,n]},\beta_{Q_{i}}} \in K^{M}_{j+n-i}(k(A_{F^{[i,n]},\beta_{Q_{i}}}))/2.$

Continuing this way, we get: $q = q_n \subset \langle\!\langle \beta_{Q_n} \rangle\!\rangle \subset \langle\!\langle \beta \rangle\!\rangle$, and for each $0 \leq i < n$, $\alpha_{F^{[i+1,n]},\beta_{Q_{i+1}}} \in \mathcal{K}^M_{j+n-i}(k(A_{F^{[i+1,n]},\beta_{Q_{i+1}}}))/2$ is obtained from $\alpha_{F^{[i,n]},\beta_{Q_i}} \in \mathcal{K}^M_{j+n-i}(k(A_{F^{[i,n]},\beta_{Q_i}}))/2$ using derivations and specializations.

But, evidently, $k(A_{F^{[n,n]},\beta_{Q_n}}) = k$, and $\alpha_{F^{[n,n]},\beta_{Q_n}} = \beta_{Q_n}$.

On the other hand, as we saw, $\alpha_{F^{[0,n]},\beta_{Q_0}} = \alpha_F$.

Hence, β is divisible by some pure symbol, obtained from α_F using derivations and specializations.

So, $\operatorname{PKer}_Q \subset (\operatorname{K}^M_*/2)^w_{\alpha_Q}$. Proposition is proven.

Remark 1 In particular we see, that for any pure symbol $\beta \in \text{Ker}(K^M_*(k)/2 \rightarrow K^M_*(k(Q))/2)$, β is divisible by a pure symbol from the kernel of degree $\leq \dim(Q) + 1$. This result was known to M.Knebusch, as E.R.Gentile and D.B.Shapiro point out (see [1], Remark after Corollary 8).

Remark 2 Actually, we could make our universal symbol α_Q a bit more "universal". Namely, we can consider $F(\mathbb{P}^{n+1})$ - variety of full flags in $\mathbb{P}^{n+1} \supset Q$.

Then taking the generic point $k(F(\mathbb{P}^{n+1}))$ of later variety with generic flag F_{gen} , we would get corresponding universal symbol $\alpha_{gen,Q} := \alpha_{F_{gen}} \in K^M_{n+1}(k(F(\mathbb{P}^{n+1}))(A_{F_{gen}}))/2.$

This way, $\alpha_{gen,Q}$ does not depend on anything but Q itself, and our usual α_{F_0} is just a specialization of $\alpha_{gen,Q}$ at the generic point of the fiber of A_F over k-rational point F_0 of $F(\mathbb{P}^{n+1})$ (notice, that we can consider A_F as a fibration over $F(\mathbb{P}^{n+1})$ with rational fibers).

From Proposition 6 it follows that $(K_*^M/2)_{\alpha_{F_0}}^w = (K_*^M/2)_{\alpha_{gen,Q}}^w$. Really, the first module is a submodule of the later (since α_{F_0} is a specialization of $\alpha_{gen,Q}$), and the later module is, evidently, a submodule in PKer_Q.

Since the same is true for any extension E/k, we get: $(K_*^M/2)_{\alpha_{F_0}} = (K_*^M/2)_{\alpha_{gen,Q}}$ as well (see [7]).

In the light of Proposition 6, our Question 1 is equivalent to the following: Question 8.

Is the following true?

a) $\operatorname{Ker}_Q = (\operatorname{K}^M_*/2)_{\alpha_Q}.$

b) $PKer_Q$ is stable under transfers.

Notice, that Question 8)b) is trivial for $\dim(Q) \leq 2$; to the contrary -Question 8)a) for $\dim(Q) = 0$ is more or less equivalent to Milnor's conjecture (on e'tale cohomology). Hopefully, due to V.Voevodsky's methods we know that the answer is positive for Q - *Pfister quadric* (see [6]). Natural strategy for Question 8)a) would be to reduce the case of arbitrary quadric Q/k to that of *Pfister* one $Q_{\alpha_Q}/k(A_Q)$, using the universality of the symbol α_Q .

References

- E.R.Gentile, D.B.Shapiro, Conservative Quadratic Forms., Math. Zeit., 163 (1978), 15-23.
- [2] D.W.Hoffmann, Isotropy of quadratic forms over the function field of a quadric., Math. Zeit., 220 (1995), 461-476.
- [3] B.Kahn, M.Rost, R.J.Sujatha, Unramified cohomology of quadrics., to appear in Amer.J.Math.
- [4] M.Knebusch, Generic splitting of quadratic forms, I., Proc. London Math. Soc. 33 (1976), 65-93.
- [5] T.Y.Lam, Algebraic theory of quadratic forms., Massachusets, Benjamin 1973.
- [6] D.Orlov, A.Vishik, V.Voevodsky, *Motivic cohomology of Pfister quadrics* and *Milnor's conjecture on quadratic forms*. Preprint.
- M.Rost, Chow groups with coefficients., Doc. Math. 1 (1996), 319-393.
 MR 98a:14006, Zbl 864.14002.
- [8] A.Vishik, Integral Motives of Quadrics, MPIM-preprint, 1998 (13).