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0 Introduction

In this paper we will consider the following question:

Question 1.

Let k be a field of characteristic different from 2, and Q/k be some
quadoric.

Is it true, that the ideal Kerg = Ker(KM(k)/2 — KM(k(Q))/2) in
KM (k) /2 is generated by pure symbols ?

The answer to our question is known to be positive in the case @) - Pfister
neigbour (i.e.: a subquadric of dimension more or equal than half in a big
Pfister quadric) by [6], and for 2-dimensional non-Pfister quadric by [8].

The positive answer to our question would imply the following:

1) Conjecture of B.Kahn, M.Rost and R.J.Sujatha (see Conjecture 1 of the
original version of [3], where authors asked basically the same question about
the low degree part of the kernel).

2) The fact that any conservative quadric (i.e. such quadric, for which the



kernel above is nontrivial) is a subquadric in a big Pfister quadric.

3) The fact, that if some quadric @ is a normuvariety for some h € K (k)/2,
then h is a pure symbol. From this, on it’s part, follows nice motivic descrip-
tion of excellent quadrics.

We will show, that our question is equivalent to the fact that Kerq, con-
sidered as a cyclic module of M.Rost (see [7]) is generated by one precisely
described pure symbol. So, in the case of positive answer to the question we
would have explicit description of the Kerg; and we have such a description
for the pure part of the kernel unconditionally.

I would like to thank Yuri Ivanovich Manin for helpful remarks to the
original version of the paper. Also I'm grateful to Max-Planck Institut fir
Mathematik for supporting me during the writing of this work.

1 Universal symbol

In this section we will show, that for arbitrary quadric Q/k there exists
some purely transcendental extension k(Ag)/k, and some pure symbol ag €
KM (k(Ag))/2, s.t. for arbitrary field extension E/k, our quadric @ has E-
point if and only if ag|ga,) = 0.

Statement 2.

Suppose we have complete flag F of quadrics Qo C Q1 C -+ C @, = Q,
where n = dim(Q).

Then there exists purely transcendental field extension k(Ar)/k, and a
pure symbol {yo,...,yn} € KnMH(k(AF))/Q, s.t. for arbitrary field extension
E/k, Q; has E-point if and only if {yo, ...,y }| g = 0.

Proof

Induction on the dimension of Q).

1) ¢ = (1,—ap). Evidently, oy /a; = {ao} € Ki'(k)/2 will have desired
property.

2) Let now ¢; = (1, —ay, ..., —a;), and F"is a flag: Qo C --- C Q,_1. By
inductive assumption: we have ap = {yo, ..., yn_1} € KM (k(Ap))/2, which
has desired property with respect to F”.

In particular apr|x(q,_,)4,,) = 0 (Since over k(Q,-1) @,-1 has a point).
By the “Third representation theorem” (see [5], IX, Theorem 2.8) this means,
that g,_1|k(4,,) is similar to a subform of {{yo, ..., ¥n—1)), and since ¢, rep-



resents 1, it is a subform itself. We have: g, _1|x,,) L ¢" = (Yo, -, ¥Yn-1)),
where ¢” is some form, defined over k(Ag).

From this: if for some field extension E/k, {yo,...,yn-1} # 0 (as an
element of KM(E(Ag))/2), then the following four conditions are equivalent:

a) q|g - is isotropic.

b) q|ea,.) - is isotropic.

¢) ((vo, -, yn—1)) L —(q" L (an)))|E(a,) is dim(q") + 1-times isotropic.

d) (¢" L (an))|p(a,.) - s a subform in {(yo, - .., Yn-1))E(a,)-

By the “Third representation theorem” (see [5], IX, Theorem 2.8) the last
condition is equivalent to the fact: (yo,. .., ¥n—1))|5( Ap)(Vr 1 qa,y) TEPTESENLS
the “generic value” (¢” L (an))(v), where Vyr | (4,) is the underlying k(Ag)-
vector space of quadratic form ¢” L (a,) (defined over that field), and v
- coordinates in V(). And this is equivalent to: {yo,...,yn-1,(¢" L
() ()} = 0 € K (E(Ap) (Vyr110,)))/2:

Put: ar = (g, + -1 (4" L {a))(0)}, and h(Ar) = k(Ap) (Vi (0.

If {90, .., Yn-1}|B(4,) # 0, then we already proved that Qg has a point
if and only if ap|p,) = 0.

If {yo,.,Yn-1}|E(4,,) = 0, then Q,_; C Q has a rational point over E,
and, on the other hand, trivially, ap|g,) = 0.

]

Corollary 3. All anisotropic quadrics are stably embedable, i.e., for each
such quadric QQ/k there exists purely transcendental extension k(Ag), s.t.
Qlr(ag) C Qa, where Qo /k(Aq) is Pfister quadric.

Proof

In the previous statement take: E = k(Q), k(Ag) = k(Ar) and o = ap
for some full flag F' of subquadrics in ). Then since Q|x(g) is isotropic, we
have: agliag) @) = 0. So, a € KM (k(Ag)) is a nontrivial representative of
the kernel. And Q|x(a,) is a subquadric in Qq,, .

]

Corollary 4.

For anisotropic quadric @, and some quadric R we have, that Q| is
isotropic if and only if R|k(AQ) is a subquadric in a Pfister quadric QQQ.

Remark By the result of D.W.Hoffmann, Q|,(r) is anisotropic if dim(R) >
2% — 1 > dim(Q) (for some k) (see [2], Theorem 1).

This shows, that ()., does not contain subquadrics of big dimension
defined over k.



Corollary 5.

Let Q, R be quadrics over k, and dim(Q) = dim(R) = n. Let Q" (resp.
R') be variety of i-dimensional projective planes on @ (resp R).

Then the following is equivalent:

(1) M(Q) = M(R), where M(X) is a Chow motive of X.
(2)V0 < i < [n/2], VE/k - field extension, Ker(K¥(E)/2 — KM(E(Q"))/2) =
Ker(KM(E)/2 — KM(E(R"))/2).

Proof

By [8], Proposition 5.1 we have: (1)< Universal splitting towers of M.Knebusch
for @ and R are equivalent (see [4], or [8], Definition 2.4.19).

That is: M(Q) = M(R) & V0 <i < [n/2], Q" has arational point over
k(R'), and R’ has a rational point over k(Q").

So, evidently, (1)=-(2). And to prove the opposite conclusion, it is
enough to show, that if Ker(KY(E)/2 — KM(E(Q))/2) = Ker(KM(E)/2 —
KM(E(R))/2), VE/E, then @ has a rational point over k(R) and R has a
rational point over k(Q) (the case of arbitrary 0 < i < [n/2] can be easily
obtained from this).

Take E = k(Q)(Ag) (notations as above).

Then Ker(KM(E)/2 — KM(E(Q))/2) = 0. Hence the second kernel is zero
as well, and so, aglr@Qyuy = 0 € Ki‘/I(E)/Q By Statement 2, R has a
rational point over k(Q). Similarly, @ has a rational point over k(R).

]
Remark If M(Q) or M(R) is undecomposable, then in (2) it is enough to
consider only ¢ = 0 (see [8], Corollary 3.15).

2 Pure part of the kernel

In this section we will show that for arbitrary quadric /k the set of pure
symbols in Ker(K(k)/2 — KM(k(Q))/2) is generated (under the action of
the semigroup of pure symbols from K (k)/2) by the specializations of one
element ag € KM (k(Ag)), where ag can be taken as ap for some flag F
(and k(Ag) as k(Ar)).

Let me remind (see [7]), that the cyclic module over k is a collection of
Z-graded abelian groups M (FE), where E runs through all finitely generated
field extensions F/k, which are connected by the following operations:



(1) For any ¢ : Spec(F) — Spec(F') over k, the homomorphism ¢* : M(F) —
M(E) of degree 0 (“pull-back”).
(2) For any finite morphism ¢ : Spec(E) — Spec(F') over k, the homomor-
phism ¢, : M(E) — M(F) of degree 0 (“push-forward”).
(3) For any F/k, M(F) has a structure of KM (F)-module, which respects
grading on both objects.
(4) For a discrete valuation v on F/k, there is the homomorphism 0, :
M(F) — M(k(v)) of degree —1 (“derivation”).

All this data should satisfy natural compatibility rules (see [7], notice,
that our notations are a bit different). Typical example is M(E) = KM(E).

It is not difficult to see, that M (E) = Kerg), will also be one (really, any
submodule of cyclic module, closed under operations is a cyclic module; and
for a cyclic module M, M’ := M /r, where r is some fixed integer, is also a
cyclic module).

Together with a derivation we can consider “specialization” map. Namely,
if 7 is uniformizing parameter for v, then we have: S7 : M(F) — M (k(v))
of degree 0, where ST (x) := 0,({—7} - z). If Oy(x) = 0, then S7(z) does not
depend on the choice of 7. If X is a smooth variety, and Spec(F) is a point
on it, given by some Z" - valuation, then the composition Si" o ---o STl de-

fines a specialization map from My g(k(X)) to M(E), where My g(k(X)) :=

Ker(M(k(X)) o Bspec(B)eD—div.ofx M (k(D))). This map does not depend

on the choice of Z" - valuation, or on the uniformizers (see [7]). Notice, that
the specialization map is a composition of maps of type (3) and (4).

Suppose we have a cyclic module M, some (finitely generated) field ex-
tension E/k, and some element x € M(E). Then it is natural to say, that
cyclic submodule generated by x is the minimal cyclic submodule M, of M,
containing x. Since we know, that cyclic submodules are precisely submod-
ules, closed under operations, we have M, (F') consists of those y € M(F),
that y can be obtained from x using operations (1), (2), (3), (4). Similarly,
we say, that submodule weakly generated by x is the minimal submodule (not
nesessarily cyclic) MY of M, closed under (1), (3) and (4).

Denote by PKerg the ideal in K (k)/2, generated by pure symbols from
Kerg. Also, we will denote the same way the corresponding submodule in
K /2: PKerg(E) := PKerg|,-

Proposition 6.

PKer coinsides with a submodule of KM /2 weakly generated by aq.

Proof



As we know from Statement 2, ag € PKerg(k(Ag)). Also, it is clear,
that operations (1) and (3) preserve PKerg.

Lemma 7.

Operation (4) (acting on K2) maps pure symbols to pure ones.

Proof

Really, for a valuation v on a filed F', any pure symbol in F' can be written
as B = {7 -by,... 7% -b,}, where 7 is uniformizing parameter, and b;’s are
units for v.

Applying the fact, that {7*-a, 7' -b} = {7*-a, —7'"%-b/a}, we get, that
B ={ntci,ca,...,cp}, where d = g.c.d.(kj;7 =1,...,n), and ¢,,’s are units.

Then 0,(8) = {c4,c3,...,c,} is pure.

]

So, we have, that (K /2)a, C PKerq.

Before we prove the opposite inclusion, let us generalize a bit the con-
struction of Universal symbol.

Suppose we have two quadratic forms p’ C p”, full flag G of forms “be-
tween them”: p' = py C py C -+ C ps = p”, where dim(p;41) — dim(p;) =
1, and an inclusion of p’ into some Pfister form ((y)). Let p; = po L
(—c1y...,—¢;). Forany 0 < j <t < s, we will denote as G the sub-
flag p; C - C p.

Then we can construct some purely transcendental field extension k(A¢ ),
and some pure symbol ag , in the following way.

Let (7)) = po L qguoa ., then take: k(Agoa ) = k(VqG[o,oLWMCQ)v and
take g, =7 {qgoa, L {c1)(0v)}, where ggo.0 ., L (c1)(v) is the generic
value of g, L (c1). We have: pl‘k(AG[Ovl],w) C (aglon )

NOW, by deﬁnition, ]{J(AG[OJH]’,Y) = k(AG[O,i]77)(Ag[i,i+l]7ac[0’i]”y), and
Qgloit] 5 = QG[i,i+1]7aG[0’i]y’y. Also, by definition: «ac;[o,z]W» = pl|k(’4c[
dglod ~-

Let us return now to the proof of Proposition 6.

Suppose we have some pure symbol 3 in Ker(K¥(k)/2 — KY(k(Q))/2).

Let F' be full flag of quadrics: Qo C @1 C --- C @, = Q, ¢ =
(1, —ay, ..., —a;), which we used in the construction of g = ap. Notice, that
qo = ({ao)). Then it is easy to see, that k(Ap) = k(Ar(40}), and ap = g (40}

We have ¢, = ¢ C {(3) for some 3 € K¥(k)/2 (since ¢ represents 1).
Take Bg, := {ao}. We have: g C (Bo,)) C (B)-

Suppose ¢; C (Bg,) C (B), deg(Bg,) = j, then deg(ap[i,n]ﬂ%) = j+n—i.

L

0. )



We have: Qplinl g, = Bo, - {Yi+1,---,yn}, where y; is a pull-back of
(QF[i»l—llﬁQi 1 <al>)(t’l) to k(AF[i’nJ,ﬁQi)-

Let ¢; C (Bq.), and (Bq.)) = ¢ L qpii g, - We have two possibilities:
1)qF[i,i]7ﬁQ_ L {a;y1) is isotropic, i.e. there are tg, zp, that qF[i,i]ﬁQ_(to) +

122 =0 Z
az_l’_lZO — .
2)qF[¢,i}ﬁQ 1 {a;41) is anisotropic.

1) In this case we have: divisor y;;1 = 0 on AF[i,imﬁQi = ‘/qF[ivi],ﬁQiJ'<ai+l>
has rational point (fo, 2), and g1 C (Bg,)). So, we can construct k(Aputin g, ),
and o ppiti,n) Bo. . Let Y;11 = 0 be the preimage of the divisor y;,; = 0 under
the natural prOJectlon Aptin) fa, Vp[m'l,g Lait)

Let p; be the specialization of qriid g, ‘over k(AF[i,l]“BQ ) at the generic
point Ej of the fiber of Appiy Bo, OVer the rational point (¢, zo) of V, plii] gy i)

Then E; is naturally a purely transcendental extension of k(Ag ZH,ziﬁQi),
and if j : Spec(E;) — Spec(k(Apii+1a g, )) is corresponding morphism, then
we have: j*(qpri+1.0 "BQi) is a nondegenerate part of pj (it can be easily proved
by induction on 7).

Hence, apiisin g, € KM, i—1(k(Api+1m g, ))/2 s a specialization of the
derivative Oy, = O(QFM] o, ).

We can take (g,,, = Bg,- Then ¢i11 C (Bg...) C (5)-

2) We have: ¢; C {(Bo,)) € (B), and ¢; C giya C (B)). Since gpia g, L
(a;y1) is anisotropic, there exist some subform p of {(3)) of dimension =

dim({(Bg,)) + 1, which contains both (fg,)) and ¢+1. That means, that
there exist (to, 20), s.t. p = (B.)) L (aria g, (to) + air123).

Take: fo,,, = B, - {QF[i»i]ﬁQi (to) + aiy128} € K]H( )/2. Then ¢;41 C
<<6Qi+1>> - «ﬂ»

Evidently, 8q,,, is a specialization of a i+ g

\/

Q; = K]-‘rl(k(‘/qF[i,i],ﬁQiJ—<ai+l>))/2

at the rational point (¢, 2o).

Also, we have natural identification: k(AF[i+l,l]’ﬂQi+l) with E;, where E|
is defined precisely as in the case (1). Under this identification, i1y Bain
is isomorphic to the specialization of qriin 5, At the generic point (E;) of
the fiber of the natural projection Apn 5, — L{aia) OVer the point

(to,Zo).
Hence, apivimg, =€ Kﬁn Z(/f(AF[M,n]ﬂQ_H))/2 is a specialization of

O[F[z,n]“BQ GK;\—{-TL Z(k(AF[Z’n],ﬁQZ))/2

Upliil g



Continuing this way, we get: ¢ = ¢, C (fg,) C (B), and for each

0 <4 < apirng, =€ K%—n—i(k(AF[i+l'"],ﬁQ.+l))/2 is obtained from
M

Qplinl g, € Kj—i—n—i

But, evidently, k;(AF[n,n]ﬂQn) =k, and apimn g, = Bq,-

On the other hand, as we saw, Qplon gy = OUF-

Hence, (3 is divisible by some pure symbol, obtained from a using deriva-
tions and specializations.

So, PKerg C (K /2)%,.

Proposition is proven.

(k(Aptim g, ))/2 using derivations and specializations.

L]
Remark 1 In particular we see, that for any pure symbol 3 € Ker(K¥ (k)/2 —
KM(k(Q))/2), B is divisible by a pure symbol from the kernel of degree
< dim(Q) + 1. This result was known to M.Knebusch, as E.R.Gentile and
D.B.Shapiro point out (see [1], Remark after Corollary 8).

Remark 2 Actually, we could make our universal symbol ag a bit more
“universal”. Namely, we can consider F(P"!) - variety of full flags in P"™! D
Q.

Then taking the generic point k(F(P""!)) of later variety with generic
flag Fyen, we would get corresponding universal symbol agen g = ag,,, €
Ko (R(F(P")(AR,..,)) /2.

This way, ®gen,@ does not depend on anything but @ itself, and our usual
ap, 1s just a specialization of age, o at the generic point of the fiber of Ap
over k-rational point Fy of F(P"™!) (notice, that we can consider Ar as a
fibration over F'(P"*!) with rational fibers).

From Proposition 6 it follows that (K / 2)&0 = (KM/ 2)t - Really,
the first module is a submodule of the later (since ap, is a specialization of
Qgen,q), and the later module is, evidently, a submodule in PKerg.

Since the same is true for any extension E/k, we get: (K /2)ar, =
(KY /2)a,.0.0 as well (see [7]).

In the light of Proposition 6, our Question 1 is equivalent to the following:

Question 8.
Is the following true?
a) Kerg = (KY /2)a,.
b) PKer, is stable under transfers.



Notice, that Question 8)b) is trivial for dim(Q) < 2; to the contrary -
Question 8)a) for dim(Q)) = 0 is more or less equivalent to Milnor’s conjecture
(on e’tale cohomology). Hopefully, due to V.Voevodsky’s methods we know
that the answer is positive for @) - Pfister quadric (see [6]). Natural strategy
for Question 8)a) would be to reduce the case of arbitrary quadric Q/k to
that of Pfister one Q,,/k(Agq), using the universality of the symbol ag.
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