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0 Introduction

In this paper we will consider the following question:

Question 1.

Let k be a field of characteristic different from 2, and Q/k be some
quadric.

Is it true, that the ideal KerQ := Ker(KM
∗ (k)/2 → KM

∗ (k(Q))/2) in
KM

∗ (k)/2 is generated by pure symbols ?

The answer to our question is known to be positive in the case Q - Pfister

neigbour (i.e.: a subquadric of dimension more or equal than half in a big

Pfister quadric) by [6], and for 2-dimensional non-Pfister quadric by [8].
The positive answer to our question would imply the following:

1) Conjecture of B.Kahn, M.Rost and R.J.Sujatha (see Conjecture 1 of the
original version of [3], where authors asked basically the same question about
the low degree part of the kernel).
2) The fact that any conservative quadric (i.e. such quadric, for which the
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kernel above is nontrivial) is a subquadric in a big Pfister quadric.
3) The fact, that if some quadric Q is a normvariety for some h ∈ KM

m (k)/2,
then h is a pure symbol. From this, on it’s part, follows nice motivic descrip-
tion of excellent quadrics.

We will show, that our question is equivalent to the fact that KerQ, con-
sidered as a cyclic module of M.Rost (see [7]) is generated by one precisely
described pure symbol. So, in the case of positive answer to the question we
would have explicit description of the KerQ; and we have such a description
for the pure part of the kernel unconditionally.

I would like to thank Yuri Ivanovich Manin for helpful remarks to the
original version of the paper. Also I’m grateful to Max-Planck Institut für
Mathematik for supporting me during the writing of this work.

1 Universal symbol

In this section we will show, that for arbitrary quadric Q/k there exists
some purely transcendental extension k(AQ)/k, and some pure symbol αQ ∈
KM

∗ (k(AQ))/2, s.t. for arbitrary field extension E/k, our quadric Q has E-
point if and only if αQ|E(AQ) = 0.

Statement 2.

Suppose we have complete flag F of quadrics Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = Q,
where n = dim(Q).

Then there exists purely transcendental field extension k(AF )/k, and a
pure symbol {y0, . . . , yn} ∈ KM

n+1(k(AF ))/2, s.t. for arbitrary field extension
E/k, Qi has E-point if and only if {y0, . . . , yi}|E(AF ) = 0.

Proof

Induction on the dimension of Q.
1) q = 〈1,−a0〉. Evidently, αk

√
a0 = {a0} ∈ KM

1 (k)/2 will have desired
property.

2) Let now qi = 〈1,−a0, . . . ,−ai〉, and F ′ is a flag: Q0 ⊂ · · · ⊂ Qn−1. By
inductive assumption: we have αF ′ = {y0, . . . , yn−1} ∈ KM

n (k(AF ′))/2, which
has desired property with respect to F ′.

In particular αF ′|k(Qn−1)(AF ′ ) = 0 (Since over k(Qn−1) Qn−1 has a point).
By the “Third representation theorem” (see [5], IX, Theorem 2.8) this means,
that qn−1|k(AF ′) is similar to a subform of 〈〈y0, . . . , yn−1〉〉, and since qn−1 rep-
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resents 1, it is a subform itself. We have: qn−1|k(AF ′) ⊥ q′′ = 〈〈y0, . . . , yn−1〉〉,
where q′′ is some form, defined over k(AF ′).

From this: if for some field extension E/k, {y0, . . . , yn−1} 6= 0 (as an
element of KM

n (E(AF ′))/2), then the following four conditions are equivalent:
a) q|E - is isotropic.
b) q|E(AF ′) - is isotropic.
c) (〈〈y0, . . . , yn−1〉〉 ⊥ −(q′′ ⊥ 〈an〉))|E(AF ′) is dim(q′′) + 1-times isotropic.
d) (q′′ ⊥ 〈an〉)|E(AF ′) - is a subform in 〈〈y0, . . . , yn−1〉〉|E(AQ′).
By the “Third representation theorem” (see [5], IX, Theorem 2.8) the last

condition is equivalent to the fact: 〈〈y0, . . . , yn−1〉〉|E(AF ′)(Vq′′⊥〈an〉)
represents

the “generic value” (q′′ ⊥ 〈an〉)(v), where Vq′′⊥〈an〉 is the underlying k(AF ′)-
vector space of quadratic form q′′ ⊥ 〈an〉 (defined over that field), and v

- coordinates in Vq′′⊥〈an〉. And this is equivalent to: {y0, . . . , yn−1, (q
′′ ⊥

〈an〉)(v)} = 0 ∈ KM
n (E(AF ′)(Vq′′⊥〈an〉))/2.

Put: αF = {y0, . . . , yn−1, (q
′′ ⊥ 〈an〉)(v)}, and k(AF ) = k(AF ′)(Vq′′⊥〈an〉).

If {y0, . . . , yn−1}|E(AF ′) 6= 0, then we already proved that QE has a point
if and only if αF |E(AF ) = 0.

If {y0, . . . , yn−1}|E(AF ′) = 0, then Qn−1 ⊂ Q has a rational point over E,
and, on the other hand, trivially, αF |E(AF ) = 0.

Corollary 3. All anisotropic quadrics are stably embedable, i.e., for each
such quadric Q/k there exists purely transcendental extension k(AQ), s.t.
Q|k(AQ) ⊂ Qα, where Qα/k(AQ) is Pfister quadric.

Proof

In the previous statement take: E = k(Q), k(AQ) = k(AF ) and α = αF

for some full flag F of subquadrics in Q. Then since Q|k(Q) is isotropic, we
have: αQ|k(AQ)(Q) = 0. So, α ∈ KM

n+1(k(AQ)) is a nontrivial representative of
the kernel. And Q|k(AQ) is a subquadric in QαQ

.

Corollary 4.

For anisotropic quadric Q, and some quadric R we have, that Q|k(R) is
isotropic if and only if R|k(AQ) is a subquadric in a Pfister quadric QαQ

.

Remark By the result of D.W.Hoffmann, Q|k(R) is anisotropic if dim(R) ≥
2k − 1 > dim(Q) (for some k) (see [2], Theorem 1).

This shows, that QαQ
does not contain subquadrics of big dimension

defined over k.
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Corollary 5.

Let Q, R be quadrics over k, and dim(Q) = dim(R) = n. Let Qi (resp.
Ri) be variety of i-dimensional projective planes on Q (resp R).

Then the following is equivalent:
(1) M(Q) = M(R), where M(X) is a Chow motive of X.
(2) ∀0 ≤ i ≤ [n/2], ∀E/k - field extension, Ker(KM

∗ (E)/2 → KM
∗ (E(Qi))/2) =

Ker(KM
∗ (E)/2 → KM

∗ (E(Ri))/2).

Proof

By [8], Proposition 5.1 we have: (1)⇔ Universal splitting towers of M.Knebusch

for Q and R are equivalent (see [4], or [8], Definition 2.4.19).
That is: M(Q) = M(R) ⇔ ∀0 ≤ i ≤ [n/2], Qi has a rational point over

k(Ri), and Ri has a rational point over k(Qi).
So, evidently, (1)⇒(2). And to prove the opposite conclusion, it is

enough to show, that if Ker(KM
∗ (E)/2 → KM

∗ (E(Q))/2) = Ker(KM
∗ (E)/2 →

KM
∗ (E(R))/2), ∀E/k, then Q has a rational point over k(R) and R has a

rational point over k(Q) (the case of arbitrary 0 ≤ i ≤ [n/2] can be easily
obtained from this).

Take E = k(Q)(AR) (notations as above).
Then Ker(KM

∗ (E)/2 → KM
∗ (E(Q))/2) = 0. Hence the second kernel is zero

as well, and so, αR|k(Q)(AR) = 0 ∈ KM
∗ (E)/2. By Statement 2, R has a

rational point over k(Q). Similarly, Q has a rational point over k(R).

Remark If M(Q) or M(R) is undecomposable, then in (2) it is enough to
consider only i = 0 (see [8], Corollary 3.15).

2 Pure part of the kernel

In this section we will show that for arbitrary quadric Q/k the set of pure

symbols in Ker(KM
∗ (k)/2 → KM

∗ (k(Q))/2) is generated (under the action of
the semigroup of pure symbols from KM

∗ (k)/2) by the specializations of one
element αQ ∈ KM

n+1(k(AQ)), where αQ can be taken as αF for some flag F
(and k(AQ) as k(AF )).

Let me remind (see [7]), that the cyclic module over k is a collection of
Z-graded abelian groups M(E), where E runs through all finitely generated
field extensions E/k, which are connected by the following operations:
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(1) For any ϕ : Spec(E) → Spec(F ) over k, the homomorphism ϕ∗ : M(F ) →
M(E) of degree 0 (“pull-back”).
(2) For any finite morphism ϕ : Spec(E) → Spec(F ) over k, the homomor-
phism ϕ∗ : M(E) → M(F ) of degree 0 (“push-forward”).
(3) For any F/k, M(F ) has a structure of KM

∗ (F )-module, which respects
grading on both objects.
(4) For a discrete valuation v on F/k, there is the homomorphism ∂v :
M(F ) → M(k(v)) of degree −1 (“derivation”).

All this data should satisfy natural compatibility rules (see [7], notice,
that our notations are a bit different). Typical example is M(E) = KM

∗ (E).
It is not difficult to see, that M(E) = KerQ|E will also be one (really, any

submodule of cyclic module, closed under operations is a cyclic module; and
for a cyclic module M , M ′ := M/r, where r is some fixed integer, is also a
cyclic module).

Together with a derivation we can consider “specialization” map. Namely,
if π is uniformizing parameter for v, then we have: Sπ

v
: M(F ) → M(k(v))

of degree 0, where Sπ
v
(x) := ∂v({−π} · x). If ∂v(x) = 0, then Sπ

v
(x) does not

depend on the choice of π. If X is a smooth variety, and Spec(E) is a point
on it, given by some Z

r - valuation, then the composition Sπr
vr

◦ · · · ◦ Sπ1
v1

de-
fines a specialization map from M0,E(k(X)) to M(E), where M0,E(k(X)) :=

Ker(M(k(X))
∂D→ ⊕Spec(E)∈D−div.ofXM(k(D))). This map does not depend

on the choice of Z
r - valuation, or on the uniformizers (see [7]). Notice, that

the specialization map is a composition of maps of type (3) and (4).
Suppose we have a cyclic module M , some (finitely generated) field ex-

tension E/k, and some element x ∈ M(E). Then it is natural to say, that
cyclic submodule generated by x is the minimal cyclic submodule Mx of M ,
containing x. Since we know, that cyclic submodules are precisely submod-
ules, closed under operations, we have Mx(F ) consists of those y ∈ M(F ),
that y can be obtained from x using operations (1), (2), (3), (4). Similarly,
we say, that submodule weakly generated by x is the minimal submodule (not
nesessarily cyclic) Mw

x of M , closed under (1), (3) and (4).
Denote by PKerQ the ideal in KM

∗ (k)/2, generated by pure symbols from
KerQ. Also, we will denote the same way the corresponding submodule in
KM

∗ /2: PKerQ(E) := PKerQ|E .

Proposition 6.

PKerQ coinsides with a submodule of KM
∗ /2 weakly generated by αQ.

Proof
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As we know from Statement 2, αQ ∈ PKerQ(k(AQ)). Also, it is clear,
that operations (1) and (3) preserve PKerQ.

Lemma 7.

Operation (4) (acting on KM
∗ ) maps pure symbols to pure ones.

Proof

Really, for a valuation v on a filed F , any pure symbol in F can be written
as β = {πk1 · b1, . . . , π

kn · bn}, where π is uniformizing parameter, and bj ’s are
units for v.

Applying the fact, that {πk · a, πl · b} = {πk · a,−πl−k · b/a}, we get, that
β = {πd ·c1, c2, . . . , cn}, where d = g.c.d.(kj; j = 1, . . . , n), and cm’s are units.

Then ∂v(β) = {cd
2, c3, . . . , cn} is pure.

So, we have, that (KM
∗ /2)w

αQ
⊂ PKerQ.

Before we prove the opposite inclusion, let us generalize a bit the con-
struction of Universal symbol.

Suppose we have two quadratic forms p′ ⊂ p′′, full flag G of forms “be-
tween them”: p′ = p0 ⊂ p1 ⊂ · · · ⊂ ps = p′′, where dim(pt+1) − dim(pt) =
1, and an inclusion of p′ into some Pfister form 〈〈γ〉〉. Let pj = p0 ⊥
〈−c1, . . . ,−cj〉. For any 0 ≤ j ≤ t ≤ s, we will denote as G[j,t] the sub-
flag pj ⊂ · · · ⊂ pt.

Then we can construct some purely transcendental field extension k(AG,γ),
and some pure symbol αG,γ in the following way.

Let 〈〈γ〉〉 = p0 ⊥ qG[0,0],γ, then take: k(AG[0,1],γ) := k(Vq
G[0,0],γ

⊥〈c1〉), and

take αG[0,1],γ := γ · {qG[0,0],γ ⊥ 〈c1〉(v)}, where qG[0,0],γ ⊥ 〈c1〉(v) is the generic

value of qG[0,0],γ ⊥ 〈c1〉. We have: p1|k(A
G[0,1],γ

) ⊂ 〈〈αG[0,1],γ〉〉.

Now, by definition, k(AG[0,i+1],γ) := k(AG[0,i],γ)(AG[i,i+1],α
G[0,i],γ

), and

αG[0,i+1],γ := αG[i,i+1],α
G[0,i],γ

. Also, by definition: 〈〈αG[0,l],γ〉〉 = pl|k(A
G[0,l],γ

) ⊥
qG[0,l],γ.

Let us return now to the proof of Proposition 6.
Suppose we have some pure symbol β in Ker(KM

∗ (k)/2 → KM
∗ (k(Q))/2).

Let F be full flag of quadrics: Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = Q, qi =
〈1,−a0, . . . ,−ai〉, which we used in the construction of αQ = αF . Notice, that
q0 = 〈〈a0〉〉. Then it is easy to see, that k(AF ) = k(AF,{a0}), and αF = αF,{a0}.

We have qn = q ⊂ 〈〈β〉〉 for some β ∈ KM
∗ (k)/2 (since q represents 1).

Take βQ0 := {a0}. We have: q0 ⊂ 〈〈βQ0〉〉 ⊂ 〈〈β〉〉.
Suppose qi ⊂ 〈〈βQi

〉〉 ⊂ 〈〈β〉〉, deg(βQi
) = j, then deg(αF [i,n],βQi

) = j+n−i.
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We have: αF [i,n],βQi
= βQi

· {yi+1, . . . , yn}, where yl is a pull-back of

(qF [i,l−1],βQi
⊥ 〈al〉)(vl) to k(AF [i,n],βQi

).

Let qi ⊂ 〈〈βQi
〉〉, and 〈〈βQi

〉〉 = qi ⊥ qF [i,i],βQi
. We have two possibilities:

1)qF [i,i],βQi
⊥ 〈ai+1〉 is isotropic, i.e. there are t0, z0, that qF [i,i],βQi

(t0) +

ai+1z
2
0 = 0.

2)qF [i,i],βQi
⊥ 〈ai+1〉 is anisotropic.

1) In this case we have: divisor yi+1 = 0 on AF [i,i+1],βQi
= Vq

F [i,i],βQi

⊥〈ai+1〉

has rational point (t0, z0), and qi+1 ⊂ 〈〈βQi
〉〉. So, we can construct k(AF [i+1,n],βQi

),
and αF [i+1,n],βQi

. Let Yi+1 = 0 be the preimage of the divisor yi+1 = 0 under
the natural projection AF [i,n],βQi

→ Vq
F [i,i],βQi

⊥〈ai+1〉.

Let p′l be the specialization of qF [i,l],βQi
over k(AF [i,l],βQi

) at the generic

point El of the fiber of AF [i,l],βQi
over the rational point (t0, z0) of Vq

F [i,i],βQi

⊥〈ai+1〉.

Then El is naturally a purely transcendental extension of k(AF [i+1,l],βQi
),

and if j : Spec(El) → Spec(k(AF [i+1,l],βQi
)) is corresponding morphism, then

we have: j∗(qF [i+1,l],βQi
) is a nondegenerate part of p′l (it can be easily proved

by induction on l).
Hence, αF [i+1,n],βQi

∈ KM
j+n−i−1(k(AF [i+1,n],βQi

))/2 is a specialization of the

derivative ∂Yi+1=0(αF [i,n],βQi
).

We can take βQi+1
= βQi

. Then qi+1 ⊂ 〈〈βQi+1
〉〉 ⊂ 〈〈β〉〉.

2) We have: qi ⊂ 〈〈βQi
〉〉 ⊂ 〈〈β〉〉, and qi ⊂ qi+1 ⊂ 〈〈β〉〉. Since qF [i,i],βQi

⊥

〈ai+1〉 is anisotropic, there exist some subform p of 〈〈β〉〉 of dimension =
dim(〈〈βQi

〉〉) + 1, which contains both 〈〈βQi
〉〉 and qi+1. That means, that

there exist (t0, z0), s.t. p = 〈〈βQi
〉〉 ⊥ 〈qF [i,i],βQi

(t0) + ai+1z
2
0〉.

Take: βQi+1
:= βQi

· {qF [i,i],βQi
(t0) + ai+1z

2
0} ∈ KM

j+1(k)/2. Then qi+1 ⊂

〈〈βQi+1
〉〉 ⊂ 〈〈β〉〉.

Evidently, βQi+1
is a specialization of αF [i,i+1],βQi

∈ KM
j+1(k(Vq

F [i,i],βQi

⊥〈ai+1〉))/2

at the rational point (t0, z0).
Also, we have natural identification: k(AF [i+1,l],βQi+1

) with El, where El

is defined precisely as in the case (1). Under this identification, qF [i+1,l],βQi+1

is isomorphic to the specialization of qF [i,l],βQi
at the generic point (El) of

the fiber of the natural projection AF [i,l],βQi
→ Vq

F [i,i],βQi

⊥〈ai+1〉 over the point

(t0, z0).
Hence, αF [i+1,n],βQi+1

∈ KM
j+n−i(k(AF [i+1,n],βQi+1

))/2 is a specialization of

αF [i,n],βQi
∈ KM

j+n−i(k(AF [i,n],βQi
))/2.

7



Continuing this way, we get: q = qn ⊂ 〈〈βQn
〉〉 ⊂ 〈〈β〉〉, and for each

0 ≤ i < n, αF [i+1,n],βQi+1
∈ KM

j+n−i(k(AF [i+1,n],βQi+1
))/2 is obtained from

αF [i,n],βQi
∈ KM

j+n−i(k(AF [i,n],βQi
))/2 using derivations and specializations.

But, evidently, k(AF [n,n],βQn
) = k, and αF [n,n],βQn

= βQn
.

On the other hand, as we saw, αF [0,n],βQ0
= αF .

Hence, β is divisible by some pure symbol, obtained from αF using deriva-
tions and specializations.

So, PKerQ ⊂ (KM
∗ /2)w

αQ
.

Proposition is proven.

Remark 1 In particular we see, that for any pure symbol β ∈ Ker(KM
∗ (k)/2 →

KM
∗ (k(Q))/2), β is divisible by a pure symbol from the kernel of degree

≤ dim(Q) + 1. This result was known to M.Knebusch, as E.R.Gentile and
D.B.Shapiro point out (see [1], Remark after Corollary 8).

Remark 2 Actually, we could make our universal symbol αQ a bit more
“universal”. Namely, we can consider F (Pn+1) - variety of full flags in P

n+1 ⊃
Q.

Then taking the generic point k(F (Pn+1)) of later variety with generic
flag Fgen, we would get corresponding universal symbol αgen,Q := αFgen

∈
KM

n+1(k(F (Pn+1))(AFgen
))/2.

This way, αgen,Q does not depend on anything but Q itself, and our usual
αF0 is just a specialization of αgen,Q at the generic point of the fiber of AF

over k-rational point F0 of F (Pn+1) (notice, that we can consider AF as a
fibration over F (Pn+1) with rational fibers).

From Proposition 6 it follows that (KM
∗ /2)w

αF0
= (KM

∗ /2)w
αgen,Q

. Really,

the first module is a submodule of the later (since αF0 is a specialization of
αgen,Q), and the later module is, evidently, a submodule in PKerQ.

Since the same is true for any extension E/k, we get: (KM
∗ /2)αF0

=

(KM
∗ /2)αgen,Q

as well (see [7]).

In the light of Proposition 6, our Question 1 is equivalent to the following:

Question 8.

Is the following true?
a) KerQ = (KM

∗ /2)αQ
.

b) PKerQ is stable under transfers.
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Notice, that Question 8)b) is trivial for dim(Q) ≤ 2; to the contrary -
Question 8)a) for dim(Q) = 0 is more or less equivalent to Milnor’s conjecture
(on e’tale cohomology). Hopefully, due to V.Voevodsky’s methods we know
that the answer is positive for Q - Pfister quadric (see [6]). Natural strategy
for Question 8)a) would be to reduce the case of arbitrary quadric Q/k to
that of Pfister one QαQ

/k(AQ), using the universality of the symbol αQ.
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