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Problem class 1

1. A triple of natural number (X, Y, Z) is called a pythagorean triple if X2+Y 2 = Z2 as
they are the sides of a triangle with a right angle. Consider x = X/Z and y = Y/Z.
Now we are looking for positive rational numbers x, y satisfying x2 + y2 = 1. Use the
ideas in Chapter 1 to find plenty of pythagorean triples.

Solution: The picture for x2 +y2 = 1 is a circle C of radius 1 centred at the origin.

We pick the point P = (−1, 0) as the starting point. Let L be a line through P ;
it can be given by equation y = m(x + 1) for some slope m. The points in the
intersection C ∩ L satisfy

x2 +
(
m(x+ 1)

)2
= 1

(1 +m2)x2 + 2m2x+ (−1 +m2) = 0

(x+ 1)
(
(1 +m2)x+ (−1 +m2)

)
= 0

The first solution x = −1 corresponds to P . The second intersection Q has x =
(1−m2)/(1 +m2). Plugging back into the line equation, we determine y by

y = m(x+ 1) = m
(1−m2

1 +m2
+ 1

)
= m

1−m2 + 1 +m2

1 +m2
=

2m

1 +m2

and hence

Q = (x, y) =
(1−m2

1 +m2
,

2m

1 +m2

)
.

For any m ∈ Q this gives a point on the circle and hence a pythaogrean triple. For
instance, for any natural number m, the triple

X = m2 − 1 Y = 2m Z = m2 + 1

forms a triangle with a right angle. Here are a few examples:

(3, 4, 5), (8, 6, 10), (15, 8, 17), (24, 10, 26), (35, 12, 37),

(48, 14, 50), (63, 16, 65), (80, 18, 82), (99, 20, 101), . . .

A different method is used in G13FNT=MATH3012
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2. Draw a picture of the solution set C(k) in k2 for the equation

2 y + 3x+ 5 = 0

and the fields k = R, k = F7, k = F5, k = F3, k = F2 and k = Q.

Solution: The picture for k = R looks like a well-known line

For the finite fields, they look less like line even if we shall still think of them as
lines. The four pictures for p = 7, p = 5, p = 3 and p = 2 in that order.

For Q it is hard to make a picture. If we print a small dot for each rational solution,
the picture ends up looking exactly like the one for R. Yet C(Q) is much smaller
than C(R).

3. Let (A,+) and (B,#) be abelian groups and let f : A → B be a map such that
f(−a) = −f(a) for all a ∈ A and

a+ a′ + a′′ = 0 ⇒ f(a)#f(a′)#f(a′′) = 0.
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Prove that f is a group homomorphism.

Solution: Let a and a′ be two elements in A. Set a′′ = −a− a′ = −(a + a′), then
a + a′ + a′′ = 0. By the hypotheses f(a)#f(a′)#f(a′′) = 0, which implies that
f(a′′) = −

(
f(a)#f(a′)

)
. We conclude that f(a+ a′) = −f

(
−(a+ a′)

)
= −f(a′′) =

f(a)#f(a′).

4. Let k be a field and n > 0. On the set X = kn+1 \
{

(0, 0, . . . , 0)
}

define the following
relation:

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn)

if and only if there exists λ ∈ k× such that

x0 = λ · y0, x1 = λ · y1, . . . , xn = λ · yn

Prove that this is an equivalence relation. Recall, this means that we need to check

Reflexive: a ∼ a for all a ∈ X.

Symmetric: If a ∼ b for some a, b ∈ X then b ∼ a.

Transitive: If a ∼ b and b ∼ c for some a, b, c ∈ X, then a ∼ c.

Solution:

Reflexive: a ∼ a is true by taking λ = 1 ∈ k× in the definition.

Symmetric: If (x0, . . . , xn) ∼ (y0, . . . , yn), then there is a λ ∈ k× such that xi =
λ ·yi. Since λ is invertible, we find yi = λ−1 ·xi for all i = 0, . . . , n. This shows
that (y0, . . . , yn) ∼ (x0, . . . , xn) as λ−1 ∈ k×.

Transitive: If (x0, . . . , xn) ∼ (y0, . . . , yn) and (y0, . . . , yn) ∼ (z0, . . . zn) then there
are λ ∈ k× and µ ∈ k× such that xi = λ · yi and yi = µ · zi for all i = 0, . . . , n.
Now λµ ∈ k× and xi = λµ · zi shows that (x0, . . . , xn) ∼ (z0, . . . , zn).

Note that this proof also works for an arbitrary ring R and gives a definition of
Pn(R) as long as we only allow vectors with at least one coordinate a unit in R and
we only allow to scale through by invertible elements in R×.


