The Birch and Swinnerton-Dyer conjecture

Christian Wuthrich

31 January $2^{2} \cdot 5 \cdot 101$

Question

Solve

$$
y^{2}=x^{3}+x+101
$$

Question

Solve

$$
y^{2}=x^{3}+x+101
$$

for x and y in \mathbb{Q}.

Question

Solve

$$
y^{2}=x^{3}+x+101
$$

for x and y in \mathbb{Q}.
You may spot $(4,13)$ is a solution. And $(4,-13)$, too.

Question

Solve

$$
y^{2}=x^{3}+x+101
$$

for x and y in \mathbb{Q}.
You may spot $(4,13)$ is a solution. And $(4,-13)$, too. A computer search:

$$
\left(-\frac{20}{9}, \pm \frac{253}{27}\right),\left(-\frac{23}{16}, \pm \frac{629}{64}\right)\left(-\frac{3007}{676},, \pm \frac{51351}{17576}\right)
$$

Question

Solve

$$
y^{2}=x^{3}+x+101
$$

for x and y in \mathbb{Q}.
You may spot $(4,13)$ is a solution. And $(4,-13)$, too. A computer search:

$$
\left(-\frac{20}{9}, \pm \frac{253}{27}\right),\left(-\frac{23}{16}, \pm \frac{629}{64}\right)\left(-\frac{3007}{676},, \pm \frac{51351}{17576}\right)
$$

Magic (?) : There is one with

$$
x=-\frac{461285735025981099346806859730417760247715076968238718258561}{15974308874451586407484146059951456672138509604202307089984} .
$$

Tangent at $(4,13)$ meets again at $\left(-\frac{3007}{676},-\frac{51351}{17576}\right)$

$$
y^{2}=x^{3}+x+101
$$

$$
y^{2}=x^{3}+x+101
$$

If $y=\lambda x+\nu$ is the tangent at x_{0}, then

$$
-(\lambda x+\nu)^{2}+\left(x^{3}+x+101\right)=0
$$

has a double solution at $x=x_{0}$.

$$
y^{2}=x^{3}+x+101
$$

If $y=\lambda x+\nu$ is the tangent at x_{0}, then

$$
-(\lambda x+\nu)^{2}+\left(x^{3}+x+101\right)=0
$$

has a double solution at $x=x_{0}$.
It factors as

$$
\left(x-x_{0}\right)^{2} \cdot\left(x-x_{1}\right)=0
$$

$$
y^{2}=x^{3}+x+101
$$

If $y=\lambda x+\nu$ is the tangent at x_{0}, then

$$
-(\lambda x+\nu)^{2}+\left(x^{3}+x+101\right)=0
$$

has a double solution at $x=x_{0}$.
It factors as

$$
\left(x-x_{0}\right)^{2} \cdot\left(x-x_{1}\right)=0
$$

and x_{0}, λ, ν and $x_{1} \in \mathbb{Q}$.

Chords $=$ Secants work, too

$Q=\left(-\frac{20}{9}, \frac{253}{27}\right)$ cannot be reached from $P=(4,13)$

Question

Are there infinitely many rational solutions over \mathbb{Q} ?

Question

Are there infinitely many rational solutions over \mathbb{Q} ?

Example

$$
E_{2}: \quad y^{2}=x^{3}+x+2
$$

Question

Are there infinitely many rational solutions over \mathbb{Q} ?
Example

$$
E_{2}: \quad y^{2}=x^{3}+x+2
$$

has only three solutions $(-1,0),(1,-2)$, and $(1,2)$.

Question

Are there infinitely many rational solutions over \mathbb{Q} ?

Example

$$
E_{1}: \quad y^{2}=x^{3}+x+1
$$

Question

Are there infinitely many rational solutions over \mathbb{Q} ?
Example

$$
E_{1}: \quad y^{2}=x^{3}+x+1
$$

has infinitely many solutions. $(0,1),\left(\frac{1}{4}, \frac{9}{4}\right),(72,611), \ldots$

Question

Are there infinitely many rational solutions over \mathbb{Q} ?

Example

$$
E_{1}: \quad y^{2}=x^{3}+x+1
$$

has infinitely many solutions. $(0,1),\left(\frac{1}{4}, \frac{9}{4}\right),(72,611), \ldots$
The following x-coordinates are

$$
\begin{aligned}
& -\frac{287}{1296}, \quad \frac{43992}{82369}, \quad \frac{26862913}{1493284}, \quad \frac{139455877527}{1824793048}, \quad-\frac{3596697936}{8760772801}, \\
& \frac{7549090222465}{8662944250944}, \quad \frac{51865013741670864}{6504992707996225}, \quad-\frac{173161424238594532415}{310515636774481238884}, \ldots
\end{aligned}
$$

An elliptic curve E over a field K is

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.
- an non-singular equation of the form

$$
E: \quad y^{2}=x^{3}+A x+B
$$

for some A and B in K.

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.
- an non-singular equation of the form

$$
E: \quad y^{2}=x^{3}+A x+B
$$

for some A and B in K if $\operatorname{char}(K)>3$.

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.
- an non-singular equation of the form

$$
E: \quad y^{2}=x^{3}+A x+B
$$

for some A and B in K if $\operatorname{char}(K)>3$.

- a projective curve with an algebraic group structure.

An elliptic curve E over a field K is

- a projective curve of genus 1 with a specified base-point $O \in E(K)$.
- an non-singular equation of the form

$$
E: \quad y^{2}=x^{3}+A x+B
$$

for some A and B in K if $\operatorname{char}(K)>3$.

- a projective curve with an algebraic group structure.

Our main question

How can we determine the set of solutions $E(K)$ with coordinates in K ?

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

4気

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

4迫

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

4夙

Addition on elliptic curves

$$
E: \quad y^{2}=x^{3}+A x+B
$$

4迫

Addition on elliptic curves

$E: \quad y^{2}=x^{3}+A x+B$
This is an abelian group law on $E(K)$:

- $(P+Q)+R=P+(Q+R)$
- $P+O=P$
- $P+(-P)=O$
- $P+Q=Q+P$

Addition on elliptic curves

$E: y^{2}=x^{3}+A x+B$
This is an abelian group law on $E(K)$:

- $(P+Q)+R=P+(Q+R)$
- $P+O=P$
- $P+(-P)=O$
- $P+Q=Q+P$

Elliptic curves over finite fields

p a prime number.
$A, B \in \mathbb{F}_{p}$, the field with p elements.

$$
y^{2}=x^{3}+A x+B
$$

Then $E\left(\mathbb{F}_{p}\right)$ is a finite group.

Elliptic curves over finite fields

p a prime number.
$A, B \in \mathbb{F}_{p}$, the field with p elements.

$$
y^{2}=x^{3}+A x+B
$$

Then $E\left(\mathbb{F}_{p}\right)$ is a finite group.

Example

$y^{2}=x^{3}+x+101$ has 88 solutions modulo 103.

Elliptic curves over finite fields

p a prime number.
$A, B \in \mathbb{F}_{p}$, the field with p elements.

$$
y^{2}=x^{3}+A x+B
$$

Then $E\left(\mathbb{F}_{p}\right)$ is a finite group.

Example

$y^{2}=x^{3}+x+101$ has 88 solutions modulo 103.

$$
N_{p}=\# E\left(\mathbb{F}_{p}\right)
$$

Elliptic curves over finite fields

Curve sepc160k1

$$
E: y^{2}=x^{3}+7 \quad \text { with } K=\mathbb{F}_{p}
$$

$$
\begin{aligned}
p & =1461501637330902918203684832716283019651637554291 \\
N_{p} & =1461501637330902918203686915170869725397159163571
\end{aligned}
$$

Elliptic curves over finite fields

Curve sepc160k1

$$
\begin{aligned}
E & : y^{2}=x^{3}+7 \quad \text { with } K=\mathbb{F}_{p} \\
p & =1461501637330902918203684832716283019651637554291 \\
N_{p} & =1461501637330902918203686915170869725397159163571
\end{aligned}
$$

Hasse-Weil bound

An elliptic curve E over \mathbb{F}_{p} satisfies

$$
N_{p}=\# E\left(\mathbb{F}_{p}\right)=p+1-a_{p}
$$

with $\quad\left|a_{p}\right|<2 \sqrt{p}$.

Elliptic curves over \mathbb{Q}

Mordell's theorem
One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Elliptic curves over \mathbb{Q}

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve E over \mathbb{Q} then $E(K)=($ finite $) \times \mathbb{Z}^{r}$.

- The finite torsion group is easy to determine.

Elliptic curves over \mathbb{Q}

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve E over \mathbb{Q} then $E(K)=($ finite $) \times \mathbb{Z}^{r}$.

- The finite torsion group is easy to determine.
- The rank r of $E(K)$ is difficult, but often small.

Elliptic curves over \mathbb{Q}

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve E over \mathbb{Q} then $E(K)=($ finite $) \times \mathbb{Z}^{r}$.

- The finite torsion group is easy to determine.
- The rank r of $E(K)$ is difficult, but often small.
- E_{2} has rank 0 and $E_{2}(\mathbb{Q})=\mathbb{Z} / 4 \mathbb{Z}(1,2)$, while

Elliptic curves over \mathbb{Q}

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve E over \mathbb{Q} then $E(K)=($ finite $) \times \mathbb{Z}^{r}$.

- The finite torsion group is easy to determine.
- The rank r of $E(K)$ is difficult, but often small.
- E_{2} has rank 0 and $E_{2}(\mathbb{Q})=\mathbb{Z} / 4 \mathbb{Z}(1,2)$, while
- E_{1} has rank 1 and $E_{1}(\mathbb{Q})=\mathbb{Z}(0,1)$.

Elliptic curves over \mathbb{Q}

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve E over \mathbb{Q} then $E(K)=($ finite $) \times \mathbb{Z}^{r}$.

- The finite torsion group is easy to determine.
- The rank r of $E(K)$ is difficult, but often small.
- E_{2} has rank 0 and $E_{2}(\mathbb{Q})=\mathbb{Z} / 4 \mathbb{Z}(1,2)$, while
- E_{1} has rank 1 and $E_{1}(\mathbb{Q})=\mathbb{Z}(0,1)$.
- E_{101} has rank 2 and $E_{1}(\mathbb{Q})=\mathbb{Z}(4,13) \times \mathbb{Z}\left(-\frac{20}{9}, \frac{253}{27}\right)$.

Bryan Birch and Sir Peter Swinnerton-Dyer

Let E be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$.

Let E be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_{p} be the number of solutions of E modulo p.

Let E be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_{p} be the number of solutions of E modulo p. Consider the function

$$
f(X)=\prod_{\text {primes } p \leqslant X} \frac{N_{p}}{p}
$$

Let E be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$.
Let N_{p} be the number of solutions of E modulo p.
Consider the function

$$
f(X)=\prod_{\text {primes } p \leqslant X} \frac{N_{p}}{p}
$$

Conjecture

$f(X)$ stays bounded if and only if there are only finitely many solutions in \mathbb{Q}.

Conjecture
$f(X)$ grows like $\log (X)^{r}$, where r is the rank of $E(\mathbb{Q})$.

Conjecture

$f(X)$ grows like $\log (X)^{r}$, where r is the rank of $E(\mathbb{Q})$.

Sato-Tate by Taylor et al.

If E does not admit complex multiplication, then the values of $a_{p} /(2 \sqrt{p}) \in[-1,1]$ are distributed like $\frac{2}{\pi} \sqrt{1-t^{2}} d t$.

Sato-Tate by Taylor et al.

If E does not admit complex multiplication, then the values of $a_{p} /(2 \sqrt{p}) \in[-1,1]$ are distributed like $\frac{2}{\pi} \sqrt{1-t^{2}} d t$.

Sato-Tate for E_{1}

Sato-Tate by Taylor et al.

If E does not admit complex multiplication, then the values of $a_{p} /(2 \sqrt{p}) \in[-1,1]$ are distributed like $\frac{2}{\pi} \sqrt{1-t^{2}} d t$.

Sato-Tate for E_{2}

The L-series

Define

$$
L(E, s)=\prod_{p \text { good }} \frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

for $\operatorname{Re}(s)>\frac{3}{2}$.

The L-series

Define

$$
L(E, s)=\prod_{p \text { good }} \frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

for $\operatorname{Re}(s)>\frac{3}{2}$. Note

$$
" L(E, 1)=\prod_{p} \frac{p}{N_{p}}=\frac{1}{f(\infty)} " .
$$

The L-series

Define

$$
L(E, s)=\prod_{p \text { good }} \frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

for $\operatorname{Re}(s)>\frac{3}{2}$. Note

$$
" L(E, 1)=\prod_{p} \frac{p}{N_{p}}=\frac{1}{f(\infty)} "
$$

Weak Birch and Swinnerton-Dyer conjecture 1000000\$

The function $L(E, s)$ has a zero of order r, the rank of $E(\mathbb{Q})$, at $s=1$.

Results

Taylor-Wiles et al.
If E / \mathbb{Q}, then $L(E, s)$ has an analytic continuation to \mathbb{C}. In fact, $L(E, s)=L(f, s)$ for a modular form f.

Results

Taylor-Wiles et al.
If E / \mathbb{Q}, then $L(E, s)$ has an analytic continuation to \mathbb{C}.
In fact, $L(E, s)=L(f, s)$ for a modular form f.
Coates-Wiles, Gross-Zagier-Kolyvagin
If $r_{\mathrm{an}}=\operatorname{ord}_{s=1} L(E, s) \leqslant 1$, then $r_{\mathrm{an}}=r$.

The conjecture also predicts the leading term

$$
L(E, s)=L^{*}(E) \cdot(s-1)^{r}+\cdots
$$

in analogy to the class number formula.

The conjecture also predicts the leading term

$$
L(E, s)=L^{*}(E) \cdot(s-1)^{r}+\cdots
$$

in analogy to the class number formula.
Birch and Swinnerton-Dyer conjecture

$$
L^{*}(E)=\frac{\prod_{p} c_{p} \cdot \Omega \cdot \operatorname{Reg}(E / \mathbb{Q}) \cdot \# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- $\Omega \in \mathbb{R}$ is a period.

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E / \mathbb{Q}) \in \mathbb{R}$ is the regulator.

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E / \mathbb{Q}) \in \mathbb{R}$ is the regulator.
- $c_{p} \in \mathbb{Z}$ is a Tamagawa number.

Birch and Swinnerton-Dyer conjecture

$$
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}
$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E / \mathbb{Q}) \in \mathbb{R}$ is the regulator.
- $c_{p} \in \mathbb{Z}$ is a Tamagawa number.
- $\amalg(E / \mathbb{Q})$ is the mysterious Tate-Shafarevich group.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $Ш(E / K)$ is an abelian torsion group.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $Ш(E / K)$ is an abelian torsion group.
- It is believed to be finite.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $Ш(E / K)$ is an abelian torsion group.
- It is believed to be finite.
- It is known to be finite for \mathbb{Q} if and only if $r_{\mathrm{an}} \leqslant 1$.

The Tate-Shafarevich group

$$
Ш(E / K)=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

- $\amalg(E / K)$ is an abelian torsion group.
- It is believed to be finite.
- It is known to be finite for \mathbb{Q} if and only if $r_{\mathrm{an}} \leqslant 1$.
- If it is then the parity $r_{\mathrm{an}} \equiv r(\bmod 2)$ holds.

$$
\begin{gathered}
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \\
E_{2}: y^{2}=x^{3}+x+2, \quad r_{\mathrm{an}}=r=0
\end{gathered}
$$

- $L(E, 1) \cong 0.874549$
- $\Omega \cong 3.49819$
- $c_{2}=4$ and $c_{p}=1 \forall_{p \neq 2}$.
- $\operatorname{Reg}(E / \mathbb{Q})=1$
- $L(E, 1) / \Omega \cong 0.250000$.
- $\# E(\mathbb{Q})=4$
- $\amalg(E / \mathbb{Q})$ is trivial.
- In fact $L(E, 1) / \Omega=\frac{1}{4}$.

$$
\begin{gathered}
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \\
E_{2}: y^{2}=x^{3}+x+2, \quad r_{\mathrm{an}}=r=1
\end{gathered}
$$

- $L^{\prime}(E, 1) \cong 1.78581$
- $\Omega \cong 3.74994$
- $\operatorname{Reg}(E / \mathbb{Q}) \cong 0.476223$
- LHS $\cong 1.00000$.
- In fact it is 1 .

$$
\begin{gathered}
\frac{L^{*}(E)}{\Omega \cdot \operatorname{Reg}(E / \mathbb{Q})}=\frac{\prod_{p} c_{p} \cdot \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \\
E_{9}: y^{2}=x^{3}+x+101, \quad r_{\mathrm{an}}=r=2
\end{gathered}
$$

- $L^{*}(E) \cong 16.37120$
- $\Omega \cong 1.94006$
- $\operatorname{Reg}(E / \mathbb{Q}) \cong 8.43852$
- LHS $\cong 1.00000$.
- $c_{p}=1$.
- $E(\mathbb{Q})=\mathbb{Z}^{2}$
- $\amalg(E / \mathbb{Q})$ should be trivial.

Generalisations

- for higher genus curves
- for abelian varieties
- for general motives (Bloch-Kato conjectures)
- p-adic versions
- equivariant version

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime with $p \nmid a_{p}$.

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime with $p \nmid a_{p}$. There is a p-adic L-series $L_{p}(E, s) \in \mathbb{Z}_{p}$ for $s \in \mathbb{Z}_{p}$ such that $L_{p}(E, 1)=L(E, 1) / \Omega$.

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime with $p \nmid a_{p}$. There is a p-adic L-series $L_{p}(E, s) \in \mathbb{Z}_{p}$ for $s \in \mathbb{Z}_{p}$ such that $L_{p}(E, 1)=L(E, 1) / \Omega$.

p-adic Birch and Swinnerton-Dyer conjecture

$\operatorname{ord}_{s=1} L_{p}(E, s)=\operatorname{rank}(E)$ and there is a formula for the leading term.

p-adic version

Let E / \mathbb{Q} be an elliptic curve and p a good prime with $p \nmid a_{p}$. There is a p-adic L-series $L_{p}(E, s) \in \mathbb{Z}_{p}$ for $s \in \mathbb{Z}_{p}$ such that $L_{p}(E, 1)=L(E, 1) / \Omega$.
p-adic Birch and Swinnerton-Dyer conjecture
$\operatorname{ord}_{s=1} L_{p}(E, s)=\operatorname{rank}(E)$ and there is a formula for the leading term.

Kato's Euler system
We have $\operatorname{ord}_{s=1} L_{p}(E, s) \geqslant \operatorname{rank}(E)$.
p-adic Birch and Swinnerton-Dyer conjecture $\operatorname{ord}_{s=1} L_{p}(E, s)=\operatorname{rank}(E)$ and there is a formula for the leading term.
p-adic Birch and Swinnerton-Dyer conjecture $\operatorname{ord}_{s=1} L_{p}(E, s)=\operatorname{rank}(E)$ and there is a formula for the leading term.

Theorem

If E / \mathbb{Q} is semistable and $L(E, 1) \neq 0$, then BSD holds up to a power of 2.

p-adic Birch and Swinnerton-Dyer conjecture

$\operatorname{ord}_{s=1} L_{p}(E, s)=\operatorname{rank}(E)$ and there is a formula for the leading term.

Theorem

If E / \mathbb{Q} is semistable and $L(E, 1) \neq 0$, then BSD holds up to a power of 2 .

Shark

Given p, we have an algorithm giving an upper bound on r and the order of the p-primary part of $\amalg(E / \mathbb{Q})$.

We can show that $\amalg\left(E_{101} / \mathbb{Q}\right)$ has no 5-torsion.

