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Solve
v =x 4+ x + 101

for x and y in Q.

You may spot (4, 13) is a solution. And (4, —13), too.
A computer search:

(7@ @) (7§ @) (73007 51351)
9’27 ) 16" 64 676 " '~ 17576
Magic (?) : There is one with

_ 461285735025981099346806859730417760247715076968238718258561
15974308874451586407484146059951456672138509604202307089984 *
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Chords
[e]e] lelelele]

30 4
20+
I/__W
/Q* 2 4 6 s

20 \
-30 4

_ 3007 _5 1351
676 17576

Christian Wuthrich

Tangent at (4, 13) meets again at (
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v =x + x + 101
If y = Ax + v is the tangent at xy, then
~Ax+ )+ (P +x+101)=0

has a double solution at x = x.
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y2:x3+x+101

If y = Ax + v is the tangent at x, then
~Ax+ )+ (P +x+101)=0

has a double solution at x = x.
It factors as
(x—x0)%- (x—x1)=0

and xg, A, v and x; € Q.
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Are there infinitely many rational solutions over Q ?

Example

E,: y2:x3+x+2
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Are there infinitely many rational solutions over Q ?

Example

E,: y2 =X fx+2
has only three solutions (—1,0), (1,-2), and (1, 2).
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Are there infinitely many rational solutions over Q ?

Example

E;: y2: 34

X X
has infinitely many solutions. (0,1), (3, %), (72,611), ...
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Are there infinitely many rational solutions over Q ?
Example

E;: y2: 34

X
has infinitely many solutions. (0, 1),
The following x-coordinates are

x+1
(1,9, (72,611), ...

_ 287 43992 26862913 139455877527 _ 3596697936

1296° 82369 1493284 1824793048 8760772801
7549090222465 51865013741670864 173161424238594532415
8662944250944 ° 6504992707996225 °

" 310515636774481238884
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Elliptic curves
@0000

An elliptic curve E over a field K is
@ a projective curve of genus 1 with a specified base-point

O € E(K).
@ an non-singular equation of the form
E: v =x +Ax + B

for some A and B in K if char(K) > 3.
@ a projective curve with an algebraic group structure.

Our main question

How can we determine the set of solutions E(K) with
coordinates in K ?
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Addition on elliptic curves
E: yY=x4+Ax+B

This is an abelian group law on

E(K):
@ (P+Q)+R=P+(Q+R)
@ P+0=P

@ P+(—P)=0
e P+Q0=0+P
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Addition on elliptic curves
E: yY=x4+Ax+B

This is an abelian group law on

E(K):
@ (P+Q)+R=P+(Q+R)
@ P+0=P

@ P+(—P)=0
e P+Q0=0+P
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Elliptic curves over finite fields

p a prime number.
A, B € I, the field with p elements.
y2 =x +Ax + B

Then E(F,) is a finite group.
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Elliptic curves over finite fields

p a prime number.
A, B € I, the field with p elements.

v =x + Ax + B

Then E(F,) is a finite group.

Example

y? = x> +x + 101 has 88 solutions modulo 103.

Christian Wuthrich



Elliptic curves
[e]e] le]e}

Elliptic curves over finite fields

p a prime number.
A, B € I, the field with p elements.

v =x + Ax + B

Then E(F,) is a finite group.

Example

y? = x> +x + 101 has 88 solutions modulo 103.

Ny, = #E(Fp)
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Elliptic curves over finite fields

Curve sepc160k1

E: y¥=x*+17 with K = IF,
p = 1461501637330902918203684832716283019651637554291
N, = 1461501637330902918203686915170869725397159163571
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Elliptic curves over finite fields

Curve sepc160k1

E:yY=x+7 withk=F,
p = 1461501637330902918203684832716283019651637554291
N, = 1461501637330902918203686915170869725397159163571

Hasse-Weil bound

An elliptic curve E over I, satisfies
Ny =#E[F,)=p+1—a

with  |a,| < 2,/p.
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Mordell’s theorem

One can obtain all E(Q) from a finite set of points.
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Elliptic curves over Q

Mordell’s theorem

One can obtain all E(Q) from a finite set of points.

Mordell-Weil theorem

An elliptic curve E over Q then E(K) = (finite) x Z’.

@ The finite torsion group is easy to determine.
@ The rank r of E(K) is difficult, but often small.
@ E, has rank 0 and E»(Q) = %/4z (1,2), while
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Elliptic curves over Q

Mordell’s theorem

One can obtain all E(Q) from a finite set of points.

Mordell-Weil theorem

An elliptic curve E over Q then E(K) = (finite) x Z’.

@ The finite torsion group is easy to determine.
@ The rank r of E(K) is difficult, but often small.
@ E, has rank 0 and E»(Q) = %/4z (1,2), while

@ E; hasrank 1 and E;(Q) =Z (0, 1).

® Ejo hasrank 2 and E1(Q) = Z (4,13) x Z(—%, 22).
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Let E be an elliptic curve over Q with A, B € Z.
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Let E be an elliptic curve over Q with A, B € Z.
Let N, be the number of solutions of £ modulo p.
Consider the function

o= [ X

primes p<X

f(X) stays bounded if and only if there are only finitely many
solutions in Q.
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log f(X)
3.5¢

25¢ Ei:y?=x>+x+1.

15} Er:y?=x>+x+2.

1t WWWW'\H
0.5F
. log log X

12 1.4 1.6 1.8 2 2.2 24 26 2.8
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f(X) grows like log(X)", where r is the rank of E(Q).

log f(X

(X)
4
M Ei:yy=x>+x+1.
Ey:y? =x>+x+2.

. . . . . . . . . log log X
12 14 16 1.8 2 22 24 26 2.8

3.5}
3F
2.5}
2F
1.5}
1,
0.5}
0,
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Sato-Tate by Taylor et al.

If E does not admit complex multiplication, then the values of
ap/(2y/p) € [—1,1] are distributed like Zv/1 — A2d?.
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0000800

The L-series

Define

LEs) = [] ! =y

Pgoodl_ap‘l’ S+p-p ¥ n

for Re(s) > 3. Note

Weak Birch and Swinnerton-Dyer conjecture 1000000$

The function L(E, s) has a zero of order r, the rank of E(Q), at
s = 1.
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Results

Taylor-Wiles et al.

If E/Q, then L(E, s) has an analytic continuation to C.
In fact, L(E, s) = L(f, s) for a modular form f.
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Results

Taylor-Wiles et al.

If E/Q, then L(E, s) has an analytic continuation to C.
In fact, L(E, s) = L(f, s) for a modular form f.

Coates-Wiles, Gross-Zagier-Kolyvagin

If ran = ords— L(E,s) < 1,then rgn =r.
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The conjecture also predicts the leading term
L(E,s) =L*(E)- (s —1)" + -

in analogy to the class number formula.
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The conjecture also predicts the leading term
L(E,s) =L*(E)- (s —1)" + -

in analogy to the class number formula.

Birch and Swinnerton-Dyer conjecture

_ I, - Reg(E/Q) - #111(E/Q)

L*(E
“ (#E(Qtors)”
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Birch and Swinnerton-Dyer conjecture

L*(E) [1, ¢ - #11L(E/Q)

Q- Reg(E/Q) (#E(Q)tors)2

@ () € Ris a period.

@ Reg(E/Q) € R is the regulator.

@ ¢, € Zis a Tamagawa number.

@ III(E/Q) is the mysterious Tate-Shafarevich group.
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The Tate-Shafarevich group

III(E/K) = ker <H1(K,E) — HHI(KV,E))

@ III(E/K) is an abelian torsion group.
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The Tate-Shafarevich group

III(E/K) = ker <H1(K,E) — HHI(KV,E))

@ III(E/K) is an abelian torsion group.

@ ltis believed to be finite.

@ Itis known to be finite for Q if and only if r4n < 1.
@ If it is then the parity ran = r (mod 2) holds.
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/) Il #11(E/Q)

Q-Res(E/Q)  (#E(Q)tors)’

Ey iy = x> + x4 2, Fan=r=20
o L(E,1)20.874549
@ () =3.49819 @ co=4andc, = 1V,..
@ Reg(E/Q) =1 @ #E(Q) =4
@ L(E,1)/Q = 0.250000. o III(E/Q) is trivial.
@ Infact L(E, 1)/ = 1.
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L) Il,e #1II(E/Q)

Q- Reg(E/Q) (#E(Q)tors)2

E :y¥ =x +x+2  rm=r=1
o L/(E,1) = 1.78581

@ () =3.74994 °c,=1.
@ Reg(E/Q) = 0.476223 @ EQ) =7Z
@ LHS = 1.00000. e III(E/Q) is trivial.

@ Infactitis 1.
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L*(E) _ H cp - #UI(E/Q)
Q- Reg(E/Q) (#EQ)tors)

Ey : y* = x> + x + 101, Fan=r=2

e L*(E) = 16.37120 0, =1

@ ) = 1.94006 ° E(Q) = 72

® Reg(E/Q) = 8.43852 e III(E/Q) should be
e LHS = 1.00000. trivial.
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Generalisations

@ for higher genus curves

@ for abelian varieties

@ for general motives (Bloch-Kato conjectures)
@ p-adic versions

@ equivariant version
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Generalisations

oeo

p-adic version

Let £/Q be an elliptic curve and p a good prime with p 1 a,.
There is a p-adic L-series L,(E, s) € Z, for s € Z, such that
L,(E,1) =L(E,1)/Q.

p-adic Birch and Swinnerton-Dyer conjecture
ords—1 L,(E,s) = rank(E) and there is a formula for the leading
term.

Kato’s Euler system

We have ord,— L,(E,s) > rank(E).
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Generalisations
ooe

p-adic Birch and Swinnerton-Dyer conjecture

ords—1 L,(E, s) = rank(E) and there is a formula for the leading
term.

If E/Q is semistable and L(E, 1) # 0, then BSD holds up to a
power of 2.

Given p, we have an algorithm giving an upper bound on r and
the order of the p-primary part of I1I(E/Q).

We can show that II1(E;o; /Q) has no 5-torsion.

Christian Wuthrich
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