Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

The Birch and Swinnerton-Dyer conjecture

Christian Wuthrich

31 January $2^2 \cdot 5 \cdot 101$

< 67 >

Christian Wuthrich

Chorc ●ooc	ls 0000	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations
	Question				
	Solve		$y^2 = x^3 + x + 101$		

Chords ●oooooo	Elliptic curves	Weak BSD	Full BSD 000000	Generalisations
Question	ı			
Solve		$y^2 = x^3 + x + 101$		
for x and	y in \mathbb{Q} .			

Chords ●000000	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations
Quest	ion			

Solve

$$y^2 = x^3 + x + 101$$

for *x* and *y* in \mathbb{Q} .

You may spot (4, 13) is a solution. And (4, -13), too.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
●000000				

Solve

$$y^2 = x^3 + x + 101$$

for *x* and *y* in \mathbb{Q} .

You may spot (4,13) is a solution. And (4,-13), too. A computer search:

$$\left(-\frac{20}{9},\pm\frac{253}{27}\right), \ \left(-\frac{23}{16},\pm\frac{629}{64}\right) \ \left(-\frac{3007}{676},\,,\pm\frac{51351}{17576}\right)$$

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
●000000				

Solve

$$y^2 = x^3 + x + 101$$

for *x* and *y* in \mathbb{Q} .

You may spot (4,13) is a solution. And (4,-13), too. A computer search:

$$\left(-\frac{20}{9},\pm\frac{253}{27}\right), \ \left(-\frac{23}{16},\pm\frac{629}{64}\right) \ \left(-\frac{3007}{676},\,,\pm\frac{51351}{17576}\right)$$

Magic (?) : There is one with

 $x = -\frac{461285735025981099346806859730417760247715076968238718258561}{15974308874451586407484146059951456672138509604202307089984}.$

Chords o●ooooo	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations
	30 20			
	4 -2	2 4	6 8	
	-20			
	-30			
	y^2	$= x^3 + x + 1$	01	

1 🗗 🕨

Chords ooo●ooo	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

$$y^2 = x^3 + x + 101$$

< @ ►

Chords ooo●ooo	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

$$y^2 = x^3 + x + 101$$

If $y = \lambda x + \nu$ is the tangent at x_0 , then

$$-(\lambda x + \nu)^2 + (x^3 + x + 101) = 0$$

has a double solution at $x = x_0$.

Chords ooo●ooo	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

$$y^2 = x^3 + x + 101$$

If $y = \lambda x + \nu$ is the tangent at x_0 , then

$$-(\lambda x + \nu)^2 + (x^3 + x + 101) = 0$$

has a double solution at $x = x_0$. It factors as

$$(x - x_0)^2 \cdot (x - x_1) = 0$$

Chords ooo●ooo	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

$$y^2 = x^3 + x + 101$$

If $y = \lambda x + \nu$ is the tangent at x_0 , then

$$-(\lambda x + \nu)^2 + (x^3 + x + 101) = 0$$

has a double solution at $x = x_0$. It factors as

$$(x - x_0)^2 \cdot (x - x_1) = 0$$

and x_0, λ, ν and $x_1 \in \mathbb{Q}$.

Chords oooo●oo	Elliptic curves	Weak BSD ೦೦೦೦೦೦೦	Full BSD 000000	Generalisations
		30 20 10		
		2 4	6 8	
		-20		
		-30 -	\sim	

 $Chords = Secants \ work, \ too$

< 🗗 ►

Chords ooooo●o	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations
	30 -		/	
	-		*****	
	20 -		and the second s	
		2 4	6 8	
		2 7	0 0	
	-18			
	-20 -			
			-seeses	
	-30 -		\sim	
	O_{1} (20 253) O_{2}	anat ha raaaha	d from D (4.1	2)

 $Q = \left(-\frac{20}{9}, \frac{253}{27}\right)$ cannot be reached from P = (4, 13)

Chords oooooo●	Elliptic curves	Weak BSD 0000000	Full BSD 000000	Generalisations

Are there infinitely many rational solutions over \mathbb{Q} ?

Chords ○○○○○●	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

Are there infinitely many rational solutions over ${\mathbb Q}$?

Example

$$E_2:$$
 $y^2 = x^3 + x + 2$

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	0000000	000000	000

Are there infinitely many rational solutions over ${\mathbb Q}$?

Example

$$E_2:$$
 $y^2 = x^3 + x + 2$

has only three solutions (-1,0), (1,-2), and (1,2).

Chords ○○○○○○●	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

Are there infinitely many rational solutions over ${\mathbb Q}$?

Example

$$E_1:$$
 $y^2 = x^3 + x + 1$

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000				

Are there infinitely many rational solutions over ${\mathbb Q}$?

Example

$$E_1:$$
 $y^2 = x^3 + x + 1$

has infinitely many solutions. $(0, 1), (\frac{1}{4}, \frac{9}{4}), (72, 611), \ldots$

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	000000	000000	000

Are there infinitely many rational solutions over ${\mathbb Q}$?

Example

$$E_1:$$
 $y^2 = x^3 + x + 1$

has infinitely many solutions. (0, 1), $(\frac{1}{4}, \frac{9}{4})$, (72, 611), ... The following *x*-coordinates are

$-\frac{287}{1296}$,	$\frac{43992}{82369},$	$\frac{26862913}{1493284},$	$\frac{139455877527}{1824793048},$	$-\frac{3596697936}{8760772801},$
7549090222465 8662944250944	, -	$\frac{51865013741670864}{6504992707996225}$,	$-\frac{1731614242383}{3105156367744}$	$\frac{594532415}{481238884}, \ldots$

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	00000			

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

 a projective curve of genus 1 with a specified base-point O ∈ E(K).

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	00000			

- a projective curve of genus 1 with a specified base-point O ∈ E(K).
- an non-singular equation of the form

$$E: \qquad y^2 = x^3 + Ax + B$$

for some A and B in K.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	00000			

- a projective curve of genus 1 with a specified base-point O ∈ E(K).
- an non-singular equation of the form

$$E: \qquad y^2 = x^3 + Ax + B$$

for some A and B in K if char(K) > 3.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	00000			

- a projective curve of genus 1 with a specified base-point O ∈ E(K).
- an non-singular equation of the form

$$E: \qquad y^2 = x^3 + Ax + B$$

for some A and B in K if char(K) > 3.

• a projective curve with an algebraic group structure.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	00000			

- a projective curve of genus 1 with a specified base-point O ∈ E(K).
- an non-singular equation of the form

$$E: \qquad y^2 = x^3 + Ax + B$$

for some A and B in K if char(K) > 3.

• a projective curve with an algebraic group structure.

Our main question

How can we determine the set of solutions E(K) with coordinates in K ?

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	0000			

Addition on elliptic curves

$$E: \quad y^2 = x^3 + Ax + B$$

0000000	00000	0000000	000000	000
Add	ition on elliptic curves		8.	/
<i>E</i> :	$y^2 = x^3 + Ax + B$		6- 4- 2-	/
				2 3
			-6 -8	<∂>
Christian Wuthri	ch			

Ellis

0000000	0000	0000000	000000	000
Addi	tion on elliptic curve	es	8.	,
<i>E</i> :	$y^2 = x^3 + Ax + B$		Q	/
				2 3
			-2-	
Christian Wuthric	h		-8-	< 3 >

Elliptic curves Weak BSD Full BSD

Chords 0000000	Elliptic curves ○●○○○	Weak BSD ooooooo	Full BSD 000000	Generalisations
Addi E:	tion on elliptic curv $y^2 = x^3 + Ax + Ax$	res B	Particular de la constantina d	cool
Christian Wuthric	h			

Chords 0000000	Elliptic curves o●ooo	Weak BSD ooooooo	Full BSD 000000	Generalisations
Addi E:	tion on elliptic curv $y^2 = x^3 + Ax + A$	0000000 es B	000000 8- 6- 9- 9- 9- 9- 9- 9- 9- 9- 9- 9- 9- 9- 9-	R, <u>tt.</u> 2 3
Christian Wuthric	h			

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
			000000	

Addition on elliptic curves

$$E: \quad y^2 = x^3 + Ax + B$$

This is an abelian group law on E(K):

•
$$(P+Q) + R = P + (Q+R)$$

•
$$P + O = P$$

•
$$P + (-P) = O$$

•
$$P + Q = Q + P$$

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	0000			

Addition on elliptic curves

$$E: \quad y^2 = x^3 + Ax + B$$

This is an abelian group law on E(K):

- (P+Q) + R = P + (Q+R)
- P + O = P

•
$$P + (-P) = O$$

•
$$P + Q = Q + P$$

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	0000000	000000	000

Elliptic curves over finite fields

p a prime number. *A*, $B \in \mathbb{F}_p$, the field with *p* elements.

$$y^2 = x^3 + Ax + B$$

Then $E(\mathbb{F}_p)$ is a finite group.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	000000	000000	000

Elliptic curves over finite fields

p a prime number. *A*, $B \in \mathbb{F}_p$, the field with *p* elements.

$$y^2 = x^3 + Ax + B$$

Then $E(\mathbb{F}_p)$ is a finite group.

Example

 $y^2 = x^3 + x + 101$ has 88 solutions modulo 103.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	000000	000000	

Elliptic curves over finite fields

p a prime number. *A*, $B \in \mathbb{F}_p$, the field with *p* elements.

$$y^2 = x^3 + Ax + B$$

Then $E(\mathbb{F}_p)$ is a finite group.

Example

 $y^2 = x^3 + x + 101$ has 88 solutions modulo 103.

$$N_p = \#E(\mathbb{F}_p)$$
Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	0000000	000000	000

Elliptic curves over finite fields

Curve sepc160k1

$$E: y^2 = x^3 + 7$$
 with $K = \mathbb{F}_p$

p = 1461501637330902918203684832716283019651637554291

 $N_p = 1461501637330902918203686915170869725397159163571$

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	000000	000000	000

Elliptic curves over finite fields

Curve sepc160k1

$$E: y^2 = x^3 + 7$$
 with $K = \mathbb{F}_p$

p = 1461501637330902918203684832716283019651637554291

 $N_p = 1461501637330902918203686915170869725397159163571$

Hasse-Weil bound

An elliptic curve *E* over \mathbb{F}_p satisfies

$$N_p = \#E(\mathbb{F}_p) = p + 1 - a_p$$

with $|a_p| < 2\sqrt{p}$.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
0000000	0000●	ooooooo	000000	

Elliptic curves over \mathbb{Q}

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
0000000	0000●	ooooooo	000000	

Elliptic curves over ${\mathbb Q}$

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve *E* over \mathbb{Q} then $E(K) = (\text{finite}) \times \mathbb{Z}^r$.

The finite torsion group is easy to determine.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
0000000	0000●	ooooooo	000000	

Elliptic curves over ${\mathbb Q}$

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve *E* over \mathbb{Q} then $E(K) = (\text{finite}) \times \mathbb{Z}^r$.

- The finite torsion group is easy to determine.
- The rank r of E(K) is difficult, but often small.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	00000			

Elliptic curves over ${\mathbb Q}$

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve *E* over \mathbb{Q} then $E(K) = (\text{finite}) \times \mathbb{Z}^r$.

- The finite torsion group is easy to determine.
- The rank r of E(K) is difficult, but often small.

< 67 >

• E_2 has rank 0 and $E_2(\mathbb{Q}) = \mathbb{Z}_{4\mathbb{Z}}(1,2)$, while

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	00000			

Elliptic curves over \mathbb{Q}

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve *E* over \mathbb{Q} then $E(K) = (\text{finite}) \times \mathbb{Z}^r$.

- The finite torsion group is easy to determine.
- The rank r of E(K) is difficult, but often small.
- E_2 has rank 0 and $E_2(\mathbb{Q}) = \mathbb{Z}_{4\mathbb{Z}}(1,2)$, while
- E_1 has rank 1 and $E_1(\mathbb{Q}) = \mathbb{Z}(0, 1)$.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
	00000			

Elliptic curves over \mathbb{Q}

Mordell's theorem

One can obtain all $E(\mathbb{Q})$ from a finite set of points.

Mordell-Weil theorem

An elliptic curve *E* over \mathbb{Q} then $E(K) = (\text{finite}) \times \mathbb{Z}^r$.

- The finite torsion group is easy to determine.
- The rank r of E(K) is difficult, but often small.
- E_2 has rank 0 and $E_2(\mathbb{Q}) = \mathbb{Z}_{4\mathbb{Z}}(1,2)$, while
- E_1 has rank 1 and $E_1(\mathbb{Q}) = \mathbb{Z}(0,1)$.
- E_{101} has rank 2 and $E_1(\mathbb{Q}) = \mathbb{Z}(4, 13) \times \mathbb{Z}(-\frac{20}{9}, \frac{253}{27}).$

CI	hoi	rds		
	00	oc	00	

Weak BSD

Full BSD

Generalisations

Bryan Birch and Sir Peter Swinnerton-Dyer

Chords 0000000	Elliptic curves	Weak BSD o●ooooo	Full BSD	Generalisations

Let *E* be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$.

Chords 0000000	Elliptic curves	Weak BSD o●ooooo	Full BSD 000000	Generalisations

Let *E* be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_p be the number of solutions of *E* modulo *p*.

Chords 0000000	Elliptic curves	Weak BSD o●ooooo	Full BSD 000000	Generalisations

Let *E* be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_p be the number of solutions of *E* modulo *p*. Consider the function

$$f(X) = \prod_{\text{primes } p \leqslant X} \frac{N_p}{p}$$

Chords 0000000	Elliptic curves	Weak BSD o●ooooo	Full BSD 000000	Generalisations

Let *E* be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$. Let N_p be the number of solutions of *E* modulo *p*. Consider the function

$$f(X) = \prod_{\text{primes } p \leqslant X} \frac{N_p}{p}$$

Conjecture

f(X) stays bounded if and only if there are only finitely many solutions in \mathbb{Q} .

Chords 0000000	Elliptic curves	Weak BSD oo●oooo	Full BSD 000000	Generalisations

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations

Conjecture

f(X) grows like $\log(X)^r$, where *r* is the rank of $E(\mathbb{Q})$.

Chords 0000000	Elliptic curves	Weak BSD oo●oooo	Full BSD 000000	Generalisations
Conjec	cture			
f(X) gr	rows like $\log(X)^r$,	where r is the ra	ank of $E(\mathbb{Q})$.	

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
		0000000		

Sato-Tate by Taylor et al.

If *E* does not admit complex multiplication, then the values of $a_p/(2\sqrt{p}) \in [-1, 1]$ are distributed like $\frac{2}{\pi}\sqrt{1-t^2}dt$.

Chords 0000000	Elliptic curves	Weak BSD ooo●ooo	Full BSD 000000	Generalisations

Sato-Tate by Taylor et al.

If *E* does not admit complex multiplication, then the values of $a_p/(2\sqrt{p}) \in [-1,1]$ are distributed like $\frac{2}{\pi}\sqrt{1-t^2}dt$.

(日)

Chords 0000000	Elliptic curves	Weak BSD	Full BSD 000000	Generalisations

Sato-Tate by Taylor et al.

If *E* does not admit complex multiplication, then the values of $a_p/(2\sqrt{p}) \in [-1, 1]$ are distributed like $\frac{2}{\pi}\sqrt{1-t^2}dt$.

(日)

Chords 0000000	Elliptic curves	Weak BSD oooo●oo	Full BSD 000000	Generalisations

The *L*-series

Define

$$L(E,s) = \prod_{p \text{ good}} \frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

for $\operatorname{Re}(s) > \frac{3}{2}$.

< 🗗 >

Chords 0000000	Elliptic curves	Weak BSD oooo●oo	Full BSD 000000	Generalisations

The *L*-series

Define

$$L(E,s) = \prod_{p \text{ good}} \frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

for $\operatorname{Re}(s) > \frac{3}{2}$. Note

"
$$L(E, 1) = \prod_{p} \frac{p}{N_p} = \frac{1}{f(\infty)}$$
 ".

Chords 0000000	Elliptic curves	Weak BSD oooo●oo	Full BSD 000000	Generalisations

The *L*-series

Define

$$L(E,s) = \prod_{p \text{ good}} \frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

for
$$\operatorname{Re}(s) > \frac{3}{2}$$
. Note

"
$$L(E, 1) = \prod_{p} \frac{p}{N_{p}} = \frac{1}{f(\infty)}$$
 ".

Weak Birch and Swinnerton-Dyer conjecture 1000000\$ The function L(E, s) has a zero of order r, the rank of $E(\mathbb{Q})$, at s = 1.

< 🗇 >

Christian Wuthrich

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
		0000000		

1 🗗 🕨

Chords 0000000	Elliptic curves	Weak BSD oooooo●	Full BSD 000000	Generalisations

Results

Taylor-Wiles et al.

If E/\mathbb{Q} , then L(E, s) has an analytic continuation to \mathbb{C} . In fact, L(E, s) = L(f, s) for a modular form f.

Chords 0000000	Elliptic curves	Weak BSD oooooo●	Full BSD 000000	Generalisations

Taylor-Wiles et al.

If E/\mathbb{Q} , then L(E, s) has an analytic continuation to \mathbb{C} . In fact, L(E, s) = L(f, s) for a modular form f.

Coates-Wiles, Gross-Zagier-Kolyvagin

If $r_{an} = \operatorname{ord}_{s=1} L(E, s) \leq 1$, then $r_{an} = r$.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD ●00000	Generalisations

The conjecture also predicts the leading term

$$L(E,s) = L^*(E) \cdot (s-1)^r + \cdots$$

in analogy to the class number formula.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD ●ooooo	Generalisations

The conjecture also predicts the leading term

$$L(E,s) = L^*(E) \cdot (s-1)^r + \cdots$$

in analogy to the class number formula.

$$L^{*}(E) = \frac{\prod_{p} c_{p} \cdot \Omega \cdot \operatorname{Reg}(E/\mathbb{Q}) \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^{2}}$$

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD o●oooo	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD o●oooo	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

• $\Omega \in \mathbb{R}$ is a period.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD o●oooo	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E/\mathbb{Q}) \in \mathbb{R}$ is the regulator.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD o●oooo	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E/\mathbb{Q}) \in \mathbb{R}$ is the regulator.
- $c_p \in \mathbb{Z}$ is a Tamagawa number.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD o●oooo	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \# \operatorname{III}(E/\mathbb{Q})}{\left(\# E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

- $\Omega \in \mathbb{R}$ is a period.
- $\operatorname{Reg}(E/\mathbb{Q}) \in \mathbb{R}$ is the regulator.
- $c_p \in \mathbb{Z}$ is a Tamagawa number.
- $III(E/\mathbb{Q})$ is the mysterious Tate-Shafarevich group.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	000000	00000	

$$\operatorname{III}(E/K) = \ker \left(H^1(K,E)
ightarrow \prod_{\nu} H^1(K_{
u},E)
ight)$$

• III(E/K) is an abelian torsion group.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	000000	00000	

$$\operatorname{III}(E/K) = \ker \left(H^1(K,E)
ightarrow \prod_{\nu} H^1(K_{
u},E)
ight)$$

< 67 >

- III(E/K) is an abelian torsion group.
- It is believed to be finite.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	000000	00000	

$$\operatorname{III}(E/K) = \operatorname{ker} \left(H^1(K,E)
ightarrow \prod_{\nu} H^1(K_{
u},E)
ight)$$

- III(E/K) is an abelian torsion group.
- It is believed to be finite.
- It is known to be finite for \mathbb{Q} if and only if $r_{an} \leq 1$.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
000000	00000	000000	00000	

$$\operatorname{III}(E/K) = \operatorname{ker} \left(H^1(K,E)
ightarrow \prod_{\nu} H^1(K_{
u},E)
ight)$$

- III(E/K) is an abelian torsion group.
- It is believed to be finite.
- It is known to be finite for \mathbb{Q} if and only if $r_{an} \leq 1$.
- If it is then the parity $r_{an} \equiv r \pmod{2}$ holds.
| Chords
0000000 | Elliptic curves | Weak BSD
ooooooo | Full BSD
000000 | Generalisations |
|-------------------|-----------------|---------------------|--------------------|-----------------|
| | | | | |

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$
$$E_2 : y^2 = x^3 + x + 2, \qquad r_{\operatorname{an}} = r = 0$$

- $L(E,1) \cong 0.874549$
- $\Omega \cong 3.49819$
- $\operatorname{Reg}(E/\mathbb{Q}) = 1$
- $L(E, 1)/\Omega \cong 0.250000.$
- In fact $L(E,1)/\Omega = \frac{1}{4}$.

• $c_2 = 4$ and $c_p = 1 \forall_{p \neq 2}$.

•
$$\#E(\mathbb{Q}) = 4$$

• $\operatorname{III}(E/\mathbb{Q})$ is trivial.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD oooo●o	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$
$$E_2 : y^2 = x^3 + x + 2, \qquad r_{\operatorname{an}} = r = 1$$

•
$$L'(E,1) \cong 1.78581$$

• $\Omega \cong 3.74994$

•
$$\operatorname{Reg}(E/\mathbb{Q}) \cong 0.476223$$

- LHS \approx 1.00000.
- In fact it is 1.

•
$$c_p = 1$$
.

•
$$E(\mathbb{Q}) = \mathbb{Z}$$

• $\operatorname{III}(E/\mathbb{Q})$ is trivial.

< 🗗 >

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD ooooo●	Generalisations

$$\frac{L^*(E)}{\Omega \cdot \operatorname{Reg}(E/\mathbb{Q})} = \frac{\prod_p c_p \cdot \#\operatorname{III}(E/\mathbb{Q})}{\left(\#E(\mathbb{Q})_{\operatorname{tors}}\right)^2}$$

$$E_9 : y^2 = x^3 + x + 101, \quad r_{\operatorname{an}} = r = 2$$
• $L^*(E) \cong 16.37120$
• $c_p = 1.$
• $\Omega \cong 1.94006$
• $E(\mathbb{Q}) = \mathbb{Z}^2$

• $\operatorname{III}(E/\mathbb{Q})$ should be trivial.

Ω

• $\operatorname{Reg}(E/\mathbb{Q}) \cong 8.43852$

• LHS \cong 1.00000.

Chords	Elliptic curves	Weak BSD	Full BSD	Generalisations
				000

Generalisations

- for higher genus curves
- for abelian varieties
- for general motives (Bloch-Kato conjectures)
- p-adic versions
- equivariant version

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD	Generalisations ○●○
p-adic v	ersion			

Let E/\mathbb{Q} be an elliptic curve and p a good prime with $p \nmid a_p$.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD	Generalisations ○●○
p-adic ve	ersion			

Let E/\mathbb{Q} be an elliptic curve and p a good prime with $p \nmid a_p$. There is a *p*-adic *L*-series $L_p(E, s) \in \mathbb{Z}_p$ for $s \in \mathbb{Z}_p$ such that $L_p(E, 1) = L(E, 1)/\Omega$.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations ○●○

p-adic version

Let E/\mathbb{Q} be an elliptic curve and p a good prime with $p \nmid a_p$. There is a *p*-adic *L*-series $L_p(E, s) \in \mathbb{Z}_p$ for $s \in \mathbb{Z}_p$ such that $L_p(E, 1) = L(E, 1)/\Omega$.

p-adic Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L_p(E, s) = \operatorname{rank}(E)$ and there is a formula for the leading term.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD	Generalisations ○●○

p-adic version

Let E/\mathbb{Q} be an elliptic curve and p a good prime with $p \nmid a_p$. There is a *p*-adic *L*-series $L_p(E, s) \in \mathbb{Z}_p$ for $s \in \mathbb{Z}_p$ such that $L_p(E, 1) = L(E, 1)/\Omega$.

p-adic Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L_p(E, s) = \operatorname{rank}(E)$ and there is a formula for the leading term.

Kato's Euler system

We have $\operatorname{ord}_{s=1} L_p(E, s) \ge \operatorname{rank}(E)$.

Chords 0000000	Elliptic curves	Weak BSD 0000000	Full BSD 000000	Generalisations

p-adic Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L_p(E, s) = \operatorname{rank}(E)$ and there is a formula for the leading term.

Chords 0000000	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

p-adic Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L_p(E, s) = \operatorname{rank}(E)$ and there is a formula for the leading term.

Theorem

If E/\mathbb{Q} is semistable and $L(E, 1) \neq 0$, then BSD holds up to a power of 2.

Chords 000000	Elliptic curves	Weak BSD ooooooo	Full BSD 000000	Generalisations

p-adic Birch and Swinnerton-Dyer conjecture

 $\operatorname{ord}_{s=1} L_p(E, s) = \operatorname{rank}(E)$ and there is a formula for the leading term.

Theorem

If E/\mathbb{Q} is semistable and $L(E, 1) \neq 0$, then BSD holds up to a power of 2.

Shark

Given *p*, we have an algorithm giving an upper bound on *r* and the order of the *p*-primary part of $\operatorname{III}(E/\mathbb{Q})$.

< 67 >

We can show that $\operatorname{III}(E_{101}/\mathbb{Q})$ has no 5-torsion.