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Question
Solve

y2 = x3 + x + 101

for x and y in Q.

You may spot (4, 13) is a solution. And (4,−13), too.
A computer search:(

−20
9
, ±253

27

)
,
(
−23

16
, ±629

64

) (
−3007

676
, ,±51351

17576

)
Magic (?) : There is one with

x = − 461285735025981099346806859730417760247715076968238718258561
15974308874451586407484146059951456672138509604202307089984 .

Christian Wuthrich



Chords Elliptic curves Weak BSD Full BSD Generalisations

Question
Solve

y2 = x3 + x + 101

for x and y in Q.

You may spot (4, 13) is a solution. And (4,−13), too.
A computer search:(

−20
9
, ±253

27

)
,
(
−23

16
, ±629

64

) (
−3007

676
, ,±51351

17576

)
Magic (?) : There is one with

x = − 461285735025981099346806859730417760247715076968238718258561
15974308874451586407484146059951456672138509604202307089984 .

Christian Wuthrich



Chords Elliptic curves Weak BSD Full BSD Generalisations

Question
Solve

y2 = x3 + x + 101

for x and y in Q.

You may spot (4, 13) is a solution. And (4,−13), too.

A computer search:(
−20

9
, ±253

27

)
,
(
−23

16
, ±629

64

) (
−3007

676
, ,±51351

17576

)
Magic (?) : There is one with

x = − 461285735025981099346806859730417760247715076968238718258561
15974308874451586407484146059951456672138509604202307089984 .

Christian Wuthrich



Chords Elliptic curves Weak BSD Full BSD Generalisations

Question
Solve

y2 = x3 + x + 101

for x and y in Q.

You may spot (4, 13) is a solution. And (4,−13), too.
A computer search:(

−20
9
, ±253

27

)
,
(
−23

16
, ±629

64

) (
−3007

676
, ,±51351

17576

)

Magic (?) : There is one with

x = − 461285735025981099346806859730417760247715076968238718258561
15974308874451586407484146059951456672138509604202307089984 .

Christian Wuthrich



Chords Elliptic curves Weak BSD Full BSD Generalisations

Question
Solve

y2 = x3 + x + 101

for x and y in Q.

You may spot (4, 13) is a solution. And (4,−13), too.
A computer search:(

−20
9
, ±253

27

)
,
(
−23

16
, ±629

64

) (
−3007

676
, ,±51351

17576

)
Magic (?) : There is one with

x = − 461285735025981099346806859730417760247715076968238718258561
15974308874451586407484146059951456672138509604202307089984 .

Christian Wuthrich



Chords Elliptic curves Weak BSD Full BSD Generalisations

y2 = x3 + x + 101
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Tangent at (4, 13) meets again at
(
−3007

676 ,−
51351
17576

)
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y2 = x3 + x + 101

If y = λ x + ν is the tangent at x0, then

−(λ x + ν)2 + (x3 + x + 101) = 0

has a double solution at x = x0.
It factors as

(x− x0)2 · (x− x1) = 0

and x0, λ, ν and x1 ∈ Q.
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Chords = Secants work, too
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Q =
(
−20

9 ,
253
27

)
cannot be reached from P = (4, 13)
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Question
Are there infinitely many rational solutions over Q ?

Example

:
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Question
Are there infinitely many rational solutions over Q ?

Example

:

E2 : y2 = x3 + x + 2

has only three solutions (−1, 0), (1,−2), and (1, 2).
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E1 : y2 = x3 + x + 1
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Question
Are there infinitely many rational solutions over Q ?

Example

:

E1 : y2 = x3 + x + 1

has infinitely many solutions. (0, 1), (1
4 ,

9
4), (72, 611), . . .

The following x-coordinates are

− 287
1296 ,

43992
82369 ,

26862913
1493284 ,

139455877527
1824793048 , −3596697936

8760772801 ,
7549090222465
8662944250944 ,

51865013741670864
6504992707996225 , −173161424238594532415

310515636774481238884 , . . .
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An elliptic curve E over a field K is

a projective curve of genus 1 with a specified base-point
O ∈ E(K).
an non-singular equation of the form

E : y2 = x3 + A x + B

for some A and B in K

if char(K) > 3.

a projective curve with an algebraic group structure.

Our main question

How can we determine the set of solutions E(K) with
coordinates in K ?
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Addition on elliptic curves

E : y2 = x3 + A x + B

This is an abelian group law on
E(K):

(P + Q) + R = P + (Q + R)

P + O = P

P + (−P) = O

P + Q = Q + P
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Elliptic curves over finite fields

p a prime number.
A, B ∈ Fp, the field with p elements.

y2 = x3 + A x + B

Then E(Fp) is a finite group.

Example

y2 = x3 + x + 101 has 88 solutions modulo 103.

Np = #E(Fp)
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Elliptic curves over finite fields

Curve sepc160k1

E : y2 = x3 + 7 with K = Fp

p = 1461501637330902918203684832716283019651637554291

Np = 1461501637330902918203686915170869725397159163571

Hasse-Weil bound
An elliptic curve E over Fp satisfies

Np = #E(Fp) = p + 1− ap

with |ap| < 2
√

p.
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Elliptic curves over Q

Mordell’s theorem
One can obtain all E(Q) from a finite set of points.

Mordell-Weil theorem
An elliptic curve E over Q then E(K) = (finite)× Zr.

The finite torsion group is easy to determine.
The rank r of E(K) is difficult, but often small.
E2 has rank 0 and E2(Q) = Z/4Z (1, 2), while
E1 has rank 1 and E1(Q) = Z (0, 1).
E101 has rank 2 and E1(Q) = Z (4, 13)× Z(− 20

9 ,
253
27 ).

Christian Wuthrich
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Bryan Birch and Sir Peter Swinnerton-Dyer
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Let E be an elliptic curve over Q with A,B ∈ Z.

Let Np be the number of solutions of E modulo p.
Consider the function

f (X) =
∏

primes p6X

Np

p

Conjecture

f (X) stays bounded if and only if there are only finitely many
solutions in Q.
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Conjecture

f (X) grows like log(X)r, where r is the rank of E(Q).

E1 : y2 = x3 + x + 1.
E2 : y2 = x3 + x + 2.
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Sato-Tate by Taylor et al.
If E does not admit complex multiplication, then the values of
ap/(2

√
p) ∈ [−1, 1] are distributed like 2

π

√
1− t2dt.
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Sato-Tate by Taylor et al.
If E does not admit complex multiplication, then the values of
ap/(2

√
p) ∈ [−1, 1] are distributed like 2

π

√
1− t2dt.

Sato-Tate for E2
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The L-series

Define

L(E, s) =
∏

p good

1
1− ap · p−s + p · p−2s =

∞∑
n=1

an

ns

for Re(s) > 3
2 .

Note

“ L(E, 1) =
∏

p

p
Np

=
1

f (∞)
”.

Weak Birch and Swinnerton-Dyer conjecture 1000000$

The function L(E, s) has a zero of order r, the rank of E(Q), at
s = 1.
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Results

Taylor-Wiles et al.

If E/Q, then L(E, s) has an analytic continuation to C.
In fact, L(E, s) = L(f , s) for a modular form f .

Coates-Wiles, Gross-Zagier-Kolyvagin

If ran = ords=1 L(E, s) 6 1, then ran = r.

Christian Wuthrich
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The conjecture also predicts the leading term

L(E, s) = L∗(E) · (s− 1)r + · · ·

in analogy to the class number formula.

Birch and Swinnerton-Dyer conjecture

L∗(E) =

∏
p cp · Ω · Reg(E/Q) ·#X(E/Q)(

#E(Q)tors
)2

Christian Wuthrich
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Birch and Swinnerton-Dyer conjecture

L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

Ω ∈ R is a period.
Reg(E/Q) ∈ R is the regulator.
cp ∈ Z is a Tamagawa number.
X(E/Q) is the mysterious Tate-Shafarevich group.
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The Tate-Shafarevich group

X(E/K) = ker

(
H1(K,E)→

∏
v

H1(Kv,E)

)

X(E/K) is an abelian torsion group.

It is believed to be finite.
It is known to be finite for Q if and only if ran 6 1.
If it is then the parity ran ≡ r (mod 2) holds.
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L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

E2 : y2 = x3 + x + 2, ran = r = 0

L(E, 1) ∼= 0.874549

Ω ∼= 3.49819

Reg(E/Q) = 1

L(E, 1)/Ω ∼= 0.250000.
In fact L(E, 1)/Ω = 1

4 .

c2 = 4 and cp = 1 ∀p6=2.
#E(Q) = 4

X(E/Q) is trivial.
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L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

E2 : y2 = x3 + x + 2, ran = r = 1

L′(E, 1) ∼= 1.78581

Ω ∼= 3.74994

Reg(E/Q) ∼= 0.476223

LHS ∼= 1.00000.
In fact it is 1.

cp = 1.
E(Q) = Z
X(E/Q) is trivial.
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L∗(E)

Ω · Reg(E/Q)
=

∏
p cp ·#X(E/Q)(

#E(Q)tors
)2

E9 : y2 = x3 + x + 101, ran = r = 2

L∗(E) ∼= 16.37120

Ω ∼= 1.94006

Reg(E/Q) ∼= 8.43852

LHS ∼= 1.00000.

cp = 1.
E(Q) = Z2

X(E/Q) should be
trivial.
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Generalisations

for higher genus curves
for abelian varieties
for general motives (Bloch-Kato conjectures)
p-adic versions
equivariant version
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p-adic version

Let E/Q be an elliptic curve and p a good prime with p - ap.

There is a p-adic L-series Lp(E, s) ∈ Zp for s ∈ Zp such that
Lp(E, 1) = L(E, 1)/Ω.

p-adic Birch and Swinnerton-Dyer conjecture

ords=1 Lp(E, s) = rank(E) and there is a formula for the leading
term.

Kato’s Euler system

We have ords=1 Lp(E, s) > rank(E).
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p-adic Birch and Swinnerton-Dyer conjecture

ords=1 Lp(E, s) = rank(E) and there is a formula for the leading
term.

Theorem
If E/Q is semistable and L(E, 1) 6= 0, then BSD holds up to a
power of 2.

Shark
Given p, we have an algorithm giving an upper bound on r and
the order of the p-primary part of X(E/Q).

We can show that X(E101/Q) has no 5-torsion.
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