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5 Gaussian Integers and sums of squares

Aims of this chapter: to discover things about the arithmetic of Z by passing to larger number
rings.

The Gaussian integers

De�nition. The set of Gaussian integers is Z[i] = {a+ b i | a, b ∈ Z}.

Remark. Z[i] is closed under addition and multiplication, and contains Z: it is a subring of
C. It is not a �eld: dividing one Gaussian integer by another results in an element of Q(i)
with rational real and imaginary parts.

Questions: What does Z[i] look like? Does it have an \arithmetic" like that of Z? What are
\Gaussian primes"?

Remark. Note that (1 + i)(1 − i) = 2, so the number 2 is \not prime" in Z[i]. Neither is 5,
since 5 = (1 + 2i)(1− 2i). What about 3 = (−1)(−3) = i(−3i)?

De�nition. An element α ∈ Z[i] is a unit, or invertible element, if there exists a β ∈ Z[i] such
that α · β = 1. Two elements α and β in Z[i] are called associate to each other if α = γβ for
some unit γ.

To answer the above questions properly we �rst need to decide what the units of Z[i] are.
As well as ±1 there are also ±i since i(−i) = 1. Are there any more? To decide this we'll
introduce a function on Z[i] called the norm.

De�nition. The function N: Z[i]→ Z, called the norm, is de�ned by

N(a+ bi) = (a+ bi)(a− bi) = a2 + b2,

so N(α) = α · α.

Lemma 5.1 (Properties of the norm).

a). N(α) = 0 if and only if α = 0;

b). N(α · β) = N(α) ·N(β);

c). N(α) = 1 if and only if α is a unit in Z[i];

d). {1, i,−1,−i} is the complete set of units of Z[i].

Proof. a). is obvious.

b). We have
N(α · β) = (α · β) · α · β = α · α · β · β = N(α) ·N(β) .

c). If N(α) = 1 then α · α = 1 and since α is also in Z[i], we must have that α is a unit.
Conversely, if α · β = 1 for some β ∈ Z[i], then N(α) ·N(β) = 1 and since both N(α) and
N(β) are positive integers, we have N(α) = N(β) = 1.

d). We �nd all the units by solving N(α) = 1. If α = a+b i, then a2+b2 = 1 gives that either
a or b must be 0 and the other ±1.
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Theorem 5.2 (Euclidian division in Z[i]). Given α and β 6= 0 in Z[i], there exists κ and ρ in
Z[i] such that

α = κ · β + ρ and N(ρ) < N(β) .

We call κ the κuotient and ρ the ρemainder.
Proof. The vector from 0 to iβ is
perpendicular to the vector from
0 to β in the complex plane C =
R2. So the set

β · Z[i] = {κ · β | κ ∈ Z[i]}

forms a lattice of squares with
side length |β| =

√
N(β). Our

given α belongs to at least one
of these squares. Let κ · β be a
closest corner of this square, i.e.
an element in β · Z[i] of smal-
lest distance to α. Put ρ = α −
κβ ∈ Z[i]. So |ρ| is smaller or
equal than half the diagonal of
the square. So

√
N(ρ) = |ρ| 6

√
2

2
· |β| <

√
N(β) .

De�nition. We say that α in Z[i] divides β in Z[i], denoted by α | β if there is a γ ∈ Z[i] such
that β = γ · α.

De�nition. An element δ ∈ Z[i] is called a a greatest common divisor of α and β, if δ is an
element in Z[i] of maximal norm such that δ | α and δ | β.

Note that if ε is a unit in Z[i] and δ a greatest common divisor of α and β then ε · δ is also
a greatest common divisor. A greatest common divisor can be computed with the Euclidian
algorithm using the previous theorem. See the example below. The algorithm also yields
two Gaussian integers ξ and η such that a chosen greatest common divisor δ can be written
as δ = ξα+ ηβ. Conversely to the above, any two gcd(α, β) are obtained by multiplying with
a unit. See problem sheet.
Let α = 1 − 8 i and β = 5 + 5 i. So N(α) = 65 and N(β) = 50. If κ = −1 − i, then ρ = 1 + 2 i
with N(ρ) = 5 < N(β).

α = 1− 8 i = (−1− i) · β + (1 + 2 i) .

In the next step we try to divide β by ρ = 1 + 2 i. But actually β lies on the lattice ρZ[i]. We
�nd

β = (3− i) · ρ+ 0 .

Hence 1 + 2i is a greatest common divisor of α and β.

De�nition. An element π ∈ Z[i] is called a Gaussian prime if N(π) > 1 and the following holds:
if, for any α and β ∈ Z[i] such that π divides α · β, then π divides α or β.

Lemma 5.3. Let 0 6= π ∈ Z[i]. The following are equivalent

• π is a Gaussian prime



Further Number Theory G13FNT cw '11

• If, for some α and β ∈ Z[i] we have π = α · β, then α or β is a unit.

Proof. ⇓: If π = α · β, then π | α · β. Without loss of generality, we may assume that there is
γ ∈ Z[i] such that α = πγ. Then π = πγβ, so γβ = 1 shows that β is a unit and α is not a unit
because π is not.
⇑: Suppose π divides α · β. Let δ be a gcd(α, π). So there is a γ such that π = γδ. By
assumption, either δ or γ is a unit. If γ is a unit then πγ−1 = δ divides α. So π divides α.
Otherwise δ is a unit. As δ = ξα+ ηβ for some ξ, η ∈ Z[i], we get that π divides δβ and hence
β.

Lemma 5.4. If π ∈ Z[i] is such that N(π) is a prime number then π is a Gaussian prime

Proof. If π = α · β then N(α) ·N(β) = N(π). So either N(α) = 1 or N(β) = 1.

Example. 1 + i is a Gaussian prime of norm 2. Also 1 + 2 i of norm 5 is a Gaussian prime. So
5 = (1 + 2 i) · (1− 2 i) is not a Gaussian prime. But q = 3 or q = 7 are Gaussian primes:

Lemma 5.5. Let q be a prime number with q ≡ 3 (mod 4). Then q ∈ Z[i] is a Gaussian prime.

Proof. If q = α · β for α = a + b i and β ∈ Z[i], then q2 = N(q) = N(α) · N(β). But N(α) =
a2 + b2 = q ≡ 3 (mod 4) is not possible for a, b ∈ Z. So either N(α) = 1 or N(β) = 1.

Lemma 5.6. Let p be a prime number with p ≡ 1 (mod 4). Then there exists a Gaussian prime
π such that p = π · π.

Proof. By quadratic reciprocity, p ≡ 1 (mod 4) implies (−1p ) = +1. So there is a c ∈ Z such

that c2 ≡ −1 (mod p). Hence p divides (c− i)(c+ i) in Z[i]. But p does not divide c+ i or c− i.
Therefore p is not a Gaussian prime. Hence there is α · β, both non-units, with p = α · β. By
p2 = N(p) = N(α) · N(β), we must have N(α) = p and hence π = α is a Gaussian prime. And
p = N(π) = ππ.

Proposition 5.7. Up to associates, the Gaussian primes are the following :

• 1 + i is a Gaussian prime of norm 2.

• For each prime number p ≡ 1 (mod 4) there are exactly two Gaussian primes π and π
of norm p.

• Each prime number q ≡ 3 (mod 4) is a Gaussian prime of norm q2.

Proof. All in the list are Gaussian primes. Let α be a Gaussian prime. Then there is a prime
p dividing N(α). In the above list we �nd a Gaussian prime π dividing p, so π | p | αα. So
either π or the Gaussian prime π divides α, and hence is associate to it. So α is in the above
list.

A complete set of non-associate Gaussian primes Pi is a set of Gaussian primes such that for
each Gaussian prime π there is exactly one of the four associates in Pi.
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Theorem 5.8. Let Pi be a complete set of non-associate Gaussian primes. Every 0 6= α ∈ Z[i]
can be written as

α = in ·
∏
π∈Pi

πaπ

for some 0 6 n < 4 and aπ > 0. All but a �nite number of aπ are zero and aπ = ordπ(α) is the
highest power of π dividing α.

Proof. Existence is proved by induction on N(α). If N(α) = 1 then α = in. If N(α) > 1, then
there is a Gaussian prime π dividing α, so α = πβ for some β ∈ Z[i]. By induction hypothesis
β has a factorisation, then so does α.
Suppose now α had two distinct factorisation of the above form

α = in ·
∏
k

πakk = in
′
·
∏
j

π
bj
j

for some 0 6 n, n′ < 4, ak > 0 and bj > 0. If a Gaussian prime from our set of non-associate
Gaussian primes appears on both sides of this equation, we may divide by it. Therefore, we
may assume that each Gaussian prime only appears on one side, i.e. ak · bk = 0. Suppose
there is still a Gaussian prime πk dividing the left-hand side, i.e. ak > 0 and bk = 0. So πk
divides the right-hand side and hence divides one of its factors. It cannot divide in

′
as πk

is not a unit. So it divides a π
bj
j with bj > 0, so k 6= j. So it divides πj, so there is a γ such

that γ · πk = πj. Since πj is a Gaussian prime, either γ or πk is a unit. Hence πk and πj are
associate. Contradiction.
Hence, after this simpli�cation each side is a power of i. So the factorisation of α is unique.

Pythagorean triples

In this section we'll apply the arithmetic of Z[i] to solve a classical problem: �nding all
Pythagorean Triples.

De�nition. A Pythagorean triple is a triple (x, y, z) where x, y, z ∈ N and x2 + y2 = z2.

Examples: 32 + 42 = 52 and 52 + 122 = 132, so (3, 4, 5) and (5, 12, 13) are Pythagorean triples.
How do we �nd all Pythagorean triples? Note that x2+y2 = N(x+i y), so Pythagorean triples
come from Gaussian integers of square norm. The easiest way to get a Gaussian integer of
square norm is to take the square of a Gaussian integer: α = (2 + i)2 = 3 + 4 i has norm
32 + 42 = (22 + 12)2 = 52, and β = (3 + 2 i)2 = 5 + 12 i has norm 52 + 122 = (32 + 22)2 = 132.
More generally, taking the norm of α = (a+ b i)2 = (a2 − b2) + 2ab i gives

(a2 − b2)2 + (2ab)2 = (a2 + b2)2,

so
(a2 − b2, 2ab, a2 + b2) is a Pythagorean triple

whenever a > b > 0. Our aim is to show that these are essentially all Pythagorean triples.
Note that if (x, y, z) is a Pythagorean triple then so is (kx, ky, kz) for all k > 1, so we may
as well only look for primitive Pythagorean triples with gcd(x, y, z) = 1, or equivalently
gcd(x, y) = gcd(x, z) = gcd(y, z) = 1.
Secondly, in a primitive Pythagorean triple (x, y, z) we cannot have both x and y odd, since
that would imply z2 = x2 + y2 ≡ 1 + 1 = 2 (mod 4) which is impossible. So we might as well
assume that x is odd and y is even (interchanging x and y if necessary).
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Theorem 5.9. Let (x, y, z) be a primitive Pythagorean triple with y even. Then there exist
coprime integers a, b with a > b > 0 and a 6≡ b (mod 2) such that

x = a2 − b2, y = 2ab, z = a2 + b2.

Proof. Let α = x + y i ∈ Z[i], so N(α) = x2 + y2 = z2. The idea is to show that α is a square
in Z[i]; writing α = (a+ b i)2 then gives the result.
We have

z2 = N(α) = α · α = (x+ y i)(x− y i).

We next show that the factors x + y i and x − y i are coprime in Z[i]. If a Gaussian prime
π divides both x + y i and x − y i then it divides 2x = (x + y i) + (x − i y) and also divides
2y i = (x + y i) − (x − i y); since x and y are coprime it then divides 2, so π = 1 + i (times a
unit). But 1 + i does not divide x+ y i, since x 6≡ y (mod 2).
Hence x+y i and x−y i are coprime in Z[i]. As their product is a square, unique factorisation
in Z[i] implies that each is a square times a unit; using −1 = i2, each must be either a square
or i times a square.
Finally, x + y i = (a + b i)2 leads to x = a2 − b2 and y = 2ab, while x + y i = i(a + b i)2 leads
to x = −2ab and y = a2 − b2. Since x, y > 0 and x is odd we must be in the �rst case with
a > b > 0, giving the result as stated. The conditions that gcd(a, b) = 1 and a 6≡ b (mod 2)
both follow from gcd(x, y) = 1.

Sums of two squares

In this lecture we will investigate the following related questions:

(i). For which n ∈ N can we solve n = x2 + y2 with x, y ∈ Z?

(ii). Given n ∈ N, how many solutions does the equation n = x2 + y2 have?

These questions can be rephrased in terms of Gaussian integers α = x + y i, since N(α) =
N(x+ y i) = x2 + y2:

(i). Which n ∈ N are norms of Gaussian integers α ∈ Z[i]?

(ii). Given n ∈ N, how many Gaussian integers α ∈ Z[i] have norm n?

Lemma 5.10. Any prime p ≡ 1 (mod 4) can be written as a sum of two squares.

Proof. By lemma 5.6 we have p = ππ for some Gaussian prime π = x + y i. Then p =
x2 + y2.

Theorem 5.11. Let n = a · b2 be an integer with a square-free. Then n can be written as a
sum of two squares if and only if no prime q ≡ 3 (mod 4) divides a.

Proof. ⇐: For every prime p dividing a, there is a Gaussian prime πp of norm p by Proposi-
tion 5.7. Put x+ iy = b ·

∏
p|a πp. Then x

2 + y2 = n.

⇒: Let n = x2 + y2 = (x + i y)(x − i y). If a prime q ≡ 3 (mod 4) divides n then, as it is a
Gaussian prime by Lemma 5.5, it divides x + i y or x − i y. So q divides x and y, hence q2

divides n. The statement can now be proved by induction on b.
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We will use L-functions to solve the second question, making further use of the Dirichlet
character χ1 introduced in Chapter 4:

χ1(n) =


+1 if n ≡ 1 (mod 4);

−1 if n ≡ 3 (mod 4);

0 if n is even.

The connection with Z[i] can be seen if we recall how ordinary prime numbers p factorise in
Z[i], which depends on p modulo 4.

Theorem 5.12. For each n ∈ N, the number of integral solutions x, y to the equation n =
x2 + y2 is given by 4

∑
d|n χ1(d). The number of solutions with x > 0 and y > 0 is

∑
d|n χ1(d).

Remark. To each solution (x, y) corresponding to α = x + y i ∈ Z[i], we �nd three more
corresponding to the associates iα, −α and −iα, namely (−y, x), (−x,−y), (y,−x). Also, if
x 6= y then there are four more solutions coming from α and its associates, obtained by
interchanging x and y.

Examples: If n is 9, then
∑
d|9 χ1(d) = χ1(1) + χ1(3) + χ1(9) = 1 − 1 + 1 = 1, and the single

solution with x > 0 and y > 0 is (x, y) = (3, 0).
If n = 25, then

∑
d|25 χ(d) = χ1(1) + χ1(5) + χ1(25) = 1 + 1 + 1 = 3, and solutions are

(x, y) = (3, 4), (4, 3), (5, 0).
Suppose now that n = p is a prime number. Then

∑
d|p χ1(d) = χ1(1) + χ1(p) = 1 + χ1(p),

which equals 1 when p = 2 (solution: (1, 1)); equals 0 when p ≡ 3 (mod 4) (no solutions);
and equals 2 when p ≡ 1 (mod 4) (two solutions, di�ering only in the order of x and y, for
example 61 = 52 + 62 = 62 + 52 only).

Example. Find all ways of writing n = 130 as a sum of two squares.

Proof of Theorem 5.12. Let an be the number of solutions to n = x2+y2 with x, y ∈ Z, which
is the number of elements α = x+ y i ∈ Z[i] with norm n. Then∑

n>1

an
ns

=
∑

06=α∈Z[i]

1

N(α)s
.

By unique factorisation in Z[i], the latter sum has an Euler product expansion:∑
06=α∈Z[i]

1

N(α)s
= 4

∏
π∈Pi

1

1−N(π)−s
,

where the product is over all prime elements π of Z[i], choosing one from each set of four
associate primes, and the factor of 4 allows for the unit factor in the factorisation of each α.
Now we look at the factors for each type of Gaussian prime in turn:

(i). π = 1 + i with N(π) = 2 contributes a factor 1/(1− 2−s).

(ii). each π with N(π) = p ≡ 1 (mod 4) contributes a factor 1/(1 − p−s), and there are two
such Gaussian primes for each prime p ≡ 1 (mod 4).

(iii). each π = q ≡ 3 (mod 4) with N(π) = q2 contributes a factor of 1/(1− q−2s).

Hence our product is

∏
π∈Pi

1

1−N(π)−s
=

(
1

1− 2−s

) ∏
p≡1 mod 4

1

(1− p−s)2

 ∏
q≡3 mod 4

1

1− q−2s

 = ζ(s) · L(s, χ1)
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using an exercise from problem sheet 4 at the end. So we have

1

4

∑
n>1

an
ns

= ζ(s) · L(s, χ1) =

∑
m>1

1

ms

∑
d>1

χ(d)

ds

 .

Comparing coe�cients:
1

4
an =

∑
md=n

χ1(d) =
∑
d|n

χ1(d).

Remark. The function

ζ(s,Z[i]) =
1

4

∑
06=α∈Z[i]

1

N(α)s

is the zeta function of Z[i]; it is analogous to the Riemann zeta function

ζ(s) =
1

2

∑
06=n∈Z

1

|n|s
.

Remark. Since an > 0, the formula we proved has the consequence that for each n ∈ N, the
number of divisors of n which are congruent to 1 modulo 4 is greater or equal the number
of divisors which are congruent to 3 modulo 4.

Sums of more squares

In the previous section, we found a formula for the number of integral solutions to n = x2+y2

for any given n ∈ N. In particular this equation has a solution whenever n = p ≡ 1 (mod 4).
Now we know that not every integer is a sum of two squares, can we do any better by taking
sums of three squares? Now 3 = 12 +12 +12 and 6 = 12 +12 +22, but 7 is not a sum of three
squares. In fact, no integer n ≡ 7 (mod 8) is a sum of three squares, since all squares are
congruent to 0, 1 or 4 modulo 8.
Instead of answering the question \exactly which positive integers are sums of three squares"
(which turns out to be quite di�cult) we'll move on to four squares, where there is a classical
result.

Theorem 5.13 (Lagrange, 1770). Every positive integer is a sum of four squares.

In other words, for every n ∈ N there exist x, y, z, w ∈ Z (including zero) such that n =
x2 + y2 + z2 + w2.

Theorem 5.14 (Jacobi). Let n > 1 be an integer. Let An be the number of solutions x, y, z, w ∈
Z to the equation x2 + y2 + z2 + w2 = n. Then

An =

{
8
∑
d|n d if n is odd and

24
∑

2-d|n d if n is even.


