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Abstract

Within the Tate-Shafarevich group of an elliptic curve E defined over a number field

K, there is a canonical subgroup defined by imposing stronger conditions at the places

above a given prime p. This group appears naturally in the Iwasawa theory for E. We

propose a study of what one can say about the relation to the full Tate-Shafarevich

group. Some numerical examples are included, as well as a few conjectures.

1. Introduction

Let E be an elliptic curve defined over a number field K. We fix a prime number

p. Everything will depend on p, but we will omit if from our notations. For an abelian

group A, the p-primary part of A will be denoted by A(p). The p-primary part of the

Tate-Shafarevich group X(E/K)(p) is defined to be the kernel of the localisation map

0 �X(E/K)(p) � H1(K, E)(p) � ⊕υ H1(Kυ, E)(p).

We will define in section 2 a certain canonical subgroup of X(E/K)(p) by imposing

stronger conditions at the places above p. It will be called the fine Tate-Shafarevich

group, denoted by another Russian letter �(E/K). It is actually defined as the union of a

sequence of subgroups �
k(E/K) in X(E/K)[pk] and it represents the ”Tate-Shafarevich

part“ of the fine Selmer group R(E/K) as defined in [CS05]. See section 2 for the details.

The motivation for studying this group comes from the Iwasawa theory of E. Its

behaviour is closely linked to Euler systems for the Tate-module TpE = lim
←−

E[pk], like

the one by Kato [Kat04]. Suppose E is defined over Q. If the L-series of E does not

vanish at 1, then Kato’s Euler system c is such that cQ ∈ H1(Q, TpE) is not torsion.

By theorem 2.2.3 in [Rub00], the fine Selmer group R(E/Q), which is then equal to

�(E/Q), is finite. Moreover the divisibility of cQ by p may be used to give an upper

bound on the size of �(E/Q).

For more details on the Iwasawa theory of the fine Selmer group, we refer the reader

to [Wut05], [Wut04] and [PR95].

This article focuses on the analysis of the fine Tate-Shafarevich group over the number

field K. The first part concerns its relation to the full Tate-Shafarevich group. For K = Q,

we prove in Theorem 3·4 that �(E/Q) is non-trivial exactly if X(E/Q) is non-trivial,

and that they are equal if the rank of the curve is positive (see Theorem 3·5). Numerical
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examples are given in section 4 for curves of rank 0 and p = 2. We find three examples of

curves E defined over Q with X(E/Q)(2) = Z/2Z⊕
Z/2Z which show that all possible orders

(namely 1,2 or 4) can occur for �
1(E/Q). The fine Tate-Shafarevich groups �(E/Q)

have order 2, for the first two curves, and 4 for the last example.

We present a version of the Cassels-Tate pairing due to Flach [Fla90] for our sub-

group �(E/K) in section 6. Then the fine version of the Mordell-Weil group E(K),

also obtained by imposing conditions at the places above p, is considered. We end the

article with some conjectures on the fine Tate-Shafarevich group �(E/K). In contrast

to the situation over Q, it is not true for larger fields that the fine subgroup of the Tate-

Shafarevich group is often relatively big. In fact, for Zp-extensions it is conjectured that

the growth of the fine Tate-Shafarevich group is significantly smaller.

Acknowledgements. It is a pleasure to thank John Coates, Mike Shuter, Paola Argentin

and Sylvia Guibert for their help and comments.

2. Definitions

For any k ≥ 1, we have a short exact sequence coming from the pk-descent

0 � E(K)/pkE(K)
κ
� Sk(E/K) �X(E/K)[pk] � 0 (2·1)

where Sk(E/K) is the Selmer group defined as the kernel of the map

H1(K, E[pk]) �
⊕

υ

H1(Kυ, E)[pk]

with the sum running over all places υ in K. This Selmer group contains a subgroup

Rk(E/K), which we will call the fine Selmer group, obtained by imposing stronger con-

ditions at the places above p, i.e. the sequence

0 � Rk(E/K) � Sk(E/K) �
⊕

υ|p

H1(Kυ, E[pk])

is exact. The subgroup Rk(E/K) is sometimes called the “strict” or “restricted” Selmer

group, but in order to avoid possible confusions with different definitions, we prefer the

terminology in [CS05]. Similarly we can define a fine subgroup of the Mordell-Weil group.

Namely the following kernel

0 � Mk(E/K) � E(K)/pkE(K) �
⊕

υ|p

E(Kυ)/pkE(Kυ), (2·2)

which can also be written as the intersection of Rk(E/K) with the image of the Kummer

map κ in (2·1) inside Sk(E/K).

Now, we can proceed to define the group �
k(E/K) as the quotient of Rk(E/K) by

Mk(E/K). We call it the fine Tate-Shafarevich group. So we have an exact sequence

0 � Mk(E/K)
κ
� Rk(E/K) ��

k(E/K) � 0 (2·3)

similar to the Kummer sequence (2·1). In order to prove that it is really a subgroup of

the Tate-Shafarevich group, we consider the diagram

0 � E(K)/pkE(K) � Sk(E/K) �X(E/K)[pk] � 0

0 � ⊕E(Kυ)/pkE(Kυ)

g

� ⊕H1(Kυ, E[pk])

g

� ⊕H1(Kυ, E)[pk]

0
g

� 0
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(the ⊕ stands for the sum over all places υ above p). We can extract an exact sequence

0 � Mk(E/K) � Rk(E/K) �X(E/K)[pk]
δk

� Ck (2·4)

where Ck is the cokernel of the left vertical map in the above diagram. As a consequence,

one can view �
k(E/K) as a subgroup of X(E/K)[pk] with quotient inside Ck.

Limits

As usual, it is interesting to consider the limits as k tends to infinity. We write S(E/K)

for the inductive limit lim
−→

Sk(E/K) obtained from the inclusion E[pk] ⊂ � E[pk+1]. We

denote the projective limit lim
←−

Sk(E/K) induced from the map [p] : E[pk+1] � E[pk]

by S(E/K). The same limits can be used for the subgroups Rk(E/K) and Mk(E/K).

S(E/K) = lim
−→

Sk(E/K) S(E/K) = lim
←−

Sk(E/K)

R(E/K) = lim
−→

Rk(E/K) R(E/K) = lim
←−

Rk(E/K)

M(E/K) = lim
−→

Mk(E/K) M(E/K) = lim
←−

Mk(E/K)

For the fine Tate-Shafarevich group, we will denote the limit lim
−→

�
k(E/K) simply by

�(E/K). It is a subgroup of the p-primary part X(E/K)(p) of the Tate-Shafarevich

group. We have two exact sequences

0 � M(E/K) � R(E/K) ��(E/K) � 0

0 �M(E/K) � R(E/K) � lim
←−

�
k(E/K) � 0

since all terms in (2·3) are finite. Both lim
←−

�
k(E/K) and Tp�(E/K) = lim

←−
�[pk] are

subgroups of TpX(E/K), where, for an abelian group A, we write TpA for the projective

limit lim
←−

A[pk]. Of course, it is widely believed that these three groups are trivial. One

can show that

Lemma 2·1. The group lim
←−

�
k(E/K) has finite index in Tp�(E/K).

A proof can be found in [Wut04, Lemma II.1].

Lemma 2·2. The maps

�
1(E/K) ��

2(E/K) � . . .

are injective.

Proof. This is obvious from the following diagram. Here Ck is as in (2·4).

0 ��
k(E/K) �X(E/K)[pk]

δk

� Ck

0 ��
k+1(E/K)

g

�X(E/K)[pk+1]

g

∩

δk+1

� Ck+1

g

(2·5)

where the map on the right hand side is induced by the maps

[p] : E(Kυ)/pkE(Kυ) � E(Kυ)/pk+1E(Kυ).

The following lemma tells us in some cases when the above sequence stabilises.
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Lemma 2·3. Let E be an elliptic curve over Q of rank 0 with E(Qp)[p] = 0. If pk kills

all elements in X(E/Q)(p), then

�
k(E/Q) = �(E/Q).

Proof. Under the hypothesis on k, the map in the middle of (2·5) becomes an isomor-

phism. Because E(Q)/pkE(Q) = 0, the group Ck is equal to E(Qp)/pkE(Qp). Hence the

map induced by [p] on Ck � Ck+1 is injective if E(Qp)[p] = 0.

Even with weaker assumptions, it is usually easy to verify for which k the sequence of

�
k(E/K) stabilises.

Remark

Instead of imposing stronger conditions only at places above p, we could more generally

consider a finite set Σ of places in K, containing the places above p, and then demand

that elements in Sk(E/K) have trivial localisation in the group H1(Kυ, E[pk]) for all

places in Σ. We would obtain even smaller subgroups Rk
Σ
(E/K) and �

k
Σ
(E/K). Note that

RΣ(E/K) = lim
−→

Rk
Σ
(E/K) does not differ from R(E/K) because the groups E(Kυ)⊗Qp/Zp

are trivial for all places υ - p.

3. Comparison

Lemma 3·1. Let Kυ be a finite extension of Qp of degree nυ. Then

#
(
E(Kυ)/pkE(Kυ)

)
= pnυ·k ·#

(
E(Kυ)[pk]

)
.

Proof. Note that, if A is a subgroup of an abelian group B of finite index, then

#A/pkA

#A[pk]
=

#B/pkB

#B[pk]
,

provided all terms are well-defined. Denote by E◦(Kυ) the Kυ-rational points on the

connected component of the Néron-model of E and by Ê the formal group associated to

E (see [Sil96]). Since E(Kυ) has finite index in E◦(Kυ) and in Ê(ma
υ), for any power of

the maximal ideal mυ in the ring of integers in Kυ, we obtain that

#E(Kυ)/pkE(Kυ)

#E(Kυ)[pk]
=

#E◦(Kυ)/pkE(Kυ)

#E◦(Kυ)[pk]
=

#Ê(mυ)/pkÊ(mυ)

#Ê(mυ)[pk]

=
#Ê(ma

υ)/pkÊ(ma
υ)

#Ê(ma
υ)[pk]

Now, if a is large enough, the formal logarithm gives an isomorphism from Ê(ma
υ) to m

a
υ

and we have Ê(ma
υ)[pk] = 0 and #Ê(ma

υ)/pkÊ(ma
υ) = pknυ .

Proposition 3·2. The index of �
k(E/K) inside X(E/K)[pk] is bounded by

[
X(E/K)[pk] : �

k(E/K)
]
≤ p[K:Q]·k ·

∏

υ|p

#E(Kυ)[pk].

Proof. We saw that the quotient of the two groups in question is contained in the

cokernel Ck of the map from E(K)/pkE(K) to ⊕E(Kυ)/pkE(Kυ). The previous lemma

proves that the target of this map has size bounded by the right hand side of the formula

in the proposition.
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Corollary 3·3. If E is defined over Q and E(Qp)[p] = 0, then
[
X(E/Q)[p] : �

1(E/Q)
]
≤ p.

Theorem 3·4. Let E be an elliptic curve defined over Q. Suppose X(E/Q)(p) is

finite, then �(E/Q) is non-trivial if and only if X(E/Q)(p) is non-trivial.

Proof. The injection of �(E/Q) into X(E/Q)(p) has cokernel in C = lim
−→

Ck which

is a quotient of E(Qp)⊗
Qp/Zp

. But this last group is isomorphic to Qp/Zp
. If X(E/Q)(p)

is finite and non-trivial, then it is of the form A⊕A for some abelian p-group A by the

Cassels-Tate pairing. So X(E/Q)(p) can not be embedded into Qp/Zp
.

Theorem 3·5. Let E be an elliptic curve defined over Q of positive rank, then we have

�(E/Q) = X(E/Q)(p).

Proof. The group C in the proof of the previous theorem is the cokernel of the localisa-

tion map E(Q)⊗Qp/Zp
� E(Qp)⊗

Qp/Zp
. The target of this map equals Ê(p2Zp)⊗

Qp/Zp
,

which is isomorphic to Qp/Zp
via the p-adic elliptic logarithm map. If the rank of E is posi-

tive, the localisation map is non-trivial: a sufficiently large multiple of any point of infinite

order in E(Q) will belong to Ê(p2Zp) and has non-zero logarithm. Since E(Qp) ⊗
Qp/Zp

is divisible the map has to be surjective and so C = 0.

If the rank is zero, �(E/Q) may be strictly smaller than X(E/Q)(p) as we will see

in the numerical examples in the next section.

We see here that the fine Tate-Shafarevich group for an elliptic curve over Q tends to

be rather large in comparison with the whole Tate-Shafarevich group. This is likely to be

specific to Q as we will announce a conjecture for certain larger fields later in section 8.

4. Numerical examples

In this section we give four numerical examples of fine Tate-Shafarevich groups for

p = 2. The four curves E are all defined over Q. They all have rank 0, as can be verified

using Kolyvagin’s result or a 3-descent; in fact for each curve we have E(Q) = Z/2Z⊕
Z/2Z.

Then we perform a complete 2-descent on E as explained in [Sil96, Proposition X.1.4].

The complete 2-descent proves for the first three examples that X(E/Q)[2] = Z/2Z ⊕
Z/2Z. Hence the fine Tate-Shafarevich group �

1(E/Q) can have 1, 2 or 4 elements. The

examples are chosen as to show that all three cases can occur. Furthermore we can prove

that the 2-primary part X(E/Q)(2) has order 4 using a 4-descent or the Cassels-Tate

pairing implemented in magma. So the fine Tate-Shafarevich group �(E/Q) can have

either 2 or 4 elements by Corollary 3·3.

The details of the computations are only included for the first example.

An example with a trivial �
1(E/Q)

Let E/Q be the elliptic curve O3 of conductor 930 in Cremona’s table [Cre97]

E : y2 + xy = x3 − 19′220 x − 1′027′200

The Mordell-Weil group E(Q) is generated by two points T1 = (−80, 40) and T2 =

(− 321
4 , 321

8 ) of order 2. The analytic order of X(E/Q) is 4.

Let us change the equation to the non-minimal equation

y2 = (x + 320) · (x + 321) · (x − 640)
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in which T1 has coordinates (−320, 0) and T2 is equal to (−321, 0). Let Σ be the set

{2, 3, 5, 31}which includes all primes of bad reduction for E. The group Q(Σ, 2) is defined

to be the group of non-zero integers only divisible by elements in Σ modulo squares; which

in our case is isomorphic to (Z/2Z)5. The above choice of a basis of E(Q)[2] allows us to

identify the Selmer group S1(E/Q) with a subgroup of the square of Q(Σ, 2). In fact, the

image of T1 is represented by (−15, 1) while T2 is sent to (−1, 1) in Q(Σ, 2)2. One sees

immediately that T1 belongs to the fine Mordell-Weil group M 1(E/Q) since both −15

and 1 are squares in Q×
2 , in other words there is a 4-torsion point

S1 = (23 + 27 + 28 + O(210), 23 + 28 + 29 + O(210))

defined over Q2 such that 2 · S1 = T1.

Now the first Selmer group S1(E/Q) is generated by the image of T1 and T2 and

the elements (5, 1) and (2, 1) in Q(Σ, 2)2. We can conclude that R1(E/Q) is equal to

(−15, 1) · Z/2Z = M1(E/Q), and hence that �
1(E/Q) is trivial.

We now use the diagram (2·5) to compute the whole of �(E/Q). We need to compute

Ck first. Denote by Φ(E)(Q2) the group of connected components of the Néron-model

over Q2. For our example Φ(E)(Q2) is a cyclic group of order 4; the reduction type

is I4. The torsion group of E(Q2) is Z/4Z S1 ⊕
Z/2Z T2. Since S1 maps to the generator

of Φ(E)(Q2), we know that E(Q2) = E◦(Q2) ⊕
Z/4Z S1 with E◦ being the connected

component of the identity of the Néron model. The torsion point T2 lies in the first layer

of the formal group in the minimal model, and so we have E(Q2) = Z2⊕
Z/4Z S1⊕

Z/2Z T2.

We conclude that Ck is isomorphic to Z/2kZ ⊕
Z/2Z S1. The map induced by [2] is the

injection Z/2kZ
⊂ � Z/2k+1Z on the first factor and the trivial map on the second:

Ck � Ck+1

Z/2kZ ⊕
Z/2ZS1

(1,0)
� Z/2k+1Z ⊕

Z/2ZS1

The element (5, 1) in X(E/Q)[2] is mapped to the element δ1(5, 1) in C1 represented

by

Q1 = (2−2 + 1 + 26 + 27 + 29 + O(210), 2−3 + 2 + 22 + 23 + 26 + 27 + 29 + O(210))

which belongs to the first factor of C1 = Z/2Z⊕
Z/2Z S1. The image of the other generator

(2, 1) can be represented by S1. Hence the first element of X(E/Q)[2] always maps to

a non-trivial element in Ck and does therefore not belong to �
k(E/Q) for any k, while

the latter element has trivial image in C2 and thus belongs to �
2(E/Q).

We can conclude the following:

�
1(E/Q) = 0 and �

2(E/Q) = �(E/Q) = Z/2Z.

A �
1(E/Q) with 2 elements

Let E be the curve E5 of conductor 210

E : y2 + xy = x3 − 120′050 x − 16′020′000.

The Mordell-Weil group E(Q) is generated by two points T1 = (400,−200) and T2 =

(− 801
4 , 801

8 ) of order 2. A computation like for the first example shows that M 1(E/Q) = 0

and that R1(E/Q) = �
1(E/Q) = Z/2Z. Using that X(E/Q)(2) has 4 elements one shows

that �
k(E/Q) = �(E/Q) = Z/2Z for all k ≥ 1.
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An example where �
1(E/Q) has 4 elements

Let E be the elliptic curve

E : y2 + xy = x3 − x2 − 3′861 x − 91′368.

It is labelled 1287E2 in the tables of Cremona. For this curve we have that M 1(E/Q) = 0

and R1(E/Q) = �
1(E/Q) = Z/2Z ⊕

Z/2Z = X(E/Q)[2]. Here we get �(E/Q) = Z/2Z ⊕
Z/2Z.

A bigger example

Finally, we include an example1of a larger Tate-Shafarevich group. The curve E

E : y2 + x y = x3 − x2 − 213′230′796 x + 1′183′712′688′107

of conductor 32 · 132 · 17 · 1572 is a twist of the curve 17A2. The Mordell-Weil group has

rank 0 and it has 4 rational 2-torsion points. The Birch and Swinnerton-Dyer conjecture

predicts the order of X(E/Q) to be 16.

This time, we find that S1(E/Q) = (Z/2Z)6 and so X(E/Q)[2] = (Z/2Z)4. It can be

verified as before that the 2-primary part of X(E/Q) consists of these 16 elements. The

computation of the fine Selmer group shows that R1(E/Q) = �
1(E/Q) = (Z/2Z)3. The

fine Tate-Shafarevich is equal to �(E/Q) = (Z/2Z)3.

5. Geometric interpretation

As usual, an element in the Selmer group and in the Tate-Shafarevich group may be

interpreted geometrically in terms of torsors of E. Let F be an extension of K. An pk-

covering over F is a morphism of curves α : C � E defined over F such that there is

an isomorphism φ over F̄ having the property that the following diagram commutes.

C ...............................
φ

� E

E

[pk]
≺

α �

Note that C is a torsor of E. Two pk-coverings α and α′ are isomorphic if there is a φ

defined over F such that

C
φ

� C ′

E

α′

≺
α �

commutes. In particular, a pk-covering α is isomorphic to the trivial pk-covering given

by [pk] : E � E if and only if there is a point defined over F in the fibre of α above

O ∈ E(F ). It is well known that the elements of H1(F, E[pk]) can be represented in a

unique way as isomorphism classes of pk-coverings.

Proposition 5·1. The fine Selmer group Rk(E/K) is in bijection with the pointed

set of isomorphism classes of pk-covering α : C � E over K such that

(i) C(Kυ) is non empty for all places υ in K and,

1 I am grateful to Christophe Delaunay for helping me to find this example
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(ii) for all places υ above p, there is a Kυ-rational point Pυ in the fibre α−1(O) above

O ∈ E(K).

The point Pυ is only defined up to addition by a Kυ-rational pk-torsion point. For the

fine Tate-Shafarevich group, we have the following description

Proposition 5·2. The fine Tate-Shafarevich group �
k(E/K) can be viewed as the

pointed set of isomorphism classes of principal homogeneous spaces C under E defined

over K such that

(i) C(Kυ) is non empty for all places,

(ii) there is a K-rational effective divisor D of degree pk on C and,

(iii) for all places υ above p, the divisor D contains a Kυ-rational point Pυ in its

support.

6. Duality

Cassels constructed a pairing on the Tate-Shafarevich group, whose kernel consists of

the infinitely divisible elements. It follows that a finite Tate-Shafarevich group has square

order. The construction of Cassels was extended by Flach in [Fla90]. In order to state

the duality for the fine Selmer group, we need to define another generalised version of

the Selmer group, namely the group Q(E/K) defined by the exact sequence

0 � Q(E/K) � H1(K, E(p)) �
∏

υ-p

H1(Kυ, E)(p)×
∏

υ|p

H1(Kυ, E(p))/ div .

Here we denote by A/ div the quotient of A by its maximal divisible subgroup whenever

A is a discrete abelian group. The enlarged Selmer group Q(E/K) contains the usual

Selmer group S(E/K). Let Q(E/K)(p) be the quotient of Q(E/K) by the image of

E(K)⊗ Qp/Zp
.

Theorem 6·1. There is a alternating pairing on R(E/K) × Q(E/K) with values in
Qp/Zp

whose kernel on each side consists of the divisible elements. In particular this iden-

tifies R(E/K)/ div with the dual of Q(E/K)/ div.

This is just a reformulation of the main theoren in [Fla90] when using the local conditions

Wυ = 0 for all places υ.

From the Poitou-Tate sequence [NSW00, Theorem 8.6.13] we may deduce two other

facts. Let Σ be any finite set of places containing the ones above p, and those where E

has bad reduction. The group R(E/K) is dual to the kernel of

H2(GΣ(K), TpE) �
⊕

υ∈Σ

H2(Kυ, TpE)

where GΣ(K) stands for the Galois group of the maximal extension of K which is un-

ramified outside Σ. The target of the map is the dual of the finite group ⊕υ∈ΣE(Kυ)(p).

Furthermore there is an exact sequence

0 � R(E/K) � H1(GΣ(K), E(p)) �
⊕

υ∈Σ

H1(Kυ, E(p))

� H1(GΣ(K), TpE)∧ � H2(GΣ(K), E(p)) � 0.

Here M∧ denotes the Pontryagin dual of M .
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7. The fine Mordell-Weil group

We now turn our interest to the other side of the fine Selmer group, namely the fine

Mordell-Weil group. In the limit, we have a compact version M(E/K) and a discrete

version M(E/K). Note that, even though the group E(K)⊗ Qp/Zp
is divisible, the group

M(E/K) is not necessarily divisible as we see in the following example. Let E be the

elliptic curve 37A1 given by the equation

E : y2 + y = x3 − x (7·1)

defined over Q, whose Mordell-Weil group E(Q) is generated by the point of infinite order

P = (0, 0). We shall see that the fine Mordell-Weil group M(E/Q) for the prime p = 179

is a finite non-trivial group. The curve has good, ordinary, non-anomalous reduction at

p. The point 81 · P is the first multiple of P that lies in the kernel of reduction modulo

p, but it even lies in the second layer of the formal group, i.e. the denominator of the

x-coordinate is divisible by p4. In other words, the point P is divisible by p in E(Qp).

Hence M(E/Q) = Z/pZ.

More generally, the size of the group M(E/K)/ div measures the divisibility of the

generators in E(Qp). For curves of rank 1 over Q it can be expressed in terms of the

p-adic logarithm of the generator. See lemma 9 in [CM94]; the first table in this article

can be used to find further examples like the one above.

If A is an abelian group, we denote by A? the p-adic completion lim
←−

A/pkA of A.

Theorem 7·1. We have the following exact sequence

0 �M(E/K) � TpM(E/K) � T � TorsZp
(D) � M(E/K)/ div � 0

where D is the cokernel of the map E(K)? � ⊕υ|p E(Kυ)? and T is the cokernel of

the corresponding localisation map on the p-primary part, namely E(K)(p) � � ⊕υ|p

E(Kυ)(p).

Proof. We split the exact sequence

0 � M(E/K) � E(K)⊗ Qp/Zp
� ⊕E(Kυ)⊗ Qp/Zp

� C � 0

by defining B to be the image of the middle map. Now, the middle terms are divisible

and so is B. This provides us with two exact sequences

0 � TpM(E/K) � Tp

(
E(K)⊗ Qp/Zp

)
� TpB � M(E/K)/ div � 0 (7·2)

0 � TpB � ⊕ Tp(E(Kυ)⊗ Qp/Zp
) � TpC � 0 (7·3)

We apply the snake lemma to the following diagram

0 � E(K)(p) � E(K)? � Tp(E(K)⊗ Qp/Zp
) � 0

0 � ⊕E(Kυ)(p)
g

g

� ⊕E(Kυ)?
g

� ⊕Tp(E(Kυ)⊗ Qp/Zp
)

g

� 0

Defining A to be the cokernel of the vertical map on the right hand side, we find the

sequence

0 �M(E/K) � TpM(E/K) � T � D � A � 0

containing the first four terms of the sequence in the theorem. Furthermore, by the two



10 Christian Wuthrich

sequences involving (7·2) and (7·3), we see that the cokernel A is in the following sequence

0 � M(E/K)/ div � A � TpC � 0.

The fact that TpC is Zp-free proves that TorsZp
(A) = M(E/K)/ div.

Note that if E is defined over Q and the rank is positive then D is torsion.

Corollary 7·2. If the curve E is defined over Q and E(Qp)[p] is trivial, then the

canonical map from M(E/Q) to TpM(E/K) is an isomorphism.

Note that this does not hold in general, as we can see in the following example. Let E

be the curve

E : y2 + x y = x3 + 1 (7·4)

of conductor 433 and let p = 3. The curve E has no non-trivial torsion point defined

over Q, but two linearly independent points of infinite order, namely P1 = (−1, 0) and

P2 = (0, 1). Over Q3 there is a 3-torsion point on E, namely

S =
(
2 + 2 · 33 + 36 + 2 · 37 + 39 + O(310), 2 · 32 + 33 + 35 + 2 · 38 + O(310)

)
.

The reduction of E at p = 3 is good anomalous with 6 points on the reduced curve

Ẽ(F3). The reduction of the point P2 generates Ẽ(F3). On the other hand the point

P1 + 2 · P2 = ( 13
9 , 38

27 ) is in the first layer of the formal group Ê(3Z3). It follows that

E(Q)? � E(Q3)
? is surjective. On the other hand the group T is not trivial since

there is this point S of order 3 that it not defined over Q. From the sequence in the

above theorem, we conclude that the index of M(E/Q) in TpM(E/Q) is equal to p.

As a consequence of the previous theorem, we find some more information on the fine

Mordell-Weil group

Corollary 7·3. The compact fine Mordell-Weil group M(E/K) is a free Zp-module

of finite rank. If the rank r of the curve is zero then M(E/K) = M(E/K) = 0, otherwise,

if r is positive, then

r − [K : Q] ≤ corankZp
M(E/K) = rankZp

M(E/K) ≤ r − 1

If K = Q, we have equality.

Proof. The only thing that is left to prove is the left hand inequality. Let P be a

point of infinite order on E(K). A certain multiple of P will lie in all the kernels Ê(mυ)

of reduction modulo all places above p. Since there is an injection from Ê(mυ) into

E(Kυ)? for all υ | p, this multiple will not lie in M(E/K). (Compare to the proof of

theorem 3·5).

In particular, for curves of rank 0, the sequence in Theorem 7·1 becomes simply an

isomorphism between T and TorsZp
(D). If E is defined over Q and has rank 1 then we

get a sequence

0 � T � D � M(E/Q) � 0

of finite groups.

8. Conjectures

The purpose of this last section is to announce some conjectures on the finiteness of

the fine Tate-Shafarevich group. Of course, there is a first basic
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Conjecture 8·1. The fine Tate-Shafarevich group �(E/K) of an elliptic curve over

a number field K is finite. For a given E/K it is trivial for all but a finite number of

primes p.

It is a weaker form of what should be believed by any gentleman namely that X(E/K)

is already finite. Note that over Q for a curve of positive rank the two statements are

equivalent by theorem 3·5.

The original interest in this group comes from Iwasawa theory for elliptic curves. Let

E be an elliptic curve, for simplicity, defined over Q. Using the methods of Perrin-

Riou [PR95] one is able to compute the growth of the size of the fine Tate-Shafarevich

group in certain towers of number fields. See [Wut05] and [Wut04] for more details. Let

Q(µ[pn+1]) be the cyclotomic field of pn+1-th roots of unity and let nQ be the unique

subfield of Q(µ[pn+1]) with Galois group Gal(nQ :Q) isomorphic to Z/pnZ. The cyclotomic

Zp-extension ∞Q of Q is defined to be the union of all nQ as n varies over the positive

integers.

Denote by en the integer such that #�(E/nQ) = pen . By a famous theorem of

Kato [Kat04], we know that the integer en grows like µ · pn + λ · n + O(1) for some

integers µ > 0 and λ > 0. There is a first conjecture, a special case of conjecture A

in [CS05], due to Coates and Sujatha.

Conjecture 8·2. The growth of the order of �(E/nQ) is of the form en = λ · n +

O(1), i.e. µ = 0.

The striking thing about this conjecture is that a similar statement for X(E/nQ)

is known to be false ever since the beginnings of Iwasawa theory for elliptic curves,

see [Maz72]. For our case of a curve over Q, the conjecture is verified if E admits an

isogeny of degree p defined over Q. This follows from corollary 3.5 in [CS05].

As an example, we might consider the curve of conductor 11 given by

E : y2 + y = x3 − x2 − 7′820 x − 263′580

for which it is known that the order of X(E/nQ)(5) for p = 5 grows like 52·5n

, i.e. µ = 2

and λ = 0. Nevertheless, the order of �(E/nQ) stays bounded, see [Wut05].

The numerical evidence computed in [Wut04] suggest that it might be possible that

the following question has a positive answer.

Question 8·3. Is the order of �(E/nQ) bounded independently of n, i.e. do we have

that µ = λ = 0 ?

In other words, we could ask if �(E/∞Q) is finite. For the supersingular case the even-

tuality that the answer might be ”yes“ was mentioned to me by Kurihara and Pollack.

Nevertheless, there is one hint that it could be wrong in the extension to the situation

of ordinary reduction. In the case of a global field of positive characteristic different from

p, say K is a function field of a curve over a finite field, the fine Tate-Shafarevich group

of an elliptic curve E over K naturally coincides with the full Tate-Shafarevich group,

since there are no places above p. Moreover it is equal to the Brauer-Grothendieck group

Br(E) of the elliptic surface E whose generic fibre is E, see [Tat95]. The analogue of

X(E/∞Q) is the the Brauer group Br(Ē) of the surface E but over the algebraic closure

of the finite base field. There are certainly many examples of infinite Br(Ē).
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On the other hand, we know that Br(Ē) is co-finitely generated over Zp and so the

conjecture 8·2 is known for function fields.

But at least, we can be sure that a weaker form of the question should have a positive

answer, namely

Conjecture 8·4. For all but a finite number of primes p, the order of �(E/nQ) is

bounded independently of n.

Compare with the conjectures in [Wut05] on the density of such primes.
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