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0 Introduction

This is the draft version of the notes to my lectures at Heidelberg in July 2012. The
intention is to give an overview of some topics in Iwasawa theory. These lectures will
contain a lot of definitions and results, but hardly any proofs and details. Especially I
would like to emphasise that the word “proof” should actually be replaced by “sketch of
proof” in all cases below.

Also I have no claim at making this a complete introduction to the subject, nor is the
list of references at the end. For this the reader might find [14] a better source.

All computations were done in [46]. Any comments and corrections are very welcome.
It is my pleasure to thank Thanasis Bouganis, Sylvia Guibert, Chern-Yang Lee, Birgit

Schmoetten-Jonas and Otmar Venjakob.

1 Iwasawa theory of the class group

Let F be a number field and let p be an odd prime. Suppose we are given a tower of
Galois extensions F = 0F ⊂ 1F ⊂ 2F ⊂ · · · such that the Galois group of nF/F is cyclic
of order pn for all n > 1. Write nC for the p-primary part of the class group of nF and
write pen for its order.

Theorem 1 (Iwasawa 56 [15]). There exist integers µ, λ, ν, and n0 such that

en = µ pn + λn+ ν for all n > n0.
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1.1 Zp-extensions

Let me first describe the tower of extensions that we are talking about. Set ∞F =
⋃
nF .

The extension ∞F/F is called a Zp-extension as its Galois group Γ is isomorphic to the
additive group of p-adic integers since it is the projective limit of cyclic groups of order
pn. The most important example is the cyclotomic Zp-extension: If F = Q, then the
Galois group of Q(µpn)/Q is

(Z/pnZ
)×, which is cyclic of order (p − 1)pn−1. So there is

an extension n−1Q/Q contained in Q(µpn) such that ∞Q is a Zp-extension of Q. For a
general F , the cyclotomic Zp-extension is ∞F = ∞Q · F .

It follows from the Kronecker-Weber theorem that ∞Q is the unique Zp-extension of
Q. It would be a consequence of Leopoldt’s conjecture that the cyclotomic Zp-extension
is the only one for any totally real number field, see [29, Theorem 11.1.2]. For a general
number field F , the composition of all Zp-extension contains at least Zr2+1

p in its Galois
group where r2 denotes the number of complex places in F . For a imaginary quadratic
number field F , for instance, the theory of elliptic curves with complex multiplication
provides us with another interesting Zp-extension, the anti-cyclotomic Zp-extension. It
can be characterised as the only Zp-extension ∞F/F such that ∞F/Q is a non-abelian
Galois extension.

Lemma 2 (Proposition 11.1.1 in [29]). The only places that can ramify in ∞F/F divide
p and at least one of them must ramify.

In the cyclotomic Zp-extension of F , all places above p are ramified and there are only
finitely many places above all other places.

1.2 The Iwasawa algebra and its modules

Let O be a “coefficient ring”, for us this will always be the ring of integers in a p-adic field;
so O = Zp is typical. There is a natural morphism between the group rings O

[
Gal(nF/F )

]
,

which allows us to form the limit

Λ = lim←−
n

O
[
Gal(nF/F )

]
.

This completed topological group ring, called the Iwasawa algebra and also denoted by
O[[Γ]], is far better to work with than the huge group ring O[Γ].

Proposition 3. To a choice of a topological generator γ of Γ, there is an isomorphism
from Λ to the ring of formal power series O[[T ]] sending γ to T + 1.

The proof is given in Theorem 5.3.5 of [29]. By the Weierstrass preparation theorem,
an element f(T ) ∈ O[[T ]] can be written as a product of a power of the uniformiser of
O times a unit of O[[T ]] and times a distinguished polynomial, which, by definition, is a
monic polynomial whose non-leading coefficients belong to the maximal ideal.

Let nX be a system of abelian groups with an action by Gal(nF/F ). If there is a
naturally defined norm map n+1X → nX, then we can form X = lim←−

nX and consider it
as a compact Λ-module. For instance the class groups nC above have a natural norm map
between them. Also lots of naturally defined cohomology groups will have such a map,
too. Suppose now O/Zp is unramified, otherwise the power of p below must be replaced
by a power of the uniformiser of O.
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Proposition 4. Let X be a finitely generated Λ-module. Then there exist integers r, s, t,
m1, m2, . . . , ms, n1, n2, . . .nt, irreducible distinguished polynomials f1, f2, . . . ft, and a
morphism of Λ-modules

X −→ Λr ⊕
s⊕
i=1

Λ/
pmiΛ⊕

t⊕
j=1

Λ/
f
nj

j Λ

whose kernel and cokernel are finite.

Proofs can be found in [43], [29, Theorem 5.3.8] or quite different in [50, Theorem
13.12] and [20, Theorem 5.3.1]. The main reason is that Λ is a 2-dimensional local, unique
factorisation domain.

As the ideals fjΛ and the integers r,. . . , nt are uniquely determined by X, we can
define the following invariants attached to X. The rank of X is rankΛ(X) = r. The
µ-invariant is µ(X) =

∑s
i=1mi and the λ-invariant is λ(X) =

∑t
j=1 nj · deg(fj). Finally,

if r = 0,

char(X) = pµ(X) ·
t∏

j=1

f
nj

j Λ

is called the characteristic ideal of X. If r = 0, s 6 1 and all fj are pairwise coprime, then
X → Λ/ char(X) has finite kernel and cokernel.

Let us summarise the useful properties of Λ-modules in a lemma. Write XnΓ for the
largest quotient of X on which nΓ = Gal(∞F/nF ) acts trivially.

Lemma 5. Let X be a Λ-module.

a). X is finitely generated if and only if X is compact and XΓ is a finitely generated
Zp-module.

b). Suppose X is a finitely generated Λ-module. Then X is Λ-torsion, i.e., the Λ-rank
of X is 0, if and only if XnΓ has bounded Zp-rank.

c). If XnΓ is finite for all n, then there are constants ν and n0 such that |XnΓ| = pen

with en = µ(X) · pn + λ(X) · n+ ν for all n > n0.

Proofs can be found in §5.3. of [29]. Note that if X = Λ/f for an irreducible f , then
XnΓ is finite, unless f is a factor of the distinguished polynomial nω = (1 + T )p

n − 1
corresponding to a topological generator of nΓ.

1.3 Proof of Iwasawa’s theorem

I will sketch the proof of theorem 1 only in the simplified case when F has a single prime
p above p and that this prime is totally ramified in ∞F/F . Let nL be the p-Hilbert class
field of nF , i.e. the largest unramified extension of nF whose Galois group is abelian and
a p-group. By class field theory the Galois group of nL/nF is isomorphic to nC.

3



Iwasawa theory cw 12

∞L

K

∞F

X

������������ XΓ

������

0L

99999999999999

F

Γ

<<<<<<<<<<<<<<< C

�����

Set ∞L =
⋃
nL, which is a Galois extension of ∞F with

Galois group X = lim←−
nC. The action of nΓ on nC translates

to an action of Γ on X given by the following. Let γ ∈ Γ and
x ∈ X. Choose a lift g of γ to the Galois group of ∞L/F and
set xγ = gxg−1. So X is a compact Λ-module.

Define K to be the largest abelian extension of F inside ∞L.
Then 0L and ∞F are contained in K. The maximality of K
shows that the Galois group of K/∞F must be equal to XΓ.

Since K/∞F is unramified and ∞F/F is totally ramified at
p, the inertia group I at a prime above p in K gives a section
of the map from Gal(K/F ) → Γ. Since KI = 0L, we have

Gal(K/∞F ) = 0C =: C and it has a trivial action of Γ on it. Hence C is isomorphic to
XΓ. Replacing in this argument F by nF , we can also conclude that XnΓ

∼= nC.
In particular, it is always finite. Hence X is a finitely generated torsion Λ-module and

lemma 5 c) implies the theorem.
Iwasawa has given an example in [16] of a Zp-extension with µ(X) > 0, however he

conjectured that µ(X) = 0 whenever the tower is the cyclotomic Zp-extension. This was
shown to be true by Ferrero–Washington [11] when F/Q is abelian.

The above proof can also be used to show that if F = Q then the class group of nQ
has no p-torsion. Conjecturally this may even be true for F = Q(µp)+, see §1.8.

1.4 Stickelberger elements

Let K be an abelian extension of Q. By the Kronecker-Weber theorem, there is a smallest
integer m such that K ⊂ Q(µm) called the conductor of K. For each a ∈

(Z/mZ
)× write

σa for the image of a under the map
(Z/mZ

)× ∼= Gal
(
Q(µm)/Q

)
→ Gal(K/Q) = G. The

Stickelberger element for K is defined to be

θK = − 1
m

∑
16a<m
(a,m)=1

a · σ−1
a ∈ Q[G]

and the Stickelberger ideal is I = Z[G]∩ θK Z[G]. It is not difficult to show that I = I ′θK
with I ′ being the ideal in Z[G] generated by all c − σc with (c,m) = 1, see [50, Lemma
6.9].

Stickelberger’s theorem 6. The Stickelberger ideal I annihilates the class group of K.

This means that for any fractional ideal a and any integer c coprime to m, the ideal
(c−σc) θK(a) is principal. It is important to note that this theorem does not say anything
interesting when K is totally real as then θK is a multiple of the norm NK/Q. Hence it
will not give us information about the class number of Q(µp)+. For a quadratic imaginary
field K, this is an algebraic version of the analytic class number formula for K, see the
remark (b) after theorem 6.10 in [50].

Here is the idea of the proof, for details see [50, Theorem 6.10] or [20, Theorem 2.4].

Proof. We consider only the case K = Q(µp) for some odd prime p. In each ideal class
there is a prime ideal q of degree 1, i.e. it is split above some prime ` ≡ 1 (mod p). Take
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the Dirichlet character χ modulo ` of order p such that χ(a) ≡ a(`−1)/p (mod q) for all a.
Fix a primitive `-th root of unity ξ. The Gauss sum of χ is defined to be

Ga(χ) = −
∑

u mod `

χ(u) ξu ∈ Q(µp, µ`).

One can show that Ga(χ) · Ga(χ) = ` and that we have (c − σc) Ga(χ) ∈ Q(µp) for
all c coprime to p. Finally a detailed analysis of the valuation of this Gauss sum at
all primes above ` reveals that for any β ∈ Z[G] such that βθK ∈ Z[G], we have that
βθK(q) = β

(
Ga(χ)

)
OK is a principal ideal in the ring of integers OK of K.

1.5 p-adic L-functions

∞F

nF

nΓ

F

Γ

Q
∆

�������

nG

��������������

G

Consider the cyclotomic Zp-extension ∞F of F = Q(µp) for some odd
prime p. Write nG for the Galois group of nF = Q(µpn+1) over Q
and G = lim←−

nG = Gal(∞F/Q). Then G ∼= ∆ × Γ with ∆ = 0G and
Γ = Gal(∞F/F ). We write γa for the image of σa in Γ. The cyclotomic
character χ : G→ Z×p splits accordingly into the Teichmüller character
ω : ∆ → Z×p and κ : Γ → 1 + pZp. So for any a ∈ Z×p , the character
ω sends σa to a (p − 1)-st root of unity with ω(a) − a ∈ pZp and
κ(γa) = 〈a〉 = a/ω(a).

For i ∈ Z/(p−1)Z, consider the projector

εi =
1

p− 1

p−1∑
a=1

ωi(a)σ−1
a ∈ Zp[∆]

to the ωi-eigenspaces. We split up the Stickelberger element nθ = θnF ∈ Q[nG] for the
field nF into p− 1 elements nθi ∈ Qp[Gal(nF/F )] defined by εi · nθ = nθi · εi; explicitly

nθi = − 1
pn+1

∑
16a<pn+1

p-a

a · ω−i(a) · γ−1
a ∈ Qp[Gal(nF/F )] .

Lemma 7. If i 6= 1 then nθi ∈ Zp[Gal(nF/F )] and if i 6= 0, 1, then θi =
(
nθi
)
n>1

belongs
to lim←−Zp[Gal(nF/F )] = Λ. If i 6= 0 is even then θi = 0.

Recall that the generalised Bernoulli numbers for a Dirichlet character χ of conductor
m are defined by

m∑
a=1

χ(a)
t eat

emt − 1
=
∞∑
r=0

Br,χ
tr

r!
.

An explicit computation [50, Theorem 7.10] links the elements θi to these Bernoulli num-
bers and the traditional Bernoulli numbers Br. Recall that the Br,χ and Br also turn up
as values of the complex L-function L(s, χ) and the Riemann zeta-function [50, Theorem
4.2]. Hence we find the interpolation property.
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Theorem 8. For any even integer r > 1, we have

κ1−r(θ1−r) = −(1− pr−1)
Br
r

= (1− pr−1) ζ(1− r).

Furthermore, for any r > 1 and any even j 6≡ r (mod p− 1), we have

κ1−r(θ1−j) = −
Br,ωj−r

r
= L(1− r, ωj).

For any s ∈ Zp we can extend κs : Γ → 1 + pZp linearly to κs : Λ → Zp. The p-adic
L-functions are defined to be Lp(s, ωj) = κs(θ1−j). To represent the p-adic L-function as
a map χ 7→ χ(θ1−j) is analogue to Tate’s description of complex L-functions in his thesis;
often these maps are written as measures on the Galois group Γ.

Now Lp(s, ωj) is an analytic function in s and the existence of such a function satisfying
the above theorem is equivalent to strong congruences between the values of L(s, ωj) for
negative integers s. For instance, one can deduce the Kummer congruences [50, Corollary
5.14] from the theorem.

Leopoldt showed that Lp(1, ωj) satisfies a p-adic analytic class number formula involv-
ing the p-adic regulator, see [50, Theorems 5.18 and 5.24]. The p-adic L-function for j = 0
corresponding to θ1 is not in Λ, instead it has a simple pole at s = 1.

The above L-functions are in fact the branches of the p-adic zeta-function discovered
by Kubota and Leopoldt. There are generalisations to a much larger class of L-functions:
Suppose K is a totally real number field and F/K an abelian extension of degree prime
to p. Let χ be a character of the Galois group of F/K into the algebraic closure of Qp

and suppose that F is still totally real. Take O to be the ring Zp[χ] generated by the
values of χ. Then there is a p-adic L-function Lχ ∈ O[[Γ]] such that κs(Lχ) = Lp(s, χ)
satisfies Lp(1 − r, χ) = L(1 − r, χω−r) ·

∏
p|p(1 − χω−r(p)N(p)r−1) for all r > 1. See for

instance [51].

1.6 The main conjecture

Let 3 6 i 6 p−2 be an odd integer. Consider the projective limit X of the p-primary parts
of the class groups of nF = Q(µpn+1). Since ∆ acts on this Zp-module, we can decompose
it into eigenspaces for this action. Let Xi = εiX, which is now a finitely generated torsion
Λ = Zp[[Γ]]-module. Hence it makes sense to talk about its characteristic ideal.

Theorem 9 (Main conjecture). The ideal char(Xi) is generated by θi for all odd 3 6 i 6
p− 2.

This was first proven by Mazur-Wiles in [27], then generalised to totally real fields by
Wiles in [51]. These proofs use crucially the arithmetic of modular forms. Later a proof
was found using the Euler system of cyclotomic units, see [8] and the appendix in [20].

This theorem has many implications (some of which were known before the conjecture
was proved). We can split up the p-primary part C of the class group of Q(µp) into
eigenspaces Ci = εiC

Theorem 10. For every odd 3 6 i 6 p − 2, the order of Ci is equal to the order of
Zp/B1,ω−i.
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Theorem 11 (Herbrand-Ribet [35]). For any odd 3 6 i 6 p− 2, the character ωi appears
in C/Cp if and only if p divides the numerator of Bp−i.

1.7 Cyclotomic units

The p-adic L-function can also be constructed out of the following units. For each c
coprime to m, the element (ζcm− 1)/(ζm− 1) is a unit in Z[ζm] where ζm a primitive m-th
root of unity, called a cyclotomic unit. On the one hand they are linked to the p-adic
L-function as m varies in the powers of p; in fact the p-adic L-functions can be obtained
as a logarithmic derivatives of the Coleman series associated to the cyclotomic unit. See
Propositions 2.6.3 and 4.2.4 in [8]. On the other hand they are linked to the class group:
When m is a power of p, the index of the group generated by the cyclotomic units and
the roots of unity in Q(µm) is equal to the class group order of Q(µm)+ within the group
of units in Z[ζm].

The cyclotomic p-units ζcm − 1 form an Euler system, see §3.2 in [38], the appendix
in [20] and §5.2 in [8], due to the fact that they make the Euler factors of the L-function
appear in their compatibility with respect to the norm map:

NQ(µm`)/Q(µm)(ζm` − 1) = (1− σ−1
` )(ζm − 1)

for any prime ` - m. These special elements provides a powerful way of bounding the class
group in terms of values of the p-adic L-function and yield a proof of the main conjecture.

1.8 Vandiver’s conjecture

The theory so far only covered the minus part of the class group, i.e., Ci for odd i. Note
that ⊕i evenCi is the p-primary part of the class group of Q(µp)+.

Vandiver’s conjecture 1. The class number of Q(µp)+ is not divisible by p.

Although one may argue (see end of §5.4 in [50]) that it is not likely to hold for all
p, it is known to hold for all primes p 6 39 · 222 see [5]. Moreover for all these 9163831
primes, the components Ci are always cyclic of order p and there are at most 7 non-trivial
components. However, probably there are primes with Ci of order larger than p and
probably the λ-invariant can get arbitrarily large.

It is known since Kummer that if p divides the class number of Q(µp)+ then p divides
|Ci| for some odd i, see Corollary 8.17 in [50].

Proposition 12. If Vandiver’s conjecture holds for p, then Ci is isomorphic to Zp/B1,ω−i

for all odd i. Moreover nCi is a cyclic Zp[Gal(Fn/F )]-module for all n.

This is shown in Corollary 10.15 in [50].

Greenberg’s conjecture 2 ([14]). If F is totally real, then X = lim←−
nC is finite.
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1.9 Examples

Let us first take p = 5 and so i = 3 is the only interesting value. We take γ1+p to be the
generator of Γ corresponding to T + 1. Then

4θ3 =2 + 2 · 5 + 52 + 3 · 53 + 4 · 54 + O(55) +
(
4 + 4 · 5 + 52 + 4 · 53 + O(54)

)
· T

+
(
1 + 5 + 4 · 52 + O(54)

)
· T 2 + O(T 3)

which is congruent to θ3 modulo 4ω = (1 + T )54 − 1; in particular the above expression
is the correct approximation for the 5-adic L-function θ3. It is a unit in Λ as the leading
term −B1,ω2 = 2 + 2 · 5 + · · · is a 5-adic unit. Of course this is not surprising as the class
group of Q(µ5) is trivial. So here X = 0 and en = 0 for all n.

Now to the first irregular prime p = 37. Here the Bernoulli number B32 is divisible by
37. Accordingly, we expect a non-trivial ω5 part in the class group of Q(µ37). Indeed the
approximation to the 37-adic L-function is

3θ5 =14 · 37 + 33 · 372 + 13 · 373 + O(374) +
(
16 + 6 · 37 + 32 · 372 + O(373)

)
· T

+
(
29 + 9 · 37 + 13 · 372 + O(373)

)
· T 2 + O(T 3).

This is not a unit as −B1,ω−5 is divisible by 37. From the fact that the second coefficient
is a unit, we conclude that θ5 is a unit times a linear factor. Hence X is a free Z37-module
of rank 1 and en = n+ 1 for all n. The fact which underlies the proof of Ribet’s theorem
is that the Eisenstein series

G = − B32

2 · 32
+
∑
n>1

∑
d|n

d31qn

= 7709321041217
32640

+q+2147483649 q2+617673396283948 q3+4611686020574871553 q4+···

of weight 32 is congruent modulo one of the primes above 37 in Q(µ12) to the cuspform

f = q + ζ12 q
2 +

(
−ζ3

12 + ζ2
12 − ζ12

)
q3 − ζ2

12 q
4 +

(
2 ζ3

12 + ζ2
12 − 2 ζ2

12 − 2
)
q5 + · · ·

of weight 2 for the group Γ1(37) and character ω30.

2 Iwasawa theory for elliptic curves

2.1 Examples

Let ∞Q/Q be the cyclotomic Zp-extension of Q and let E/Q be an elliptic curve. The
theorem of Mordell-Weil shows that the group E(nQ) is finitely generated for all n. Is
this still true for E(∞Q) ? In particular is the rank of E(nQ) bounded as n grows? The
analogy with the case of global function fields suggests that this should be the case.

There is a second interesting group attached to E. For any elliptic curve E over a
number field F , the Tate-Shafarevich group X(E/nF ) is a certain torsion abelian group
whose definition we give in §2.2. We write nX for its p-primary part which is conjectured
to be finite for all n. The first four examples were computed with the methods in [45].
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2.1.1 Example 1

Let E be the elliptic curve given by

E : y2 + x y = x3 − 6511x − 203353

which has E(Q) = X(E/Q) = 0 and it is labelled 174b2 in Cremona’s table [10]. It has
bad reduction at 2 (additive), 3, and 29 (both split multiplicative).

If p = 5 then the rank of E(nQ) is zero for all n and the group nX is trivial, too. Since
a p-torsion group can not act with a single fixed point on a p-primary group, we have that
E(nQ) has no p-torsion for all n.

2.1.2 Example 2

Let us take the same curve but now with p = 7. Then the rank will still be zero for all n.
However if |nX| = pen , then en = pn+2n−1 for all n > 0. So the Tate-Shafarevich group
will explode in this case. Note that this curve has a 7-isogeny defined over Q and one
Tamagawa number is 7 and the number of points in the reduction over F7 has 7 points.
So p = 7 appears in various places. In fact nX is formed of pn − 1 copies of Z/pZ and two
copies of Z/pnZ.

2.1.3 Example 3

Again with the same curve, but this time for the prime p = 13. Once more the rank
remains 0 in the tower, however the p-primary part of X(E/nQ) grows with

en =
⌊ p

p2 − 1
pn − n

2

⌋
for all n. This formula is shown in [18]. For instance e0 = e1 = 0, e2 = 12, e3 = 168,
e4 = 2208, . . . Visibly the growth does not obey the same type of regularity as in the
previous examples. The difference is that E has supersingular reduction at p = 13.

2.1.4 Example 4

Let us consider now the curve 5692a1

E : y2 = x3 + x2 − 18x + 25

which has E(Q) = Z (0, 5) ⊕ Z(1, 3). For p = 3, one can show that the rank is 6 over 1Q
and it is 12 for all nQ with n > 2. The 3-primary part of X(E/nQ) is trivial for all n.
Note however that we do not know if X(E/Q) is finite or not.

2.1.5 Example 5

Finally, consider the curve 11a3

E : y2 + y = x3 − x2

and consider the anti-cyclotomic Z3-extension above F = Q
(√
−7
)
. The construction of

Heegner points allows us to produce points of infinite order nP ∈ E(nF ). The tower of

9
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points is compatible in the sense that the trace of nP to the layer below is (−1) · n−1P . It
can be shown that these points and their Galois conjugates generate a group of rank pn

in E(nF ). Hence this is an example in which the rank is not bounded. See [1].

2.2 Selmer groups

Let E/F be an elliptic curve over a number field F . Set Σ to be the finite set of places in
F consisting of all places above p, all places of bad reduction for E and all infinite places.

For any field K, we write H i(K, ·) for the group cohomology of continuous cochains
for the profinite absolute Galois group Gal(K̄/K). The notation H i

Σ(F, ·) will stand for
the cohomology for the Galois group GΣ(F ) of the maximal extension of F that is un-
ramified outside F , see [29, §8.3]; it can also be described as the étale cohomology group
H i

ét(Spec(OF ) \ Σ, ·) for the corresponding étale group scheme. If the Galois module M
is finite p-primary, then H i

Σ(F,M) is finite, see [29, Theorem 8.3.19]. If M is a finitely
generated Zp-module then so is H i

Σ(F,M), see [38, Proposition B.2.7]. For any abelian
group A, we will denote the Pontryagin dual HomZ(A,Q/Z) by Â.

For any finite extension K/F , we define the Tate-Shafarevich group X(E/K) to be
the kernel of the localisation map

H1(K,E)→
∏
v

H1(Kv, E)

where the product runs over all places v of K and Kv denotes the completion at v. The
non-trivial elements in X(E/K) have an interpretation as curves of genus 1 defined over
K with Jacobian isomorphic to E and which are counter-examples to the Hasse principle,
see [28, §17]. It is known that X(E/K) is a torsion abelian group such that the Pontryagin
dual of the p-primary part is a finitely generated Zp-module for every prime p. It is
conjectured that X(E/K) is finite.

Letm be a power of p. For any extensionK of F , the long exact sequence of cohomology
for E[m] gives the Kummer exact sequence

0 //E(K)/
mE(K)

κ //H1
(
K,E[m]

)
//H1(K,E)[m] //0.

For any finite extension K of F , we define the m-Selmer group Selm(E/K) as the ele-
ments in H1(K,E[m]) that restrict to elements in the image of the local Kummer map
κv : E(Kv)/pkE(Kv) → H1(Kv, E[m]) for all places v of K. This contains naturally
E(K)/mE(K) as a subgroup whose quotient is X(E/K)[m]. Since all cocycles in the
Selmer group are unramified outside Σ, we get an exact sequence

0 // Selm(E/K) // H1
Σ

(
K,E[m]

)
//
⊕
v∈Σ

H1(Kv, E)[m].

In particular, this shows that Selm(E/K) is finite. We can now form the two limits,
induced by the inclusion and the multiplication by p map between E[pk] and E[pk+1]. We
set

S(E/K) = lim−→
k

Selp
k
(E/K) ⊂ H1

Σ(K,W ) and

S(E/K) = lim←−
k

Selp
k
(E/K) ⊂ H1

Σ(K,T )

10
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where T = lim←−k E[pk] is the (compact) p-adic Tate module and W = lim−→k
E[pk] = E[p∞]

is the (discrete) p-primary torsion of E. It is true that lim←−H
1
Σ

(
K,E[pk]

)
= H1

Σ(K,T ) by
an argument of Tate, see [29, Corollary 2.3.5].

The corresponding limit version of the Mordell-Weil group are lim−→E(K)/pkE(K) and
lim←−E(K)/pkE(K). The first can be seen to be equal to E(K)⊗Z

Qp/Zp , which is isomorphic
to a direct sum of rank(E(K)) copies of Qp/Zp . The latter is equal to E(K)⊗Z Zp, which is
equal to the sum of rank(E(K)) copies of Zp plus the finite group E(K)[p∞]. By passing
to the limits, we find the exact sequences

0 // E(K)⊗ Qp/Zp
// S(E/K) // X(E/K)[p∞] // 0

0 // E(K)⊗ Zp // S(E/K) // lim←−k X(E/K)[pk] // 0

where the lower sequence remains exact because we have taken projective limits of finite
groups. The group on the right hand side of the second line is a free Zp-module which is
conjecturally trivial. The first line combines nicely the rank information with the Tate-
Shafarevich group. The Pontryagin duals of the first line and all the groups in the second
line are finitely generated Zp-modules.

Later in §4, we will give another description of S(E/K) which does not use the Kummer
map, but uses the modules W and T only.

2.3 Iwasawa theory for the Selmer group

Given a Zp-extension ∞F/F , we consider the limit S(E/∞F ) = lim−→n
S(E/nF ) and its dual

X = ̂S(E/∞F ) = lim←−
n

̂S(E/nF ) (1)

which is naturally a compact Λ-module. The maps are induced by the natural inclusion
E(nF ) → E(n+1F ) and the restriction map on the Tate-Shafarevich groups. Hence, if
the Mordell-Weil group stabilises after a few steps, as in all but the last example above,
then X will contain a Zp-module of this rank. The other natural limit lim←−n S(E/nF ) with
respect to the corestriction map is less interesting: If the Mordell-Weil group stabilises,
meaning that E(∞F ) = E(nF ) for some n, and the Tate-Shafarevich groups are finite,
then this limit is trivial.

Lemma 13. The Selmer group X is a finitely generated Λ-module for any Zp-extension.

Proof. We should show by lemma 5 that XΓ is a finitely generated Zp-module; this is the
dual of the Γ-fixed part of S(E/∞F ). Later in theorem 20, we will show that this is not
too far from the dual of S(E/F ), which is a finitely generated Zp-module.

Conjecture 3 (Mazur [23]). If E has good ordinary reduction at all places in F above p
and ∞F/F is the cyclotomic Zp-extension, then the Selmer group X is a torsion Λ-module.

Note that this conjecture implies, by proposition 4, that the largest free Zp-module in
X has finite rank λ(X), so by the above this will imply that the rank of E(nF ) stabilises.
Moreover we have:

11
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Proposition 14. If the conjecture holds then E(∞F ) is a finitely generated Z-module.
Suppose that X(E/nF )[p∞] is finite for all n, then there are constants µ, λ, ν, n0 such
that if

∣∣X(E/nF )[p∞]
∣∣ = pen, then en = µ pn + λn+ ν for all n > n0.

Proof. The first part is Theorem I.5 in [12]. For the second part, we will have to show that
XnΓ is very close to the dual of S(E/nF ) for all n. This is done in the control theorem 21
below.

As shown by the examples 2.1.4 and 2.1.5, none of the two assumptions in Mazur’s
conjecture can be removed. Here are two important result in support of the conjecture.

Theorem 15 (Mazur [23]). If E(F ) and X(E/F )[p∞] are finite, then the conjecture holds.

The main result of Kato in [17] implies the following.

Theorem 16. Let E be an elliptic curve defined over Q and let F be an abelian extension
of Q. Suppose that E has good ordinary reduction at p, then the Selmer group for the
cyclotomic Zp-extension is a torsion Λ-module.

2.4 Mazur-Stickelberger elements

Let E/Q be an elliptic curve. We will suppose that E has good reduction at p. Let ωE be
a Néron differential on E; this is just dx

2y when E is given by a global minimal model. The
canonical lattice ZE for E is the image of

∫
: H1

(
E(C),Z

)
→ C sending a closed path γ

on E(C) to
∫
γ ωE. We define ΩE to be the smallest positive element of ZE.

The theorem of modularity [4] shows that there exists a morphism ϕE of curves
X0(N) → E defined over Q. We take one of minimal degree. If f is the newform
corresponding to the isogeny class of E, then there is a natural number cE, called the
Manin constant, such that cE · ϕ∗E(ωE) is equal to the differential 2πif(z)dz on X0(N)
corresponding to f , written here as a differential in the variable z on the upper half plane
H. For the so-called optimal curve in the isogeny class one expects cE = 1.

For any rational number r = a
m , consider the ray from r to i∞ in the upper half plane.

Its image in X0(N)(C) is a (not necessarily closed) path {r,∞} between two cusps.

Proposition 17 (Manin [22]). There is a natural number t > 1 such that, for all r ∈ Q,
the value of λf (r) = 2πi

∫ r
i∞ f(z) dz belongs to 1

t ZE.

This is clear for the closed paths, i.e., when r is Γ0(N)-equivalent to i∞. The proof
for general r uses the Hecke operators T` on X0(N).

We define the (plus) modular symbol [r]+ by

[r]+ =
1

ΩE

· Re
(

2πi
∫ r

i∞
f(z) dz

)
∈ Q,

see [10] for more details. For an abelian field K of conductor m, we define the Stickelberger
element for E to be

ΘE/K =
∑

16a<m
(a,m)=1

[ a
m

]+
σa ∈ Q

[
Gal(K/Q)

]
.

12
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Let ` be a prime of good reduction. The `-th coefficient a` of f satisfies `−a`+1 = #E(F`).
If ` does not divide m, then

NQ(µm`)/Q(µm)

(
ΘE/Q(µm`)

)
= (−σ`)

(
1− a` σ−1

` + σ−2
`

)(
ΘE/Q(µm)

)
,

which can be deduced from the action of the Hecke operator T` on X0(N).

2.5 The p-adic L-function

Let p be a prime of good reduction for E. Write now nΘE for the Stickelberger element
for the field nQ and write nG = Gal(nQ/Q). We define the map j : Q[nG] → Q[n+1G]
to send an element of nG to the sum over all its preimages in n+1G. Then the norm
N : Q[n+1G]→ Q[nG] sends n+1ΘE to

N
(
n+1ΘE

)
= ap · nΘE − j

(
n−1ΘE

)
.

This is shown using the Hecke operator Tp. Let α be a root of the polynomial X2−apX+p.
We set

nLE =
1

αn+1
· nΘE −

1
αn+2

j
(
n−1ΘE

)
(2)

for all n > 1. Then LE = (nLE)n>1 belongs to lim←−Q[Gal(nQ/Q)] and it is called the
p-adic L-function of E. Explicitly, we have

nLE =
∑

16a<pn+1

p-a

(
1

αn+1

[ a

pn+1

]+
− 1
αn+2

[ a
pn

]+
)
· γa.

Suppose now that E has good ordinary reduction at p. Then ap is a p-adic unit and hence
we can find one root α which belongs to Z×p . Because the denominator of [ am ] is uniformly
bounded, LE actually belongs to Qp⊗Λ and in many cases it is known that LE ∈ Λ. For
the supersingular case there is no unit root α and LE will never belong to Λ, see [34].

Theorem 18. The p-adic L-function satisfies the interpolation properties

1(LE) =
(

1− 1
α

)2
· L(E, 1)

ΩE

(3)

and
χ(LE) =

Ga(χ)
αn+1

· L(E, χ̄, 1)
ΩE

(4)

for all character χ of conductor pn+1 on Γ, i.e, that factor through Gal(nQ/Q) but not
through Gal(n−1Q/Q).

The proof connecting the corresponding finite sums of modular symbols to the Mellin
transform of the modular form can be found in formula (8.6) and §14 of [26].

Theorem 19 (Rohrlich [36]). Only finitely many of the values χ(LE) in equation (4) are
zero. In particular LE 6= 0.

13
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Again, we can define the analytic function Lp(E, s) = κs−1(LE). If L(E, 1) 6= 0, we
know that E(Q) is finite. As a consequence of the above theorem, we see that Lp(E, 1) 6= 0
as α 6= 1. Moreover the value Lp(E, 1) is then predicted by the Birch and Swinnerton-Dyer
conjecture.

Conjecture 4 (p-adic version of the Birch and Swinnerton-Dyer conjecture [26]). The
order of vanishing of Lp(E, s) at s = 1 is equal to the rank of E(Q). The leading term of
its series at s = 1 is equal to(

1− 1
α

)2
·

Regp(E/Q) ·#X(E/Q) ·
∏
v cv(

#E(Q)tors

)2
where cv are the Tamagawa numbers and Regp(E/Q) is the p-adic regulator, see §3.2.

It would be very interesting to know that the order of vanishing of Lp(E, s) is equal to
the order of vanishing of L(E, s). However this is only known when the p-adic L-function
vanishes to order at most 1 by [30].

2.6 The main conjecture

Let E/Q and suppose E has good ordinary reduction at p. By theorem 16, we can associate
to E the characteristic ideal char(X) of the dual of the Selmer group in (1). Under the
same hypothesis, we have constructed a p-adic L-function (2).

Conjecture 5 (Main conjecture). The p-adic L-function LE is a generator for the char-
acteristic ideal char(X).

The other series of lectures will talk about the main result by Skinner and Urban on
this conjecture.

The generalisations to higher weight modular forms for Γ0(N) with p - N and p - ap is
fairly straight forward, see [26]. For the extensions to p | N , but p2 - N , one has to be a bit
careful as the case of split multiplicative reduction behaves differently due to the presence
of exceptional zeroes because α = 1. Finally the generalisation to the supersingular case is
clearly much more complicated. To my knowledge the generalisation to additive reduction,
i.e., when p2 | N , is not yet fully done.

3 The leading term formula

3.1 Control theorem

As before let E/F be an elliptic curve and let∞F/F be a Zp-extension. Recall thatX is the
dual of the limit Selmer group S(E/∞F ) as defined in (1) and we are interested in compar-
ing XΓ with the dual of S(E/F ). For a place v ∈ Σ, write ∞Jv =

∏
v|wH

1(∞Fw, E)[p∞].
We have the following diagram

0 // S(E/∞F )Γ // H1
Σ(∞F,W )Γ //

⊕
v∈Σ

(∞Jv)Γ

0 // S(E/F )

α

OO

// H1
Σ(F,W )

β

OO

//
⊕
v∈Σ

H1(Fv, E)[p∞].

⊕vγv

OO
(5)

14
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We want to bound the kernel and cokernel of α. Even if it is clear that E(∞F )Γ = E(F ),
it is not obvious what happens to the map E(F ) ⊗ Qp/Zp →

(
E(∞F ) ⊗ Qp/Zp

)Γ as a non-
divisible point in E(F ) can become divisible by p in E(nF ).

Theorem 20. The kernel of α is finite and the dual of the cokernel is a finitely generated
Zp-module.

Proof. The inflation-restriction sequence [29, Proposition 1.6.6] for the H i
Σ-cohomology

of W = E[p∞] gives that the kernel of β is H1
(
Γ, H0

Σ(∞F,W )
)

and the cokernel lies in
H2
(
Γ, H0

Σ(∞F,W )
)
. Now the dual of D = H0(∞F,W ) = E(∞F )[p∞] has Zp-rank at most

2. Hence the dual of the exact sequence

0 //DΓ //D
γ−1 //D //DΓ

//0

shows that H1(Γ, D) = DΓ has the same corank as DΓ = E(F )[p∞], which is finite. Hence
the kernel of β and α are finite. In fact, if D is finite as in almost all cases, then the kernel
of β has the same order as E(F )[p∞].

The cokernel of β is trivial, because H2(Γ, D) = lim−→k
H2
(
Γ, E(∞F )[pk]

)
and the latter

groups are trivial because Γ has cohomological dimension 1, see [29, Proposition 1.6.13].
Since β is surjective we see that the duals of H1

Σ(∞F,W )Γ and S(E/∞F )Γ are finitely
generated Zp-modules.

Note that this proves lemma 13 saying that X is a finitely generated Λ-module.

Theorem 21 (Control theorem). Suppose that E has good ordinary reduction at all primes
that ramify in ∞F/F . Then the map α has finite kernel and cokernel.

Proof. From the previous proof, we see that we are left to show that the cokernel of α is
finite. By the snake lemma applied to (5), it suffices to show that the kernel of ⊕γv is
finite under our hypothesis.

Let v ∈ Σ. By local Tate duality [49], the group H1(Fv, E)[p∞] is the Pontryagin dual
of the p-adic completion E(Fv)? = lim←−E(Fv)/pkE(Fv) of the local points. The structure
of elliptic curves over local fields, see chapter 7 in [44], can be used to show that E(Fv)?

is finite if v - p and it is a finitely generated Zp-module of rank [Fv : Qp] if v | p. Choose a
place w above v in ∞F . We wish to show that the kernel of

γv : H1(Fv, E)[p∞] //H1(∞Fw, E)[p∞]

is finite. Again by Tate duality this map is dual to the norm map

γ̂v : E(∞F )? //E(Fv)?.

The following lemmas will conclude this proof.

We will write x ×= y if there is a p-adic unit u such that x = u · y.

Lemma 22. If v splits completely in ∞F/F , then ker γv = 0. Otherwise, if v is unramified,
then # ker γv

×= cv, the Tamagawa number of E/Fv. In particular ker γv is non-zero for
only finitely many v.
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Proof. If v splits completely, then ∞Fw = Fv and the “norm” map is clearly surjective.
First assume v - p. The local extension ∞Fw/Fv is unramified and so the Néron model

of E will not change in this extension. Let Φ be its group of components and write E0
v for

the connected component of the special fibre. Then we have that

0 //E0
v(Fv)? //E(Fv)? //Φ(Fv)? //0

because the points in the formal group Ê are divisible by p when v - p. Now the norm
map on the left hand side is surjective because of Lang’s theorem [19]. On the right hand
side instead the norm map will be the zero map for sufficiently large n. Hence ker γv is
dual to Φ(Fv)?.

Now assume v | p, but the extension ∞F/F is unramified at v. The argument is the
same as above, except that we now have to show that the norm is surjective on the formal
groups. That is done in the part a) of the following lemma.

Lemma 23. Let E be an elliptic curve over a p-adic field K and let L/K be a cyclic
extension of degree a power of p. Let mL and mK be the maximal ideals of L and K
respectively.

a). If L/K is unramified then the norm map on the formal group Ê(mL) → Ê(mK) is
surjective.

b). If L/K is ramified and E has good ordinary reduction. Then the cokernel of the
norm map on the formal groups is finite.

c). If v | p is totally ramified and E has good ordinary reduction, then # ker γv
×= N2

v

where Nv is the number of points in the reduction E(Fv).

Proof. For the proof of the first point uses the filtration by Ê(mk), the formal loga-
rithm that gives an isomorphism Ê(mk

L) ∼= 1 + mk
L for large enough k, the fact that

H1(FL/FK ,FL) = 0 for the residue fields, and the surjectivity of the norm map on units [42,
Proposition V.3].

The proof of the latter two can be found in [21]. It relies on the fact that the formal
group of E becomes isomorphic to the multiplicative formal group over the ring of integers
of the completion of the maximal unramified extension of Fv.

A different and more accessible proof of item c) in the above lemma is explained in
Lemma 4.6 in [12]. It should be noted that the both item b) and c) are no longer valid when
the reduction is supersingular. The theory in the case of good supersingular reduction at
primes above p is quite different.

One can now add a proof for theorem 15. If E(F ) and X(E/F )[p∞] are both finite,
then so is S(E/F ). By the control theorem 21, this implies that XΓ is finite. Since the
Γ-coinvariants ΛΓ

∼= Zp of Λ are not finite, we see that X is a torsion Λ-module. In fact,
we see that this holds for all Zp-extensions, not just the cyclotomic. In example 2.1.5, the
rank of E(F ) is 1.

16



Iwasawa theory cw 12

3.2 p-adic heights

We will now construct an analogue to the real-valued Néron-Tate height. We present a
version inspired by [2]. Let E/F be an elliptic curve and we suppose that E has good
ordinary reduction at all places above p that are ramified. To each cohomology class in
H1(F, T ) represented by a cocycle ξ : GF = Gal(F̄ /F ) → T = Tp(E), we associate an
extension

0 //Tpµ //Tξ //T //0

where Tpµ = lim←−µ[pk], also denoted by Zp(1), is a free Zp-module of rank 1 on which GF
acts via the cyclotomic character. As a Zp-module Tξ = Tpµ ⊕ T , but the GF -action is
given by

σ(ζ, P ) =
(
σ(ζ) · e

(
ξσ, σ(P )

)
, σ(P )

)
for ζ ∈ Tpµ and P ∈ T ,

with e : T × T → Tpµ denoting the Weil-pairing [44, §3.8]. It is not hard to show that the
class of the extension Tξ does not depend on the chosen cocycle and that the boundary
maps ∂ : H i(F, T ) → H i+1(F, Tpµ) are given by applying the Weil-pairing to the cup-
product with ξ, at least up to sign.

Consider now the commutative diagram with exact rows

0 // H1(F, Tpµ) //

��

H1(F, Tξ) //

��

H1(F, T ) //

��

H2(F, Tpµ)

��
0 // ∏

vH
1(Fv, Tpµ) // ∏

vH
1(Fv, Tξ) // ∏

vH
1(Fv, T )

Q
∂v// ∏

vH
2(Fv, Tpµ)

(6)

with the product running over all places in F . It follows from global class field theory
that the downwards arrow on the right is injective [29, Corollary 9.1.8.ii] if T is replaced
by µpk ; that the limit is still surjective needs an additional argument [47, Corollary to
Proposition 2.2]. On the left we have the map from the p-adic completion (F×)? of F×

to
∏
v(F

×
v )?.

Choose an topological generator γ. Let l : Γ → Zp be the map that send γ to 1. For
each place v consider the composition

λv : F×v //A×F //Γ l //Zp

where A×F is the idèle group of F and the map that follows it is the reciprocity map.
This map extends to the completion λv : (F×v )? → Zp. In case ∞F/F is the cyclotomic
Zp-extension, then l is a multiple of logp ◦κ. For finite places v away from p, the map is
simply λv(x) = (logp(κ(γ))−1 · log(#Fv) · v(x) where Fv is the residue field. For places
above p, we get λv(x) = −(logp(κ(γ))−1 · logp(NKv/Qp

(x)).
Suppose now ξ belongs to S(E/F ). Let S(E/F )0 be the subgroup of S(E/F ) of all

elements η such that resv(η) ∈ E(Fv)? lies in the image of the norm from E(∞Fw)? for
all places v. By lemma 22 and 23, this subgroup has finite index in S(E/F ). Let η ∈
S(E/F )0. Since both resv(η) and resv(ξ) belong to the image of E(Fv)? inside H1(Fv, T ),
their cup-pairing is trivial. This is again a consequence of local Tate duality [49]. Hence
resv(η) is sent to 0 by ∂v. By the injectivity of the right arrow in (6), we conclude that
there is an element ζ in H1(F, Tξ) that maps to η in H1(F, T ).
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For each place v, we will define a local lift ζv ∈ H1(Fv, Tξ). Since η ∈ S(E/F )0, there
is an element η̃v ∈ H1(∞Fw, T ) whose norm is resv(η). Pick any lift of η̃v to H1(∞Fw, Tξ)
and define ζv to be its norm in H1(Fv, Tξ).

By construction resv(ζ) − ζv ∈ H1(Fv, Tξ) maps to 0 in H1(Fv, T ) and hence we can
viewed it as an element in H1(Fv, Tpµ) = (F×v )?. We set

〈ξ, η〉 =
∑
v

λv
(
resv(ζ)− ζv

)
∈ Zp.

It is not hard to check that this element is independent of the choices made, because both
(F×)? and the norms from H1(∞Fw, Tpµ) lie in the kernel of

∑
v λv.

Since S(E/F )0 has finite index, we can linearly extend this to a pairing on S(E/F )
with values in Qp. This is called the canonical p-adic height pairing corresponding to the
Zp-extension and the choice of γ. Note that this construction only works under the as-
sumption that E has good ordinary reduction at the ramified places. For the generalisation
to any Galois representation, which is de Rham at places above p, see [33, §3.1.2].

There is a variant of this construction: Let ξ ∈ S(E/F )0 and η = (nη)n ∈ S(E/∞F ),
then one can construct in a similar way an element of Qp/Zp . This time one lifts resw(nη) ∈
H1(nFw,W ) to H1(nFw, Tξ ⊗ Qp/Zp) etc. It turns out that the map δ̂ : S(E/F )0 →
Hom

(
S(E/∞F ),Qp/Zp

)
= X has its image in XΓ. Now the p-adic height pairing can

be described involving the map π : XΓ → X → XΓ.

Proposition 24 (Proposition 3.4.5. in [31]). There is a commutative diagram

XΓ

α

��

XΓπoo

̂S(E/F ) ι
// // HomZp

(
S(E/F ),Zp

)
S(E/F )0

hp

oo

δ̂

OO (7)

where hp is the p-adic height pairing and ι is a naturally defined surjective Zp-morphism
with finite kernel.

Finally one should mention that the p-adic height pairing has also an analytic de-
scription using canonical p-adic sigma-functions σv for all ramified places. These are
well-explained in [25] and a fast algorithm for computing them was found in [24] using
Kedlaya’s algorithm. For instance, if E/Q and P = (x, y) ∈ E(Q) is a point that has good
reduction everywhere and reduces to 0 at p, then hp(P ) = logp(σp(P )) − logp(e) where e
is the square root of the denominator of x. In general the formula allows one to compute
the p-adic height with only the information of E over F together with the explicit maps
λv.

Conjecture 6 (Schneider [39]). The canonical p-adic height pairing for the cyclotomic
Zp-extension on an elliptic curve with good ordinary reduction at all places above p is
non-degenerate.

Suppose X(E/F )[p∞] is finite. Choose a basis of E(F ) modulo torsion and let
Regγ(E/F ) ∈ Qp be the determinant of the p-adic height pairing on this basis. The
number Regp(E/F ) = Regγ(E/F ) · logp(κ(γ))rankE(F ) is independent of the choice of γ.
The above conjecture then says that Regγ(E/F ) 6= 0 in the cyclotomic case. For the
anti-cyclotomic Zp-extension it can well be that the p-adic height is degenerate.
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3.3 Leading term

The following theorem was proved by Perrin-Riou for curves with complex multiplication
then in general by Schneider [40]. See [32] for the details to complete our sketch of proof.

Let ∞F/F be a Zp-extension such that all ramified places are totally ramified. Write
Σ(ram) for the set of all the ramified places in F and denote by S the set of all places
that split completely in ∞F .

As before, identify Λ with Zp[[T ]] via the choice of a topological generator γ. Let
FX(T ) ∈ Zp[[T ]] be a generator of the characteristic ideal for X.

Theorem 25. Suppose E has good ordinary reduction at all ramified places above p and
suppose that the canonical p-adic height for ∞F/F is non-degenerate. Then

a). X is Λ-torsion;

b). the characteristic series FX(T ) has a zero of order rankZp

(
S(E/F )

)
at T = 0;

c). if X(E/F )[p∞] is finite then the leading term F ∗X(0) of FX(T ) at T = 0 satisfies

F ∗X(0) ×=
∏

v∈Σ(ram)

N2
v ·

Regp(E/F ) ·#X(E/F )[p∞] ·
∏
v 6∈S cv·(

#E(F )tors

)2 .

If the main conjecture holds for a curve E/Q, then the finiteness of X(E/Q)[p∞] and
the non-degeneracy of the p-adic height pairing imply the p-adic BSD conjecture, up to a
p-adic unit in the leading term. This is because 1− 1/α ×= Nv. Theorem 25 together with
Kato’s theorem 29 can be used to give a new efficient algorithm [45] for the determination
of the rank of E(Q) and upper bounds of X(E/Q)[p∞] for almost all p.

The proof of this theorem follows surprisingly closely what Tate [48] did in the function
field case to reduce BSD to the finiteness of the p-primary part of the Tate-Shafarevich
group. The algebraic part relies on the following lemma which can be deduced from
proposition 4.

Lemma 26. Let X be a finitely generated Λ-module and suppose the cokernel of π : XΓ →
XΓ is finite. Then

a). X is Λ-torsion;

b). π has finite kernel;

c). the leading term of its characteristic series satisfies F ∗X(0) ×= # coker(π)
# ker(π) =: q(π).

If XΓ is finite, then q(π) is the Euler-characteristic
∏1
i=0 #H i

(
Γ, S(E/∞F )

)(−1)i

. For
a proof in this case see §3 of [7] or in §4 of Greenberg’s part in [6].

Proof of theorem 25. From diagram (7) and the assumption that hp has finite kernel and
cokernel, we find that π must have finite cokernel. Hence the lemma applies and we are
left to determine the value of q(π). Note that δ has now also finite kernel and cokernel.
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Global duality [29, Theorem 8.6.13] gives us a long exact sequence.

0 // S(E/F ) // H1
Σ(F,W )

))SSSSSSSSS ⊕
v∈Σ

H1(Fv, E)[p∞]

uulllllllll

0 H2
Σ(F,W )oo Ŝ(E/F )oo

Because X is Λ-torsion we have that lim←−S(E/nF ) = 0 as shown in [31, §3.1.7]. When
taking the limit of these above sequence over n, the resulting exact sequence is

0 //S(E/∞F ) //H1
Σ(∞F,W ) //

⊕
v∈Σ

∞Jv //0

where ∞Jv =
∏
w|vH

1(∞Fw, E)[p∞].
Now we can produce a big diagram with exact rows:

0 // S(E/∞F )Γ // H1
Σ(∞F,W )Γ //

⊕
v∈Σ

(∞Jv)Γ // S(E/∞F )Γ
//

δ
��

H1
Σ(∞F,W )Γ

//

ε
��

0

0 // S(E/F )

α

OO

// H1
Σ(F,W )

β

OO

//
⊕
v∈Σ

H1(Fv, E)[p∞]

⊕γv

OO

// Ŝ(E/F ) // H2
Σ(F,W ) // 0

To show that the two right squares commute requires some work [31, §4.4 and 4.5]. By the
way, I am cheating slightly as in fact the term S(E/F ) should be replaced by S(E/F )0

and other terms should be modified accordingly. Also one has to show that (∞Jv)Γ = 0 to
get the exactness in the top right corner; this follows from the triviality of H2(Fv, E)[p∞],
again by local Tate duality.

Next, the transgression map ε is part of the short exact sequences from the degen-
erating Hochschild-Serre spectral sequence. It is injective and the cokernel is equal to
H2

Σ(∞F,W )Γ. However the group H2
Σ(∞F,W ) is trivial as shown in §3.4.1 in [31]. This

shows that ε is an isomorphism. So the big diagram gives the equality

q(α) · q(β)−1 · q
(⊕

γv

)
· q(δ) = 1.

On the other hand the diagram (7) gives the equation

q(δ̂) · q(π) · q(α) · q(ι) = q(hp)

In the proof of theorem 20 we have seen that q(β) ×=
(
#E(F )tors

)−1 if E(∞F )[p∞] is finite,
which follows without too much difficulty from [21] under our assumptions. In lemma 22
and 23 we found that

q
(⊕

γv

)
×=
(∏
v 6∈S

cv ·
∏

v∈Σ(ram)

N2
v

)−1

.

Finally, we know that E(F )⊗Zp has index #E(F )[p∞] in S(E/F ) if the Tate-Shafarevich
group is finite. Hence

q(hp)
×=

Regp(E/F )
#E(F )tors.
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It is not difficult to see that q(ι) = #X(E/F )[p∞] under our hypothesis. The neglected
index of [S(E/F ) : S(E/F )0] would have cancelled.

4 Selmer groups for general Galois representations

Let T be a free Zp-module of finite rank with an action ofGF = Gal(F̄ /F ). We will suppose
that only finitely many places ramify in T ; so T has an action of GΣ(K) for a finite set
Σ containing the places above p and ∞. Let V = T ⊗ Qp and W = V/T = T ⊗ Qp/Zp .
So far we were dealing with the example TE = TpE and WE = E[p∞] and VE is then a
2-dimensional Galois representation. But of course there are lots of other examples, such
as more general subquotients of étale cohomology groups of varieties defined over F with
Qp-coefficients or Galois representation attached to modular forms.

We wish to define the Selmer group but we have no longer a Kummer map κ :? →
H1(Fv,W ) or ?→ H1(Fv, T ). In order to understand how to define it in the general case,
we look at how we could describe the image of κ in the case of an elliptic curve.

4.1 Local conditions at places away from p

Let v ∈ Σ be a prime not dividing p. Then the Kummer maps are E(Fv) ⊗ Qp/Zp →
H1(Fv,WE) and E(Fv)? → H1(Fv, TE). Recall that E(Fv) contains with finite index a
group isomorphic to mv, the maximal ideal of Fv. Hence E(Fv)⊗Qp/Zp = 0 and E(Fv)? =
E(Fv)[p∞] = W

GFv
E is finite.

Here is the general definition for v - p. Define the subgroup H1
f (Fv, V ) by the exact

sequence
0 //H1

f (Fv, V ) //H1(Fv, V ) //H1(I, V ) (8)

where I = Iv is the inertia subgroup in Gal(F̄v/Fv). By the restriction-inflation sequence,
H1
f (Fv, V ) is isomorphic to H1(F ur

v /Fv, V
I) where F ur

v is the maximal unramified extension
of Fv. Then we define H1

f (Fv,W ) as the image of H1
f (Fv, V ) under the map H1(Fv, V )→

H1(Fv,W ). Also H1
f (Fv, T ) is the preimage of H1

f (Fv, V ) from the map H1(Fv, T ) →
H1(Fv, V ).

For the case of the elliptic curve, we find H1
f (Fv, VE) = 0 for all v - p: In fact, we have

in general that H1
f (Fv, V ) = V I/(Frv −1)V I by Lemma 1.3.2 in [38]. If the reduction is

good then V I
E = VE by the Néron–Ogg–Shafarevich criterion [44, Theorem 7.7.1] and Frv,

the Frobenius of Gal(F ur
v /Fv), acts with eigenvalues different from 1. If the reduction is

multiplicative, then V I
E
∼= Qp(1) and the group H1

f (Fv, VE) is again trivial. Finally if the
reduction is additive, then V I

E = 0. Since we have the exact sequence

0 = V
GFv

E
//W

GFv
E

//H1(Fv, TE) //H1(Fv, VE) //H1(Fv,WE)

we obtain that H1
f (Fv,WE) = 0 = E(Fv)⊗ Qp/Zp and H1

f (Fv, TE) = E(Fv)[p∞] = E(Fv)?.
It would be tempting to define in general H1

f (Fv,W ) without passing through V by re-
placing V with W in (8). However the elliptic curve example explains that this does
not work. In general, we have that H1

f (Fv,W ) is the divisible part of the kernel of
H1(Fv,W ) → H1(Iv,W ) and H1

f (Fv, T ) has finite index in the corresponding kernel for
T ; see [38, Lemma 1.3.5].
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4.2 Local conditions at places above p

Let now v be a place above p. The definition of the group H1
f (Fv, V ) is given by Bloch-

Kato [3] by asking that

0 //H1
f (Fv, V ) //H1(Fv, V ) //H1(Fv, V ⊗Bcris) (9)

is an exact sequence, where Bcris is a certain period ring of Fontaine.
Now, if V is ordinary, one can give an easier definition. Here a general representation

V is called ordinary if there is a decreasing filtration Fili V of Gal(F̄v/Fv)-stable subspaces
of V such that the inertia group I acts like the i-th power of the cyclotomic character on
the quotient Fili V/Fili+1 V . For an ordinary elliptic curve, we consider the kernel of the
reduction on E[pk] which is the pk-torsion Ê[pk] of the formal group. Then Fil1 VE =
TpÊ ⊗Qp sits in the middle between Fil2 VE = 0 and Fil0 VE = VE.

We set F+V = Fil1 V and then [13] shows that

0 //H1
f (Fv, V ) //H1(Fv, V ) //H1

(
I, V

/
F+V

)
(10)

is exact. The subgroups H1
f (Fv,W ) and H1

f (Fv, T ) are again defined as the image and
preimage of H1

f (Fv, V ), respectively.

4.3 The Selmer groups

The Selmer groups are now defined as the following kernels. They are often denoted by
H1
f (F,W ) and H1

f (F, T ).

0 // S(W ) // H1
Σ(F,W ) //

⊕
v∈Σ

H1(Fv,W )/
H1
f (Fv,W ),

0 // S(T ) // H1
Σ(F, T ) //

⊕
v∈Σ

H1(Fv, T )/
H1
f (Fv, T )

.

They are now defined only in terms of T and equal to the previously defined Selmer group
for elliptic curves. If X(E/F ) is finite, then we have a way to determine the rank and the
order of the Tate-Shafarevich group from the Galois representation VE only. Note that
the L-function L(E, s) is also constructed from VE only.

For instance, if T = Zp has a trivial GF -action on it, then S(Qp/Zp) is the dual of
the p-primary part of the class group. If T = Zp(1) is of rank 1 with the action by GF
given by the cyclotomic character, then S

(Qp/Zp(1)
)

sits in a short exact sequence between
O×F ⊗ Qp/Zp and the p-primary part of the class group.

5 Kato’s Euler system

In this section we give a quick and very imprecise overview of the work of Kato in [17]
where he proves one divisibility in the main conjecture for elliptic curves (and modular
forms of higher weight). See also [41] and [9].

Let E/Q be an elliptic curve and p an odd prime at which E has good reduction. Let
N be the conductor of E. We assume that E[p] is an irreducible GQ-module and hence
all GQ-stable lattices in VpE are equal up to a scaling factor.
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5.1 Construction of the Euler system

Let M be an integer. Pick an integer m > 5 coprime to 6M . For any elliptic curve A
over a field k/Q, we can construct a division polynomial fm ∈ k(A)×, which is a function
of divisor div(fm) = −m2(O) +

∑
P∈A[m](P ) normalised such that [a]∗fm = fm for all a

coprime to m. Consider the maps g(m)

i for i = 1 or 2 that sends a point in the modular
curve Y (M) represented by (A,Q1, Q2) to fm(Qi). It is a rational function on Y (M)
without zero, i.e., gi ∈ O(Y (M))×, called a Siegel unit. It can be shown that the function
gi = g(m)

i ⊗ 1
m2−1

in O(Y (M)) ⊗ Q is independent of the choice of m. They give rise to
Beilinson element in K2

(
O(Y (M))×

)
⊗Q, defined as the Steinberg symbol {g1, g2}.

Such pairs of modular units can now be sent through a chain of maps. For a square-free
r coprime to pN , we take M = N pn+1 r and consider the map

X(M) //X(N)⊗ nQ(µr)
ϕE //E ⊗ nQ(µr).

We chase the pair of modular units through the maps (see §8.4 in [17])

O
(
Y (M)

)× × O
(
Y (M)

)× ∪ // H2
ét

(
Y (N)/nQ(µr), Zp(2)

)
twist à la Soulé

��

H2
ét

(
Y (N)/nQ(µr), Zp(1)

)
��

H1
(
nQ(µr), H1

ét

(
Y (N), Zp(1)

))
��

H1
(
nQ(µr), TE

)
⊗Q

where we used that H1
ét

(
E,Zp(1)

)
= TE. Poincaré duality relates H1

ét

(
Y0(N),Qp

)
to

modular symbols as it is equal to the homology H1

(
X0(N)(C), {cusps},Z

)
⊗Qp of paths

between cusps. See §4.7 and §8.3 in [17].
The image of the Siegel units produce now elements ncr in H1

Σ

(
nQ(µr), T ) that form

an Euler system for a certain lattice T in TE ⊗ Qp. See example 13.3 in [17] for details.
In particular, (ncr)n belongs to lim←−nH

1(nQ(µr), T ). If ` is a prime not dividing rpN then
they satisfy the norm relations

cor
(
ncr`

)
=
(

1− a`
`
σ−1
` +

1
`
σ−2
`

)
(ncr).

See proposition 8.12 in [17] for the precise statement deduced from the Hecke operators
on the modular curves.

5.2 Relation to p-adic L-function

Suppose E has good ordinary reduction at p and let α ∈ Zp be the unit root of Frobenius.
We continue to assume that E[p] is irreducible. The general “dual of exponential” à la
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Bloch-Kato has a very explicit description for elliptic curves. It is the map

exp∗ : E(nQp)
? →

(
E(nQp)⊗ Qp/Zp

)∧
→ nQp

which is a linear extension of the formal logarithm on the formal group with respect to
the invariant differential ωE. Based on the work of Coleman, Perrin-Riou has constructed
an Iwasawa theoretic version which interpolates these maps:

Col : H1
s :=

(
E(∞Qp)⊗ Qp/Zp

)∧
→ Λ.

It is an injective Λ-morphism with finite cokernel such that for all character χ of Γ of
conductor pn+1, we have

χ
(
Col(z)

)
=

Ga(χ)
αn+1

∑
σ∈Gal(nQ/Q)

χ̄(σ) exp∗
(
σ(nz)

)
.

See the appendix of [37] for details of the construction.
One of the main theorems of Kato is

Theorem 27. There is an element ∞c ∈ lim←−H
1
Σ(nQ, T ) ⊗ Q closely related to the ones

constructed above such that Col(∞c) = LE

This is theorem 16.6 in [17] with the “good choice” of γ+ as in 17.5. This is the
technically most difficult part of [17]. It implies that the Euler system is non-trivial by
theorem 19. If the representation ρ̄ : GQ → Gl(TE) is surjective, then ∞c is integral by his
theorem 12.5.4.

5.3 Euler system method

For each i, the limit Hi = lim←−nH
i
Σ(nQ, TE) is a finitely generated Λ-module, which does

not depend on Σ as long as it contains p. The existence of a non-trivial Euler system
∞cr ∈ lim←−H

1(nQ(µr), TE) proves the following.

Theorem 28 (Theorem 12.4 in [17]). a). H2 is Λ-torsion.

b). H1 is a torsion-free Λ-module of rank 1.

c). If E[p] is an irreducible GQ-module, then H1 is free of rank 1.

See also [38]. The statement that H2 is Λ-torsion is called the weak Leopoldt conjecture
and it is believed to hold for many Galois representations T . Global duality together with
basic results deduced from the above theorem provides us with an exact sequence

0 //H1/
∞cΛ

//H1
s
/
∞cΛ

//X //H2 //0.

Here ∞c ∈ H1 ⊗ Q is the part of the Euler system that is sent to the p-adic L-function
LE by the Coleman map; therefore Col sends the second term into Λ/LEΛ with finite
cokernel. Hence the main conjecture is equivalent to
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Conjecture 7. The characteristic ideal of H2 and of H1/∞cΛ are equal.

The advantage of this formulation is that it does not involve the p-adic L-function and
makes sense in the supersingular case as well.

Theorem 29 (Theorem 17.4 in [17]). Suppose E has good ordinary reduction at p. Then

a). X is a torsion Λ-module;

b). there is an integer t > 0 such that the characteristic ideal char(X) divides pt LE Λ;

c). if the representation ρ̄ : GQ → Gl(TE) is surjective, then char(X) divides LE Λ.
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